饱和盐水钻井液缓蚀剂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在钻井工程中,钻具腐蚀是普遍存在的问题,并随着钻井向高速、深井方向发展而日趋严重,又由于钻具的不断提价而变得尤为突出。近年来,江苏油田承钻了位于洪泽、淮阴一带的盐井,使用饱和盐水钻井液。该钻井液中Cl~-含量高,同时富含K~+、Ca~(2+)、SO_4~(2-)等离子,电导率大;另外其中还含有多种成分复杂的添加剂,又因井内温度较高(80℃~90℃),钻井液内含溶解氧,因此对钻具的腐蚀更是尤为严重。
     本文首先通过对钻杆腐蚀产物进行EDS分析从而推断腐蚀机理,结果表明:腐蚀产物主要成分是Fe_2O_3,饱和盐水钻井液对钻杆的腐蚀主要是氧的去极化作用所致,其电化学反应为:阳极过程:Fe-2e→Fe~(2+),阴极过程:O_2+2H_2O+4e→4OH~-,即:2Fe+3/2O_2+H_2O→2FeOOH→Fe_2O_3+H_2O。
     动电位扫描极化曲线法进行缓蚀剂的室内筛选实验结果表明:氧化型缓蚀剂中含氮化合物A提高G105钢在饱和盐水中的孔蚀电位作用较明显;沉淀型缓蚀剂中含硅化合物B作用也较明显;吸附型缓蚀剂中只有有机胺C的作用较明显。然后,将含氮化合物A、含硅化合物B和有机胺C进行正交复配,筛选出效果较好的复合缓蚀剂(1%A+0.5%B+0.5%C)。
     室内动态模拟实验结果表明:在温度为80℃、连续通氧(2L/h)、转速为2000r/min条件下,该复合缓蚀剂的室内缓蚀率达到95%以上,明显高于单组分缓蚀剂;运用腐蚀试验环法进行现场评价试验,结果表明:该复合缓蚀剂和饱和盐水钻井液配伍性良好,现场缓蚀率达到90%左右,效果明显。
     最后,本文运用X-射线光电子能谱(XPS)对G105钢在饱和盐水中的钝化膜进行了初步研究,结果表明:G105钢在空白饱和盐水中形成的钝化膜的主要组成元素为Fe、C和O,而且钝化膜为两种铁的氧化物γ-FeOOH、FeO结构;G105钢在含有复合缓蚀剂的饱和盐水中的钝化膜除了含有Fe、C和O三种元素,还有N和Si,这说明复合缓蚀剂参与了钝化膜的形成,复合缓蚀剂的加入使钝化膜中γ-FeOOH的含量增高,从而提高了钝化膜的抗点蚀能力。
In well-drilling projects, the corrosion of drill pipe is ubiquitous phenomena; moreover, it becomes more serious along with the development of deep wells and high-speed wells and it becomes more urgent because of rise in price of drill pipe in recent years. Lately, Jiangsu oil field drills lots of salt wells locating in Hongze and Huaiyin, saturated saltwater drilling fluids is used, the concentration of Cl- is very high; various additives are added into the drilling fluids; the conductance of drilling fluids is high; the temperature of wells is high(80℃~90℃ );Dissolved oxygen exists in it; so, the corrosion of drill pipe is more serious.
    In this work, by the method of EDS analysis of drill pipe corrosion production, we can conclude that the corrosion of drill pipe is mainly caused by the depolarization of dissolved oxygen; anode process: Fe-2e→Fe2+, cathode process: O2+2H2O+4e→ 4OH-, the whole process: 2Fe+3/2O2+H2O→2FeOOH→Fe2O3+H2O.
    Potentiodynamic polarization test results show: nitrogen containing compound A can apparently enhance G105 steel's pitting potential in saturated saltwater among oxidation-type corrosion inhibitors; so does silicon containing compound B among deposition-type inhibitors; organic amine C also works a lot among adsorption-type inhibitors; then, by the method of orthogonal experiments we picked out composite inhibitor: 1%A+0.5%B +0.5%C.
    Laboratory dynamic simulation test results show: the inhibition efficiency of composite inhibitor is above 95%, which is superior to single inhibitors; Spot evaluation test, which was carried out by the method of corrosion test ring, results show: composite inhibitor is consistent to saturated saltwater drilling fluids, its inhibition efficiency is about 90%.
    X-ray photoelectron spectroscopy (XPS) was used to study the composition of G105 steel passive film formed in saturated saltwater. Results show that the major elements in the passive film are Fe, C and O; and that there are two oxides of iron( gamma -FeOOH, FeO) in the film. After adding composite inhibitor, the content of gamma
    
    
    -FeOOH in the film is increased, so, the ability of resistance of Cl- pitting corrosion is enhanced.
引文
[1]韩秋玲,冀成楼,路金宽等,钻井液用除氧剂与缓蚀剂,第八届全国缓蚀剂会议论文集,1993.11,武汉
    [2]沈长寿,熊楚才,黄红兵,钻具抗氧缓蚀剂的研究,第八届全国缓蚀剂会议论文集,1993.11,武汉
    [3]鄢捷年主编,钻井液工艺学[M],石油大学出版社,2001
    [4]张克勤,王欣,王奎才等,国内外钻井液标准化工作综述[J],石油钻探技术,
    
    2001,29(3):4~8
    [5]华明琪,贺承祖,钻具腐蚀与防护[J],油田化学,1988,5,No1:71~80
    [6]叶康民,金属腐蚀与防护概念[M],人民教育出版社,1980
    [7]杨文治,黄魁元等,缓蚀剂[M],北京,化学工业出版社,1989
    [8]藤井晴一,金属表面技术,1984,35(5):222
    [9]Collie M.J., Corrosion Inhibitors[M], Park Ridge, New York, 1983
    [10]魏宝明,金属腐蚀理论及应用[M],北京,化学工业出版社,1984
    [11]王佳,曹楚南,陈家坚,缓蚀剂理论与研究方法的进展[J],腐蚀科学与防护技术,1992,4(2):79~86
    [12]间宫富士雄[日],缓蚀剂及其应用技术[M],国防工业出版社,1984
    [13]罗知翊,国外钻井液处理剂调查[J],油田化学,1993,10,No1:86~91
    [14]James E.Donham, Chemical Control of Drilling Corrosion[J], Materials Performance, 1976, 15 (10): 34~38
    [15]M.A.Al-Marhoun, S.S.Rahman, Treatment of Drilling Fluid to Combat Drill Pipe Corrosion[J], Corrosion, 1990, 46 (9): 778~782
    [16]G.T.Hefter, N.A.North, S.H.Tan, Organic Corrosion Inhibitors in Neutral Solutions; Part 1-Inhibition of Steel, Copper, and Aluminum by Straight Chain Carboxylates[J], Corrosion, 1997, 53 (3): 657~667
    [17]Y.Tomoe, M.Shimizu, Y.Nagae, Unusual Corrosion of a Drill Pipe in Newly Developed Drilling Mud During Deep Drilling[J], Corrosion, 1999, 55 (7): 706~713
    [18]Yulin Wu, Kenneth E.McSperitt, George D.Harris, Corrosion Inhibition and Monitoring in Sea Gas Pipeline Systems[J], Materials Performance, 1988, 27 (12): 29~34
    [19]J.R.Shadley, S.A.Shirazi, E.Dayalan et al., Prediction of Erosion-Corrosion Penetration Rate in a Carbon Dioxide Environment with Sand[J], Corrosion, 1998, 54 (12): 972~978
    [20]沈长寿,钻井液中抗氧缓蚀剂的研究[J],石油与天然气化工,2000,29(3):139~140
    
    
    [21]彭芳明,吕战鹏,刘小武等,聚合物盐水泥浆缓蚀剂研究[J],油田化学,1996,13(2):106~110
    [22]赵福祥,范荣增,范旭波等,DPI-03型钻井液缓蚀剂的研制[J],油田化学,1996,13(1):37~39
    [23]何耀春,王江,黄步耕等,咪唑啉衍生物MC、MP的合成及在油田回注水中的缓蚀阻垢作用[J],油田化学,1997,14(4):336~339
    [24]唐善法,傅绍斌,程满福等,复合盐水钻井液缓蚀剂DFP的研制及应用[J],油田化学,1997,14(2):110~114
    [25]杨小华,李莉,国内1996-1997年新开发的钻井液处理剂概况[J],油田化学,1998,15(2):185~188
    [26]傅绍斌,袁中直,李国强等,PCA在复合盐水介质中的缓蚀性能,第八届全国缓蚀剂会议论文集,1993.11,武汉
    [27]吴修斌,李铭瑞,罗富先,复合缓蚀剂ZH-1在中原油田聚合物盐水泥浆中的应用[J],油田化学,1996,13(2):100~105
    [28]ASTM, Annual Book of ASTM Standards, Volume 11.01, Water(1), 1985
    [29]M.A.Quraishi, J.Rawat, M.Ajmal, Macrocyclic Compounds as Corrosion Inhibitors[J], Corrosion, 1998, 54(12): 996~1002
    [30]郭稚弧等,几种植物萃取液对碳钢腐蚀的抑制作用[J],材料保护,1989,22(2):9
    [31]P.B.Mathur, T.Vasudevan, Reaction Rate Studies for the Corrosion of Metals in Acids-Ⅰ, Iron in Mineral Acid[J], Corrosion, 1982, 38 (3): 171~178
    [32]木冠南,赵天培,量热法研究缓蚀作用[J],化学世界,1989,30(1):36~38
    [33]易德莲等,测温法研究低碳钢在硝酸中的腐蚀行为[J],腐蚀与防护,1990,11(6):308~311
    [34]A.S.Fouda, M.N.Moussa, F.I.Taha et al., The Role of Thiosemicarbazide Derivatives in the Corrosion Inhibition of Aluminum in Hydrochloric Acid[J], Corrosion Science, 1986, 26(9): 719~726
    [35]安鼎年,辛志伟,Fc-5腐蚀测量仪测试腐蚀速度的极化曲线外推法[J],工业
    
    水处理,1988,8(2):11~14
    [36]郭兴蓬,俞敦义,叶康民,缓蚀剂研究中的电化学方法一某些问题与新方法[J],材料保护,1992,25(10):24~27
    [37]M.Stern, A.L.Geary, Electrochemical Polarization, Ⅰ: A Theoretical Analysis of the Shape of Polarization Curves[J], Journal of Electrochemical Society, 1957, 104 (1): 56~63
    [38]Ken-Ichi Kanno, Masayuki Suzuki, Yuichi Sato, An Application of Coulostatic Method for Rapid Evaluation of Metal Corrosion Rate in Solution[J], Journal of Electrochemical Society, 1978, 125(9): 1389~1393
    [39]Ken-Ichi Kanno, Masayuki Suzuki, Yuichi Sato, Tafel Slope Determination of Corrosion Reaction by the Coulostatic Method[J], Corrosion Science, 1980, 20: 1059~1066
    [40]赵常就,恒电量技术及在金属腐蚀测量中的应用[M],北京,国防工业出版社,1995
    [41]周海晖,赵常就,恒电量法快速评价气相缓蚀剂的研究[J],中国腐蚀与防护学报,1995,15(4):291~296
    [42]刘烈伟,姚禄安,陈永言等,用交流阻抗法研究缓蚀剂的缓蚀行为[J],材料保护,1987,20(4):7
    [43]徐群杰,周国定,陆柱等,交流阻抗法对几种铜缓蚀剂的比较研究[J],华东理工大学学报,1998,24(3):324~328
    [44]陈旭俊,徐越,马仁川等,乙醇胺钼酸盐的缓蚀作用与机理[J],中国腐蚀与防护学报,1995,15(4):279~284
    [45]宋诗哲,腐蚀电化学研究方法[M],北京,化学工业出版社,1988
    [46]陈旭俊,王海林,孔蚀缓蚀剂及其理论研究评述(二)—孔蚀缓蚀作用的研究方法与发展方向[J],材料保护,1991,24(8):4~7
    [47]李欣,齐晶瑶,用电化学噪声测量法进行缓蚀剂的性能测试及筛选[J],工业水处理,1996,16(6):27
    [48]C.Monticelli, G.Brunoro, A.Frignani et al., Evaluation of Corrosion Inhibitors by Electrochemical Noise Analisis[J], Journal of Electrochemical Society, 1992, 139(3):
    
    706~711
    [49]王红艳,周苏闽,AES和XPS研究Cu-Sn-P镀层表面PMTA复合膜[J],光谱实验室,1999,16(5):480~484
    [50]严川伟,何毓番,林海潮等,2-巯基苯并恶唑(MBO)在铜表面缓蚀膜研究[J],中国腐蚀与防护学报,1999,19(6):367~371
    [51]钱倚剑,李文娜,镀锡层的钼酸盐钝化处理研究[J],化工腐蚀与防护,1995,4:15~18
    [52]赵文涛,旷富贵,姚禄安等,表面增强拉曼散射在缓蚀剂作用机理研究中的应用[J],材料保护,1993,26(12):9~12
    [53]M.Fieischmann, I.R.Hill, G.Mengoli et al., A Comparative Study of the Efficiency of Some Organic Inhibitors for the Corrosion of Copper in aqueous Chloride Media Using Electrochemical and Surface Enhanced Raman Scattering Techniques[J], Electrochemica Acta, 1985, 30 (12): 879
    [54]M.Fleischmann, G.Mengoli, M.M.Musiani et al., An Electrochemical and Raman Spectroscopic Investigation of Synergetic Effects in the Corrosion Inhibition of Copper[J], Electrochemica Acta, 1985, 30(12): 1591~1602
    [55]J.J.Kester, T.E.Furtak, A.J.Bevolo et al., Surface Enhanced Raman Scattering in Corrosion Inhibitor Benzotriazole on Copper[J], Journal of Electrochemical Society, 1982, 129(8): 1716~1719
    [56]Rinju Youda, Hiroshi Nishihara, Kunitsugu Aramaki, A SERS Study on Inhibition Mechanisms of Benzotriazole and Its Derivatives for Copper Corrosion in Sulphate Solutions[J], Corrosion Science, 1988, 28 (1): 87~96
    [57]Melendres C.A., Pankuch M., Li Y.S. et al, Surface Enhanced Raman Spectroelectrochemical Studies of The Corrosion Films on Iron and Chromium in Aqueous Solution[J], Electrochemica Acta, 1992, 37(15): 2747~2754
    [58]林仲华,王逢春,田中群,2-氨基嘧啶对铜的缓蚀机理[J],物理化学学报,1992,8(1):87~93
    [59]G.Mengoli, M.M.Musiani, M.Fleischmann et al., Enhanced Raman Scattering from Iron Electrodes[J], Electrochemica Acta, 1987, 32(8): 1239~1245
    
    
    [60]Mansfeld F., Optical Studies of Metal Surfaces[M], 1955
    [61]Florian Mansfeld, Tennyson Smith, E.P.Parry, Benzotriazole as Corrosion Inhibitor for Copper[J], Corrosion, 1971, 27(7): 289~294
    [62]Winterbottom N.D. et al., Surf.Technol., 1979, 9:235
    [63]李汉,张东升,卢刚,循环冷却水中聚磷酸盐缓蚀剂的缓蚀机理初步研究[J],工业水处理,1986,6(2):9~13
    [64]高永丰等,用光电流法评价铜缓蚀剂[J],材料保护,1995,28(10):9
    [65]木冠南,纯铝在盐酸溶液中腐蚀速度的研究[J],化学通报,1986,2:38~39
    [66]李国希,胡茵,吴翠兰,研究防锈油的一种简单电化学方法—斩波器法[J],材料保护,1989,22(4):29~33
    [67]冯益其等,用循环伏安法研究钼酸盐对软钢的缓蚀作用[J],华东化工学院学报,1990,16(3):314~321
    [68]冯益其,旋转圆盘电极法测定钢的腐蚀速度[J],华东化工学院学报,1991,17(4):436~440
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.