甜菜夜蛾和斜纹夜蛾性信息素感受相关蛋白的分子克隆、定量分析及原核表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
昆虫在长期进化过程中形成了高度灵敏的嗅觉系统,并以此来感受自然环境中的各种化学信息,产生相应的生理和行为反应,如寻找配偶、食物源和栖息场所、产卵行为、逃避危险或者不适合的栖息地和寄主等,因此嗅觉系统对于昆虫的生命活动至关重要。将昆虫嗅觉应用于害虫防治,已成为害虫管理的一个重要手段,并将在未来害虫治理中起到越来越重要的作用。甜菜夜蛾和斜纹夜蛾是世界性分布的重要农业害虫,危害很多种粮食和蔬菜作物,生产上主要依靠化学防治,但由于害虫抗药性以及蔬菜等作物的无公害防治要求,迫切需要寻求新的防治技术。这两种夜蛾雌虫性信息素组分已得到鉴定,并成功用于田间种群的预测预报,但将性信息素直接用于害虫的大量诱杀或交配干扰,防治效果并不理想。因此,深入研究蛾类昆虫性信息素通讯的分子机制,弄清性信息素感受相关蛋白及其功能,必将有助于针对特定嗅觉蛋白设计和开发更为高效的两性通讯的调控技术,服务于蔬菜和粮食的无公害生产。本文对甜菜夜蛾和斜纹夜蛾性信息素感受相关蛋白进行了研究,主要结果如下:
     1甜菜夜蛾信息素结合蛋白基因的克隆和序列分析
     通过比较几种已发表夜蛾科昆虫的信息素结合蛋白(PBPs)氨基酸序列,设计合成一对简并性引物,利用反转录多聚酶链式反应(RT-PCR)技术从甜菜夜蛾(Spodoptera exigua Hübner)雄虫触角扩增得到2个分别为275bp和281bp的cDNA片段SexigPBP1和SexigPBP2。随后,利用cDNA末端快速扩增(RACE)技术进行两个cDNA全序列克隆,SexigPBP1 (Genbank登录号:AY540316)cDNA全序列为1,077bp,SexigPBP2 (Genbaak登录号:AY545636)为819bp。S.exigua的2个PBP基因推导的氨基酸序列与已知其它鳞翅目昆虫PBP具有较高的同源性,但彼此间的同源性为44%。
     以基因组DNA为模板进行扩增后,发现S.exigua的2个PBP基因具有相同的intron/extron结构,各含有2个内含子,并且内含子具有典型的GT-AG结构。SexigPBP1在Glu45和Leu46之间插入一个87 bp的内含子:在Asp105内插入第二个内含子,长142bp。SexigPBP2在Glu49和Met50之间插入一个295 bp的内含子;在Asp110内插入第二个内含子,长644bp。
     RT-PCR结果表明SexigPBP1和SexigPBP2在雌雄虫触角内均有表达,但在其他组织中不表达。进一步用实时定量PCR技术比较了雌雄蛾触角内两个PBP基因的表达水平,结果发现,雌蛾触角内的SexiegPBP1和SexigPBP2的表达水平仅为雄蛾的39%和73%。
     2斜纹夜蛾信息素结合蛋白基因的克隆和序列分析
     利用RT-PCR和RACE技术,从斜纹夜蛾(S.litura(Fabrieius),)雄蛾触角扩增得到2个信息素结合蛋白(PBPs)cDNA全序列:SlitPBP1和SlitPBP2。SlitPBP1(Genbank登录号:DQ004497)全序列为1,085 bp,编码164个氨基酸,N-端头23个氨基酸为预测的信号肽,其后的成熟蛋白由141个氨基酸组成,预测分子量为16,285 Da,等电点为5.14。SlitPBP2 (Genbank登录号:DQ114219)全长804 bp,编码170个氨基酸,最初27个氨基酸为信号肽,143个氨基酸组成的成熟蛋白预测分子量为15,998 Da,等电点为4.92。2个PBP基因推导的氨基酸序列与已知其它鳞翅目昆虫PBP具有较高的同源性,两者彼此之间的同源性为45%。
     SlitPBP1和SlitPBP2内各含有2个内含子,并且内含子具有典型的GT-AG结构。SlitPBP1在Glu45和Leu46之间插入一个76 bp的内含子;在Asp105内插入第二个内含子,长104 bp。SlitPBP2在Glu49和Met50之间插入一个437 bp的内含子;在Asp110内插入第二个内含子,长1,251 bp。可见,PBP2的内含子比PBP1长得多,同一个基因第二个内含子明显比第一个长。
     RT-PCR结果表明SIitPBP1和Slit PBP2仅在雌雄虫触角内表达。进一步用实时定量PCR技术比较了雌雄虫触角内SlitPBP1和Slit PBP2的表达水平,结果发现,雌蛾触角内的SlitPBP1和SlitPBP2的表达水平仅为雄蛾的2.1%和7.0%。
     搜集现已报道的鳞翅目昆虫PBP,利用Mega3.1软件进行系统进化分析,结果显示夜蛾科昆虫的PBP被清楚地分为三个组,本研究发现的SexigPBP1和SlitPBP1同属于第二组(Group2),SexigPBP2和SlitPBP2同属于第三组(Group3)。
     3甜菜夜蛾信息素结合蛋白基因的原核表达及蛋白纯化
     在成功克隆甜菜夜蛾2个PBP基因的基础上,将SexigPBP1和SexigPBP2构建到原核表达载体pET-30a(+)中,在大肠杆菌BL21(DE3)中成功表达,表达产物经SDS-PAGE检测,所表达的两个重组蛋白约22kD,主要以包涵体形式存在。超声波破碎离心后,用8M尿素对包涵体进行溶解,经镍离子亲和层析柱一步法纯化得到的PBP的纯度非常高,并且回收率也很高。为了避免N-端多余序列的干扰作用,利用肠激酶对已纯化的目的蛋白进行专一性酶解,酶解产物再经亲和层析纯化,得到已除去N-端标签的目的蛋白(约16kD),为进一步研究PBP与性信息素组分之间的作用打下基础。利用常规免疫方法,用重折叠的目的蛋白SexigPBPl免疫Babl/c小鼠获得较高效价抗体,为进行下一步实验提供材料。
     4甜菜夜蛾和斜纹夜蛾嗅觉受体基因的克隆和序列分析
     高度变异的昆虫嗅觉受体家族中有一类在不同目昆虫中非常保守的嗅觉受体,本文通过比对几种已发表昆虫的嗅觉受体(ORs)氨基酸序列,设计合成一对简并性引物,分别在甜菜夜蛾和斜纹夜蛾触角内克隆到292 bp和1,063bp的cDNA片段,命名为SexiOR2和SlitOR2。利用cDNA末端快速扩增(RACE)技术进行两个cDNA全序列克隆,SexiOR2(Genbank登录号:AY862142)全长为1,906 bp,阅读框架全长1,419 bp,编码473个氨基酸,预测分子量为53,303 Da,等电点为8.60。SlitOR2(Genbank登录号:DQ845292)全长为2,483 bp,阅读框架全长1,419 bp,编码473个氨基酸,预测分子量为53,267 Da,等电点为8.63。SlitOR2的3′非编码区(937 bp)要比SexiOR2的(350 bp)长很多。经预测氨基酸序列中具有典型的G蛋白偶联受体(GPCR)的七个跨膜区域。SexiOR2和SlitOR2与已知其它昆虫嗅觉受体的同源性都在50%以上,并且两者之间的同源性高达98%。系统发育分析表明,已知的鳞翅目昆虫嗅觉受体蛋白独立形成一组。
     本论文利用分子生物学技术,成功克隆出与甜菜夜蛾和斜纹夜蛾性信息素感受有关的两类蛋白,并进行了系统进化等相关分析。在此基础上,用原核表达系统表达并纯化了甜菜夜蛾的2个PBP,并制备了甜菜夜蛾PBP1的抗体。研究结果为弄清这两种夜蛾性信息素的感受机制打下了基础,并为研制和开发新型、高效的两性通讯阻断剂提供了依据。
In insects, the olfactory systems have been evolved highly sensitive, enabling detect and discriminate among a diverse array of volatile chemicals that stimulus insect behavioral responses such as mate-seeking, location of food and habitat, oviposition. Olfactory systems play crucial roles in insect survival and reproductive success. The olfactory-based control strategies have developed an important means for pest control. The beet armyworm, Spodoptera exigua Hübner and common cutworm S. litura (Fabricius) (Lepidoptera: Noetuidae), are severe pests of various agricultural crops. Their sex pheromone of female moths have been identified as complex blends, and successfully used in pest population monitoring. However, it is not satisfactory to its use in pest control except with means of mass-traping and mating-disruption. Therefore, it is very important to gain insight on the molecular mechanism of the perception of female sex pheromone by the male. With the insights on the molecular machemism, it will be facilitated for molecular designing of specific regulator to these key olfactory proteins, and for further development of more effective pest behaviorally interfereing techniques. Here, we report the molecular identification and sequence analysis of PBP and odorant receptor genes from S. exigua and S. litura, and further experession and purification of the PBP protein. The main results are as follows.
     1. Molecular characterization and sequence analysis of PBP from S. exigua
     PCR performed with a pair of degenerate primers designed on the conserved amino acid regions of FWK(R)EG(E)Y and HE(D)LN(K)WA in PBPs of other insects, afforded two cDNA products of 275 and 281 bp, respectively. They were called SexigPBP1 and SexigPBP2, respectively. A Rapid Amplification of cDNA Ends (RACE) procedure was employed to obtain full-length sequences of PBP1 and PBP2 from S. exigua. The two PBP sequences of SexigPBP1 and SexigPBP2 were deposited in GenBank with the accession numbers of AY540316 and AY545636, respectively. The full-length sequences of SexigPBP1 and SexigPBP2 are 1,077 and 819 bp, respectively. SexigPBP1 cDNA contains a 492 bp open reading frame that encodes a 164 amino acid protein. SexigPBP2 cDNA contains a 510 bp open reading frame that encodes a 170 amino acid protein. The two PBPs from S. exigua share low similarity (44% identity), but are very similar to PBPs of the same group from other insect species, respectively. In order to ascertain the intron/exon structure of the genes, the two PBP genes were further cloned and sequenced from the genomie DNA preparation. Both SexigPBP1 and SexigPBP2 genes contain two introns, and present a similar intron/exon structure. The ends of the introns have a typical GT-AG structure. The two introns in SexigPBP1 are located between Glu45 and Leu46 (intronl, 87 bp) and inside the codon for Aspl05 (intron2, 142 bp). The introns in SexigPBP2 are located between Glu49 and Met50 (intronl, 295bp) and inside the eodon for Asp110 (intron2, 644 bp). To investigate the presence of PBPs in different tissues of S. exigua, reverse transeription-polymerase chain reaction (RT-PCR) experiments were performed using specific primers. SexigPBP1 and SexigPBP2 are only expressed in S. exigua antennae. Real-time PCR was performed to compare the transcript levels of SexigPBP1 and SexigPBP2 from antennae of male to female moths. The transcription levels of PBP genes from antennae were higher in male moths than in females. The amounts of SexigPBP1 and SexigPBP2 mRNA in female antennae were about 39% and 73%, respectively, relative to those in male antennae.
     2. Cloning and sequence analysis of PBP from S. litura
     Similarly as in S. exigua, with RT-PCR technique, two cDNA fragments (275 and 281 bp) were cloned. They were named SlitPBP1 and SlitPBP2, respectively. Their full lengths were obtained using RACE procedure. The isolated cDNA clone encoding SlitPBP1 (GenBank accession numbers DQ004497) was 1,085 bp long and contained a 492 bp open reading frame for a polypeptide of 164 amino acids. The initial 23 amino acids are predicted as a signal peptide followed by the native protein of 141 amino acids with a molecular mass of 16,285 Da, and an isoelectric point of 5.14. The isolated cDNA clone encoding SlitPBP2 (804 bp) (GenBank accession numbers DQl14219) comprised the complete PBP precursor consisting of a 27 amino acids long signal peptide followed by the native protein of 143 amino acids with a molecular mass of 15,998 Da and a isoelectric point of 4.92. Both SlitPBP1 and SlitPBP2 genes also contain two introns from the genomic DNA preparation. The two introns in SlitPBP1 are located between Glu45 and Leu46 (intronl, 76 bp) and inside the codon for Asp105 (intron2, 104 bp). The introns in SlitPBP2 are located between Glu49 and Met50 (intronl, 437 bp) and inside the codon for Asp110 (intron2, 1251 bp). The ends of the introns have a typical GT-AG structure. The two PBPs from S. litura share low similarity (45% identity), but are very similar to PBPs of the same group from other insect species, respectively. RT-PCR experiments show SlitPBP1 and SlitPBP2 are only expressed in S. litura antennae. The transcription levels of PBP genes from male and antennae were compared with Real-time PCR. The amounts of SlitPBP1 and SlitPBP2 mRNA in female antennae were about 2.1% and 7%, respectively, relative to those in male antennae. Phylogenetic analysis showed that noctuid PBPs were classified into three distinct groups (Group 1-3), and SexigPBP1, SlitPBP 1 and SexigPBP2, SlitPBP2 belong to two different groups (Group 2 and Group 3), respectively.
     3. Bacterial expression and purification of PBPs from S. exigua
     Based on cloned SexigPBP information, SexigPBP1 and SexigPBP2 were constructed into bacterial expression vector pET-30a(+) fused to N-terminal His-tag sequence in frame and successfully overexpressed in E. coli BL21 (DE3), mostly present as inclusion bodies. The two recombinant proteins showed an obvious band at about 22kD through sodium dodecyl sulfate-polyacrylamide gel eleetrophoresis (SDS-PAGE) analysis. The induced cells were disrupted by sonication on ice. The isolate inclusion bodies were solubilized in 8 Murea. Extracts were purified with a nickel affinity column. Cleavage of the fusion protein, with enterokinase and further purification led to an expected molecular weight protein (about 16kD). In adition, the purified SexigPBP1 was refolded and used to immunize mouse, and the antibodies with higher immuo-effeiceney were obtained and tested by enzyme-linked immunosorbent assay.
     4. Cloning and sequence analysis of odorant receptor genes from S. exigua and S. iitura
     By RT-PCR method with a pair of degenerate primers designed against an alignment of several known insect odorant receptor sequences. Two cDNA fragments of odorant receptor gene, SexiOR2 and SlitOR2, were cloned and sequenced from the antennae of male S. exigua and S. litura. Their full lengths were obtained using RACE procedure. The full-length sequence of SexiOR2 (Genbank accession number AY862142) was 1,906 bp, contains a 1,419 bp bp open reading frame that encodes a 473 amino acid protein with a molecular mass of 53,303 Da and an isoelectrie point of 8.60. The full-length sequence of SlitOR2 (GenBank accession numbers DQ845292) was 2,483 bp long and also contained a 1,419 bp open reading frame for a polypeptide of 473 amino acids with a molecular mass of 53,267 Da and an isoelectric point of 8.63. SexiOR2 and SlitOR2 included seven putative transmembrane domains, which is the typical characteristic of G protein-coupled receptors. The sequence analysis indicated that the deduced amino acid sequences of SexiOR2 and SlitOR2 shared high identity with olfactory receptors from other previously reported insects (50%) and the homology between SexiOR2 and SlitOR2 reached 98%. Phylogenetic analysis showed that Drosophila melanogaster Or83b and its Orthologs reported from other insects were classified into three distinct groups, and noctuid olfactory receptors formed a group.
     In this paper, we describe the identification and characterization of pheromone reception related proteins from the antennae of S. exigua and S. litura, and report about the comparison and evolution of these proteins of orthologous proteins. Based on cloned SexigPBP information, bacterial expression vectors of SexigPBP1 and SexigPBP2 were constructed and successfully expressed. The recombinant proteins were purified by affinity chromatography. Furthermore, the antiserum was raised with the purified SexigPBP1. These results could be used to explore the molecular mechanism of pheromone reception in S. exigua and S. litura, and helpful for providing theoretical evidences in designing and developing new effective attractant or deterrent.
引文
1.董双林,杜家纬.甜菜夜蛾性信息素鉴定及应用研究进展.昆虫知识,2002a,39(6):412-416
    2.董双林,杜家纬.甜菜夜蛾信息素组分的鉴定及其田间试验.植物保护学报,2002b,29(1):19-24
    3.范伟民,盛承发,苏建伟.棉铃虫成虫对性信息素的电生理和行为反应研究.昆虫知识,2003,46(2):138-143
    4.龚达平,赵萍,林英,张辉洁,夏庆友,向仲怀.家蚕信息素结合蛋白BmPBP2和BmPBP3基因的初步鉴定及表达分析,昆虫学报,2006,49(3):355-362
    5.巩中军,原国辉,郭线茹,安世恒.烟实夜蛾触角普通气味结合蛋白Ⅱ cDNA的克隆、序列分析及在大肠杆菌中的表达.昆虫学报,2005,48(1):18-23
    6.黄春霞,朱丽梅,倪珏萍,等.甜菜夜蛾的饲养方法介绍.昆虫知识,2002,39(3):229-231
    7.刘永杰.甜菜夜蛾抗药性监测与抗性机理研究.甜菜夜蛾抗药性监测与抗性机理研究.南京农业大学博士论文,2002
    8.刘晓光,安世恒,罗梅浩,郭线茹,原国辉.烟实夜蛾信息素结合蛋白3 cDNA的克隆、序列分析与原核表达.昆虫学报,2006,49(5):733-739
    9.娄永根,程家安.昆虫的化学感觉机理.生态学杂志,2001,20(2):66-69
    10.刘勇,倪汉祥,胡萃.昆虫气味结合蛋白研究进展.昆虫知识,2000,37(6):367-371
    11.雷宏,邱宇彤,Christensen T.A.昆虫嗅觉系统的结构与功能//刘同先,康乐.昆虫学研究:进展与展望.北京:科学出版社,2005:133-169
    12.孙凡,胡隐月,杜家纬.斜纹夜蛾性信息素通讯系统.昆虫学报,2001,45(3):404-407
    13.汪家政,范明.蛋白质技术手册.北京:科学出版社,2000
    14.王桂荣.棉铃虫气味结合蛋白的分子结构及气味的识别.中国农业科学院博士论文,2002
    15.王桂荣,郭予元,吴孔明.昆虫触角气味结合蛋白的研究进展.昆虫学报,2002,45(1):131-137
    16.王桂荣,郭予元,吴孔明.棉铃虫普通气味结合蛋白Ⅱ基因的表达及鉴定.昆虫学报,2002b,45(3):285-289
    17.王桂荣,郭予元,徐广,吴孔明.甜菜夜蛾GOBP2基因的克隆及序列测定.中国农业科学,2001,34(6):619-625
    18.王桂荣,吴孔明,苏宏华,郭予元.棉铃虫嗅觉受体基因的克隆及组织特异性表达.昆虫学报,2005,48(6):823-828
    19.王睿,张薇,田雨,张善干.棉铃虫触角气味物质结合蛋白的鉴别.昆虫知识,1999,36(5):297-298
    20.谢建军,胡美英,许再福.斜纹夜蛾的天敌及其生物防治.昆虫天敌,1999,21(2):82-92
    21.修伟明,董双林.苗慧,穆兰芳.2个甜菜夜蛾信息素结合蛋白cDNA片段的克隆和序列分析.中国农业科学,2005a,38(7):1501-1504
    22.修伟明,董双林,王荫长.昆虫信息素结合蛋白及其分子运输机制和生理功能研究进展.昆虫学报,2005b,48(5):778—784
    23.阎凤明.化学生态学.北京:科学出版社,2003
    24.周晓梅,黄炳球.斜纹夜蛾抗药性及其防治对策的研究进展.昆虫知识,2002,39(2):98—102
    25.周弘春,贾新民.昆虫化感器中的OBP.黑龙江八一农垦大学学报,2002,12(2):7—12
    26.朱彬彬,姜勇,雷朝亮.昆虫信息素结合蛋白的研究概况.昆虫知识,2005,42(3):240-243
    27. Abraham D., Lofstedt C., Picimbon J.F., Molecular characterization and evolution of pheromone binding protein genes in Agrotis moths. Insect Biochem. Mol. Biol. 2005, 35:1100-1111
    28. Almaas T.J., Mustapsrta H., Heliothis virescens: response characteristics of receptor neurons in sensilla trichodea type 1 and type 2. J .Chem. Ecol. 1991, 17(5):953-972
    29. Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J., Basic local alignment search tool. J. Mol. Biol. 1990, 215:403-410
    30. Bakalyar H.A., Reed R.R., The second messenger cascade in olfactory receptor neurons. Curr. Opin. Neurobiol. 1991, 1:204-208
    31. Baumann A., Frings S., Godde M., Seifert R., Kaupp U.B., Primary structure and functional expression of a Drosophila cyclic nucleotide-gated channel present in eyes and antennae. EMBO J. 1994, 13:5040-5050
    32. Ben-Arie N., Khen M., Lancet D., Glutathione S-transferase in rat olfactory epithelium: purification, molecular properties and odorant biotransformation. Biochem. J. 1993, 292, 379-384
    33. Bendtsen J.D., Nielsen H., Von Heijne G., Brunak S., Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 2004, 340:783-795
    34. Benton R., Sachse S., Michnick S.W., Vosshall L.B., Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo. PLoS Biol. 2006, 4(2)e20:240-257
    35. Bette S., Breer H., Krieger J., Probing a pheromone binding protein of the silkmoth Antheraea polypheraus by endogenous tryptophan fluorescence. Insect Biochem. Mol. Biol. 2002, 32:241-246
    36. Boeckh, J. et al. Anatomical and physiological characteristics of individual neurones in the central antennal pathways of insects. J. Insect. Physiol. 1984, 30:15-26
    37. Boeckh J. et al. Neurophysiology and neuroanatomy of the olfactory pathway in the coektoach. Ann. Ny. Acad. Sci. 1987, 510:39-43
    38. Boekhoff I., Michel W.C., Breer H., Ache B.W., Single odors differentially stimulate dual second messenger pathways in lobster olfactory receptor cells. J. Neurosci. 1994, 14, 3304-3309
    39. Boekhoff I., Raining K., Breer H., Pheromone-induced stimulation of inositol-trisphosphate formation in insect antennae is mediated by G-proteins. J. Comp. Physiol. B 1990a, 160:99-103
    40. Boekhoff I., Seifert E., Goggerle S., Lindemann M., Kruger B.W., Breer H., Pheromone induced 2nd-messenger signaling in insect antennae. Insect Biochem. Mol. Biol. 1993, 23:757-762
    41. Boekhoff I., Strotmann J., Raining K., Tareilus E., Breer H., Odorant-sensitive phospholipase C in insect antennae. Cell Signal 1990b, 2:49-56
    42. Bohbot J., Vogt R.G., Antennal expressed genes of the yellow fever mosquito (Aedes aegypti L.); characterization of odorant-binding protein 10 and takeout. Insect Biochem. Mol. Biol. 2005, 35:961-979
    43. Bradford M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principles of protein-dye binding. Anal. B iochem. 1976, 72:248-254
    44. Bray S., Amrein H., A putative Drosophila pheromone receptor expressed in male-specific taste neurons is required for efficient courtship. Neuron 2003, 39:1019-1029
    45. Breer H., Boekhoff I., Tareilus E., Rapid kinetics of second messenger formation in olfactory transduction. Nature 1990a, 345:65-70
    46. Breer H., Krieger J., Raming K., A novel class of binding proteins in the antennae of the silkmoth Antheraeapernyi. Insect Biochem. 1990b, 20:735-740
    47. Breer H., Raining K., Krieger J., Rapid kinetics of second messenger formation in olfactory transduction. Nature 1994, 354:65-68
    48. Briand L., Nespoulous C., Huet J.C., Pernollet J.C., Disulfide pairing and secondary structure of ASP1, an olfactory-binding protein from honeybee (Apis mellifera L). J. Pept. Res. 2001, 58:540-545
    49. Bruyne M.de, Clyne P.J., Carlson J.R., Odor coding in a model olfactory organ: the Drosophila maxillary palp. J. Neurosci. 1999, 19:4520-4532
    50. Bruyne M.de, Foster K., Carlson J.R., Odor coding in the Drosophila antenna. Neuron 2001, 30: 537-552
    51. Callahan F.E., Vogt R.G., Tucker M.L., Dickens J.C., Mattoo A.K., High level expression of "male specific" pheromone binding proteins (PBPs) in the antennae of female noctuid moths. Insect Biochem. Mol. Biol. 2000, 30:507-514.
    52. Campanacci V., Krieger J., Bette S., Sturgis J.N., Lartigue A., Cambillau C., Breer H., Tegoni M., Revisiting the specificity of Mamestra brassicae and Antheraea polyphemus pheromone binding proteins with a fluorescence binding assay. J. Biol. Chem. 2001, 276:20078-20084
    53. Campanacci V, Longhi S, Nagan-Le MP, Cambillau C, Tegoni M, 1999, Recombinant pheromone binding protein 1 from Mamestra brassicae (MbraPBP1). Eur. J. Biochem. 1999, 264:707-716
    54. Carlson J.R., Olfaction in Drosophila: from odor to behavior. Trends Genet. 1996, 12:175-180
    55. Carr W.E., Gleeson R.A., Trapido-Rosenthal H.G., The role of perireceptor events in chemosensory processes. Trends Neurosci. 1990, 13:212-215
    56. Chess A., Simon I., Cedar H., Axel R., Allelic inactivation regulates olfactory receptor gene expression. Cell 1994, 78:823-834
    57. Clyne P.J., Wan" G.G., Freeman M.R., Lessing D., Kim J., Carison J.R., A novel family of divergent seven transmembrane proteins: Candidate odorant receptors in Drosophila. Neuron 1999, 22:327-338
    58. Crasto C., Marenco L., Miller P., Shepherd G., Olfactory Receptor Database: a metadata-driven automated population from sources of gene and protein sequences. Nucleic Acids Res. 2002, 30:354-360
    59. Christensen T.A., Geoffrion S.C., Hildebrand J.G., Physiology of interspeeifie chemical communication in Heliothis moths. Physiol. Ent. 1990, 15:275-283
    60. Damberger F., Nikonova L., Horst R., Peng G., Leal W.S., Wuthrich K., NMR characterization of a pH-dependent equilibrium between two folded solution conformations of the pheromone-binding protein from Bombyx mori. Protein Sci. 2000, 9:1038-1041
    61. de Santis F, Francois M.C, Merlin C, Pelletier J., Maibèche-Coisné M., Conti E., Jacquin-Joly E., Molecular Cloning and in Situ Expression Patterns of Two New Pheromone-Binding Proteins from the Corn Stemborer Sesamia nonagrioides. J. Chem. Ecol. 2006, 32:1703-1717
    62. Del Punta K., Leinders-Zufall T., Rodriguez I., Jukam D., Wysocki C. J., Ogawa S., Zufall F., Mombaerts P., Deficient pheromone responses in mice lacking a cluster of vomeronasal receptor genes. Nature 2002, 419:70-74
    63. Dhallan R.S., Yau K.W., Schrader K.A., Reed R.R. Primary structure and unetional expression of a cyclic nueleotide-activated channel from olfactory neurons. Nature 1990, 347:184-187
    64. Dobritsa A.A., Van der Goes van Naters W., Wan" C.G., Steinbrecht R.A., Carlson J.R., Integrating the molecular and cellular basis of odor coding in the Drosophila antenna. Neuron 2003, 37:827-841
    65. Dolzer J., Fischer K., Stengl M., 2003, Adaptation in pheromone-sensitive trichoid sensilla of the hawkmoth Manduca sexta. J. Exp. Biol. 2003, 206:1575-1588
    66. Du G, Prestwieh G.D., Protein structure encodes the ligand binding specificity in pheromone binding proteins. Biochemistry 1995, 34:8726-8732
    67. Dunipace L., Meister S., McNealy C., Amrein H., Spatially restricted expression of candidate taste receptors in the Drosophila gustatory system. Curr. Biol. 2001,11:822-835
    68. Elmore T., Smith D.P., Putative Drosophila odor receptor OR43b localizes to dendrites of olfactory neurons. Insect Biochem. Mol. Biol. 2001, 31,791-798
    69. Elmore T., Ignell R., Carlson J.R., Smith D.P., Targeted mutation of a Drosophila odor receptor defines receptor requirement in a novel class of sensillum. J. Neurosci. 2003, 23:9906-9912
    70. Fadool D.A., Ache B.W., Plasma membrane inositol 1,4,5-trisphosphate activated channels mediate signal transduction in lobster olfactory receptor neurons. Neuron 1992, 9:907-918
    71. Forstner M, Gohl T, Breer H, Krieger J., Candidate pheromone binding proteins of the silkmoth Bombyx mori. Invert. Neurosci. 2006,8:177-187
    72. Fox A.N., Pitts R.J., Robertson H.M., Carlson J.R., Zwiebel L.J., Candidate odorant receptors from the malaria vector mosquito Anopheles gambiae and evidence of down-regulation in response to blood feeding. Proc. Natl Acad. Sci. 2001,98:14693-14697
    73. Fox A.N., Pitts R.J., Zwiebel L.J., A cluster of candidate odorant receptors from the malaria vector mosquito, Anopheles gambiae. Chem. Senses 2002,27:453-459
    74. Freitag J., Ludwig G., Andreini I., Roessler P., Breer H., Olfactory receptors in aquatic and terrestrial vertebrates. J. Comp. Physiol. A 1998,183, 635-650
    75. Fuchs T., Glusman G., Horn-Saban S., Lancet D., Pilpel Y., The human olfactory subgenome: from sequence to structure and evolution. Hum. Genet. 2001, 108:1-13
    76. Gaillard I., Rouquier S., Giorgi D., Olfactory receptors. Cell. Mol. Life Sci. 2004, 61:456-469
    77. Gao, Q., Chess A., Identification of candidate Drosophila olfactory receptors from genomic DNA sequence. Genomics 1999,60:31-39
    78. Gat U., Nekrasova E., Lancet D., Natochin M., Olfactory receptor proteins: expression, characterization and partial purification. Eur. J. Biochem. 1994,225:1157-1168
    79. Getchell T.V., Margolis F.L., Getchell M.L., Perireceptor and receptor events in vertebrate olfaction. Prog. Neurobiol. 1984,23:317-345
    80. Gilad Y., Man O., Paabo S., Lancet D., Human specific loss of olfactory receptor genes. Proc. Natl. Acad. Sci. 2003,100:3324-3327
    81. Glusman G., Yanai I., Rubin I., Lancet D., The complete human olfactory subgenome. Genome Res. 2001, 11:685-702
    82. Grater F., Xu W., Leal W., Grubmuller H., Pheromone discrimination by the pheromone-binding protein of Bombyx mori. Structure 2006,14:1577-1586
    83. Groβe-Wilde E., Svatos A., Krieger J., A pheromone binding protein mediates the bombykol-induced activation of a pheromone receptor in vitro. Chem. Senses 2006, 31:547-555
    84. Hallem E.A., Ho M.G., Carlson J.R., The molecular basis of odor coding in the Drosophila antenna. Cell 2004a, 117:965-979
    85. Hallem E.A., Nicole Fox A., Zwiebel L.J., Carlson J.R., Olfaction: mosquito receptor for human-sweat odorant. Nature 2004b, 427:212-213
    86. Hansson B.S., Olfaction in Lepidoptera. Experientia 1995, 51:1003-1027
    87. Hansson B.S., Carlsson M.A., Kalinovà B., Olfactory activation patterns in the antennal lobe of the sphinx moth, Manduca sexta. J. Comp. Physiol. A 2003, 189:301-308
    88. Hatt H., Ache B.W., Cyclic nucleotide-and inositol phosphate-gated ion channels in lobster olfactory receptor neurons. Proc. Natl. Acad. Sci. 1994, 91:6264-6268
    89. Hildebrand J.G., Analysis of chemical signals by nervous systems. Proc. Acad. Sci. 1995, 92:67-74
    90. Hildebrand J.G., Olfactory control of behavior in moths: central processing of odor information and the functional significance of olfactory glomeruii. J. Comp. Physio. A. 1996, 178:5-19
    91. Hildebrand J.G., Shepherd G.M., Mechanisms of olfactory discrimination: converging evidence for common principles across phyla. Annu. Rev. Neurosci. 1997, 20:595-631
    92. Hill C.A., Fox A.N., Pitts R.J., Kent L.B., Tan P.L., Chrystal M.A., Ravchik A., Collins F.H., Robertson H.M., Zwiebel L.J., G protein-coupled receptors in Anopheles gambiae. Science 2002, 298:176-178
    93. Homberg U., Montague R.A., Hildebrand J.G., Anatomy of antenno-cerebral pathways in the brain of the sphinx moth Manduca sexta. Cell Tissue Res. 1988, 254:255-281
    94. Homberg U., et al. Structure and function of the deutocerebrum in insects. Annu. Rev. Entomol. 1989, 34:477-501
    95. Honson N., Johnson M.A., Oliver J.E., Prestwich G.D., Plettner E., Structure-activity studies with pheromone-binding proteins of the gypsy moth, Lymantria dispar. Chem. Senses. 2003, 8:479-489
    96. Horst R., Damberger F., Luginbuhl P., Guntert P., Peng G., Nikonova L., Leal W.S., Wuthrich K., NMR structure reveals intramolecular regulation mechanism for pheromone binding and release. Proc. Natl. Acad. Sci. 2001, 98:14374-14379
    97. Howse P.E., Stevens L.D.R., Jones O.T., Insect pheromones and their use in pest management. Chepman and Hall, 1998
    98. Jacquin-Joly E., Merlin C., Insect olfactory receptors: contributions of molecular biology to chemical ecology. J. Chem. Ecol. 2004, 30(12):2359-2397
    99. Jones W.D., Cayirlioglu P., Kadow I.G., Vosshall L.B., Two chemosensory receptors together mediate carbon dioxide detection in Drosophila. Nature 2007, 445(4):86-90
    100. Jones W.D., Nguyen T.A., Kloss B., Lee K.J., Vosshall L.B., Functional conservation of an insect odorant receptor gene across 250 million years of evolution. Curr. Biol. 2005,15(4): R119-R121
    101. Kaissling K.E., Chemo-electrical transduction in insect olfactory receptors. Annu. Rev. Neurosci. 1986,9:121-145
    102. Kaissling K.E., Peripheral mechanisms of pheromone reception in moths. Chem. Senses. 1996, 21: 257-268
    103. Kaissling K.E., Olfactory perireceptor and receptor events in moths: a kinetic model. Chem. Senses, 2001,26:125-150
    104. Kaissling K.E., Physiology of pheromone reception in insects (an example of moths). ANIR. 2004, 6:73-91
    105. Kaissling K.E., Thorson J., Insect olfactory sensilla: structural, chemical and electricalaspects of the functional organisation. In: Receptors for Neurotransmitters, Hormones and Pheromones in Insects (eds.Sattelle D.B., Hall L.M., Hildebrand J.G.). Elsevier/North-Holland Biomedical Press, 1980, 261-282
    106. Kent K.S., Hildebrand J.G., Cephalic sensory pathways in the central nervous system of larval Manduca sexta (Lepidoptera: Sphingidae). Phil. Trans. R. Soc. 1987, 315:1-36
    107. Klusak V., Havlas Z., Rulisek L., Vondrasek J., Svatos A., Sexual attraction in the silkworm moth: Nature of binding of bombykol in pheromone binding protein-an ab initio study. Chem. Biol. 2003, 10:331-340
    108. Koontz M.A., Schneider D., Sexual dimorphism in neuronal projections from the antennae of silk moths (Bombyx mori, Antheraea polyphemus) and the gypsy moth (Lymantria dispar). Cell Tissue Res. 1987, 249:39-50
    109. Kowcun A., Honson N., Plettner E., Olfaction in the gypsy moth, Lymantria dispar: effect of pH, ionic strength, and reductants on pheromone transport by pheromone-binding proteins. J. Biol. Chem. 2001,276:44770-44776
    110. Krieger J., Breer H., Olfactory reception in invertebrates. Science 1999, 286:720-723
    111.Krieger J., Breer H., 2003, Transduction mechanisms of olfactory sensory neurons. In Insect Pheromone Biochemistry and Molecular Biology, (eds. Blomquist G.J., Vogt R.G.), Elsevier Academic Press, London. 2003, 593-607
    112. Krieger J., Klink O., Mohl C, Raming K., Breer H., A candidate olfactory receptor subtype highly conserved across different insect orders. J. Comp. Physiol. A 2003,189:519-526
    113. Krieger J., Ganssle H., Raming K., Breer H., Odorant binding proteins of Heliothis virescens. Insect Biochem. Mol. Biol. 1993,23:449-456
    114. Krieger J., Grosse-Wilde E., Gohl T. Breer H., Candidate pheromone receptors of the silkworm Bombyx mori. Eur. J. Neurosci. 2005, 21:2167-2176
    115. Krieger J., Grosse-Wilde E., Gohl T., Dewer Y.M., Raining K., Breer H., Genes encoding andidate pheromone receptors in a moth (Heliothis virescens). Proc. Natl. Acad. Sci. 2004, 101:11845-11850
    116. Krieger J., Mameli M., Breer H., Elements of the olfactory signaling pathways in insect antennae. Invert. Neurosci. 1997, 3:137-144
    117. Krieger J., Raining K., Breer H., Cloning of genomic and complementary DNA encoding insect pheromone binding proteins: evidence for microdiversity. Biochim. Biophys. Acta 1991, 1088 (2):277-284
    118. Krieger J., Raining K., Dewer Y.M., Bette S., Conzelmann S., Breer H., A divergent gene family encoding candidate olfactory receptors of the moth Heliothis virescens. Eur. J. Neurosci. 2002, 16:619-628
    119. Krieger J., Von Nickisch-Rosenegk E., Mameli M., Pelosi P., Breer H., Binding proteins from the antennae of Bombyx mori. Insect Biochem. Mol. Biol. 1996, 26:297-307
    120. Kumar S., Tamura K., Nei M., MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief. Bioinform. 2004, 5:150-163
    121. Kyte J., Doolittle R.F., A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 1982, 157:105-132
    122. Krieger J., Raming K., Breer H., Cloning of genomic and complementary DNA encoding insect pheromone-binding proteins: evidence for microdiversity. Biochim. Biophys. Acta. 1991, 1058:277-254
    123. Labandeira C.C., Sepkoski J.J., Insect diversity in the fossil record. Science 1993, 261:310-315
    124. Laemmli U.K., Cleavage of structural proteins during the assembly of the head of bacterophage TA, Nature 1970, 227:680-685
    125. LaForest S.M., Prestwich G.D., Lofstedt C., Intraspecific nucleotide variation at the pheromone binding protein locus in the turnip moth, Agrotis segetum. Insect Mol. Biol. 1999, 8:481-490
    126. Larsson M.C., Domingos A.I., Jones W.D., Chiappe M.E., Amrein H., Vosshall L.B., Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron 2004, 43:703-714
    127. Lartigue A., Gruez A., Spinellil S., Rivière S., Brossut R., Tegoni M., Cambillau C., The crystal structure of a cockroach pheromone binding protein suggests a new ligand binding and release mechanism. J. Biol. Chem. 2003, 278:30213-30218
    128. Laue M., Steinbrecht R.A., Ziegelberger G., Immunocytochemical localization of general odorant binding protein in olfactory sensilla of the silkmoth Antheraea polyphemus. Naturwissenschaflen 1994, 81:178-180
    129. Laue M., Steinbrecht R.A., Topochemistry of moth olfactory sensilla. Int. J. Insect Morph. Embryol. 1997, 26:217-228
    130. Lautenschlager C., Leal W.S., Clardy J., Coil-to-helix transition and ligand release of Bombyx mori pheromone-binding protein. Biochem. Biophys. Res. Commun. 2005, 335:1044-1050
    131. Leal W.S., Proteins that make sense. In Insect Pheromone Biochemistry and Molecular Biology. (eds. Blomquist G.J., Vogt R.G.), Elsevier Academic Press, London. 2003, 447-476
    132. Leal W.S., Chen A.M., Ishida Y., Chiang V.P., Erickson M.L., Morgan T.I., Tsuruda J.M., Kinetics and molecular properties of pheromone binding and release. Proc. Natl Acad. Sci. 2005, 102(15):5386-5391
    133. Leal W.S., Nlkonova L., Peng G., Disulfide structure of the pheromone binding protein from the silkworm moth, Bombyx mori. FEBS Letters 1999, 468:85-90
    134. Lee D., Damberger F.F., Peng G., Horst R., Guntert P., Nikonova L. et al. NMR structure of the unliganded Bombyx mori pheromone-binding protein at physiological pH. FEBS Letters, 2002, 531:314-318
    135. Liu A. H., Zhang X., Stolovitzky G. A., Califano A., Firestein S. J. Motif-based construction of a functional map for mammalian olfactory receptors. Genomics 2003, 81:443-456
    136. Livak K.J., Schmittgen T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2~(-△△CT) method. Methods 2001, 25:402-408
    137. Ljungberg H., Anderson P., Hansson B.S., Physiology and morphology of pheromone specific sensilla on the antennae of male and female Spodoptera littoralis (Lepidoptera: Noctuidae). J. Insect Physiol. 1993, 39:253-260
    138. Lynch M., Force A., The probability of duplicate gene preservation by subfunctionalization. Genetics 2000, 154:459-473
    139. Maibèche-Coisne M., Jacquin-Joly E., Francois M.C., Nagnan-Le Meillour P., Molecular cloning of two pheromone binding proteins in the cabbage armyworm Mamestra brassicae. Insect Biochem. Mol. Biol. 1998, 28: 815-818.
    140. Maibèche-coisné M., Sobrio F., Delannay T., Lettere M., Dubroca J., Jacquin-Joly E., Pheromone-Binding Proteins of the moth Mamestra brassicae: specificity of ligand binding. Insect Biochem. Mol. Biol. 1997, 27:213-221
    141. Maida R., Krieger J., Gebauer T., Lange U., Ziegelberger G., Three pheromone-binding proteins in olfactory sensilla of the two silkmoth species Antheraea polyphemus and Antheraea pernyi. Eur. J. Biochem., 2000, 267:2899-2908
    142. Malda R., Mameli M., Müller B., Krieger J., Steinbrecht R. A., The expression pattern of four odorant-binding proteins in male and female silk moths, Borabyx mori. J. Neurocytology 2005, 34:149-163
    143. Malda R., Krieger J., Gebauer T., Lange U., Ziegelberger G., Three pheromone-binding proteins in olfactory sensilla of the two silkmoth species Antheraea polyphernus and Antheraea pernyi. Eur. J. Biochem. 2000, 267:2899-2908
    144. Maida R., Ziegelberger G., Kaissling K.E., Ligand binding to six recombinant pheromone binding proteins of Antheraea polyphemus and Antheraea pernyi. J. Comp. Physiol. B 2003, 173:565-573
    145. Malnic B., Hirono J., Sato T., Buck L. B., ombinatorial receptor codes for odors. Cell 999, 96:713-723
    146. McNeil J., Behavioral ecology of pheromone-mediated communication in moths and its importance in the use of pheromone traps. Annu. Rev. Entomol. 1991, 36:407-430
    147. Melo A.C.A., Rutzler M., Pitts R.J., Zwiebel L.J., Identification of a chemosensory receptor from the yellow fever mosquito, Aedes aegypti, that is highly conserved and expressed in olfactory and gustatory organs. Chem. Senses 2004, 29:403-410
    148. Merritt T.J.S., LaForest S., Prestwich G.D., Quattro J.M., Vogt R.G., Patterns of gene duplication in lepidopteran pheromone binding proteins. J. Mol. Evol. 1998, 46:272-276
    149. Michael L., John S.C., The evolutionary fate and consequences of duplicate genes. Science 2000, 290:1151-1155
    150. Mita K., Kasahara M., Sasaki S., Nagayasu Y., Yamada T., Kanamori H., et al.. The genome sequence of silkworm, Borabyx mori. DNA Res. 2004, 11:27-35
    151. Michel W.C., Ache B.W., Cyclic nucleotides mediate an odor-evoked potassium conductance in lobster olfactory receptor cells. J. Neurosci. 1992, 12:3979-3984
    152. Mitchell E. R., Kehat M., Tingle F.C., Mclaughlin J.R., Suppression of mating by beet armyworm (Noctuidae: Lepidoptera) in cotton with pheromone. J. Agri. Entomol. 1997,14:17-28
    153. Mitchell E.R., Tumlinson J.H., Response of spodoptera exigua and S. eridania (Lepidoptera: Noctuidae) males to synthetic pheromone and S. exigua females. Florida Entomol. 1994, 77:237-247
    154. Mittapalli O., Wise I.L., Shukle R.H., Characterization of a serine carboxypeptidase in the salivary glands and fat body of the orange wheat blossom midge, Sitodiplosis mosellana (Diptera: Cecidomyiidae). Insect Biochem. Mol. Biol. 2006, 36:154-160
    155. Mohl C., Breer H., Krieger J., Species-specific pheromonal compounds induce distinct conformational changes of pheromone binding protein subtypes from Antheraea polyphemus, Invert. Neurosci. 2002,4:165-174
    156. Mombaerts P., Molecular biology of odorant receptors in vertebrates. Annu. Rev. Neurosci. 1999, 22,487-509
    157. Mori K., and Yoshihara Y., Molecular recognition and olfactory processing in the mammalian olfactory system. Prog. Neurobiol. 1995, 45:585-619
    158. Muller H.J., The organisation of chromatin deficiencies as minute deletions subject to insertion elsewhere. Genetics 1935,17:237-252
    159. Mustaparta H., Central mechanisms of pheromone information processing. Chem. Senses 1996, 1:269-275
    160. Nakagawa T., Sakurai T., Nishioka T., Touhara K., Insect sex-pheromone signals mediated by specific combinations of olfactory receptors. Science 2005, 307:1638-1642
    161.Nagnan-Le Meillour P., Huet J.C., Maiibeche M., Pernollet J.C., Descoins C, Purification and characterization of multiple forms of Odorant/Pheromone binding proteins in the antennae of Mamestra brassicae (Noctuidae). Insect Biochem. Mol. Biol. 1996,26:59-67
    162. Nef S., Allaman I., Fiumelli H., De Castro E., Nef P., Olfaction in birds: differential embryonic expression of nine putative odorant receptor genes in the avian olfactory system. 1996, 55:65-77
    163. Neuhaus E.M., Gisselmann G., Zhang W., Dooley R., Stortkuhl K., Hatt H., Odorant receptor heterodimerization in the olfactory system of Drosophila melanogaster. Nature Neurosci. 2005, 8:15-17
    164. Newcomb R.D., Sirey T.M., Rassam M., Greenwood D.R., Pheromone binding proteins of Epiphyas postvittana (Lepidoptera: Tortricidae) are encoded at a single locus. Insect Biochem. Mol. Biol. 2002,32(11):1543-1554
    165. Nikonov A.A., Peng G., Tsurupa G., Leal W.S., Unisex Pheromone detectors and pheromone binding proteins in Scarab Beetles. Chem. Senses 2002,27:495-504
    166. Ngai J., Dowling M.M., Buck L., Axel R., Chess A., The family of genes encoding odorant receptors in the channel catfish. Cell 1993,12:657-666
    167. Ochieng S.A., Anderson P., Hansson B.S., Antennal lobe projection patterns of olfactory receptor neurons involved in sex pheromone detection in Spodoptera littoralis (Lepidoptera: Noctuidae).Tissue Cell 1995, 27:221-232
    168. Pace U., Hanski E., Salomon Y., Lancet D., Ordorant-sensitive adenylate cyclase may mediate olfactory reception. Nature 1985, 316: 255-258
    169. Pelosi P., Odorant-binding proteins. Crit. Rev. Biochem. Molec. Biol. 29:199-228
    170. Peng G, Leal W.S., Identification and cloning of a pheromone-binding protein from the oriental beetle, Exomala orientalis. J. Chem. Ecol., 2001, 27(11):2183-2192
    171. Pelosi P., Perireceptor events in olfaction. J. Neurobiol. 1996, 30:3-19
    172. Picimbon J.F., Gadenne G., Evolution in noctuid pheromone binding proteins: identification of PBP in the Black cutworm moth, Agrotis ipsilon. Insect Biochem. Mol. Biol. 2002, 32:839-846
    173. Pierce K.L., Premont R.T., Lefkowitz R.J., Seven-transmembrane receptors. Nat. Rev. Mol. Cell. Biol. 2002, 3:639-650
    174. Pilpel Y., Lancet D., The variable and conserved interfaces of modeled olfactory receptor proteins. Protein Sci. 1999, 8:969-977
    175. Pitts R.J., Fox A.N., Zwiebel L.J., A highly conserved candidate chemoreceptor expressed in both olfactory and gustatory tissues in the malaria vector Anopheles gambiae. Proc. Natl Acad. Sci. 2004, 101:5058-5063
    176. Plettner E., Lazar J., Prestwich E.G., Prestwich G.D., Discrimination of Pheromone enantiomers by two pheromone binding proteins from the Gypsy moth Lymantria dispar. Biochemistry 2000, 39:8953-8962
    177. Prasad B.C., Reed R.R., Chemosensation-molecular mechanisms in worms and mammals. Trends genet. 1999, 15:(4)150-153
    178. Prestwich G.D., Du G., Laforest S., How is pheromone specificity encoded in proteins? Chem. Senses 1995, 20:461-469
    179. Probst W.C., Snyder L.A., Schuster D.I., Brosius J., Sealfon S.C., Sequence alignment of the G-protein coupled receptor superfamily. DNA Cell Biol. 1992, 11:1-20
    180. Python F., Stocker R.F., Adult-like complexity of the larval antermal lobe of D. melanogaster despite markedly low numbers of odorant receptor neurons. J. Comp. Neurol. 2002, 445:374-387
    181. Raming K., Kdeger J., Breer H., Primary structure of a pheromone-binding protein from Antheraea pernyi: homologies with other ligand-carrying proteins. J. Comp. Physiol. B 1990, 1160:503-509
    182. Raming K., Krieger J., Strotmann J., Boekhoff I., Kubick S., Baumstark C., Breer H., Cloning and expression of odorant receptors. Nature 1993, 361:353-356
    183. Redkozubov A., Guanosine 3', 5'-cyclic monophosphate reduces the response of the moth's olfactory receptor neuron to pheromone. Chem. Senses 2000, 25:381-385
    184. Rhein L.D., Cagan R.H., Biocbem ical studies of olfaction: islation, characterization, and ordorant binding activity of cilia from rainbow trout olfactory rosettes. Proc. Natl. Acad. Sci. 1980, 77: 4412-4416
    185. Riesgo-Escovar J., Raha D., Carlson J.R., Requirement for a phospholipase C in odor response: overlap between olfaction and vision in Drosophila. Proc. Natl Acad. Sci. 1995, 28:2864-2868
    186. Riviere S., Lartigue A., Quennedey B., Campanacci V., Farine J.P., Regoni M., Cambillau C, Brossut R., A pheromone-binding protein from the cockroach Leucophaea maderae: cloning, expression and pheromone binding. J. Biochem. 2003,371: 573-579
    187. Robertson H.M, Martos R, Sears C.R, Todres E.Z., Waldon K.K.O., Nardi J.B., Diversity of odourant-binding proteins revealed by an expressed sequence tag project on male Manduca sexta moth antennae. Insect Mol. Biol. 1999, 8: 501-518
    188. Robertson H.M., Warr C.G., Carlson J.R., Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster. Proc. Natl. Acad. Sci. 2003, 100: 14537-14542
    189. Robertson H.M., The large srh family of chemoreceptor genes in Caenorhabditis nematodes reveals processes of genome evolution involving large duplications and deletions and intron gains and losses. Genome Res. 2000,10:192-203
    190. Rouquier S., Blancher A., Giorgi D., The olfactory receptor gene repertoire in primates and mouse: Evidence for reduction of the functional fraction in primates. Proc. Natl. Acad. Sci. 2000, 97:2870-2874
    191. Sakurai T., Nakagawa T., Mitsuno H., Mori H., Endo Y., Tanoue S., et al. Identification and functional characterization of a sex pheromone receptor in the silkworm Bombyx mori. Proc. Natl Acad. Sci. 2004,101:16653-16658
    192. Sandier B.H., Nikonova L., Leal W.S., Clardy J., Sexual attraction in the silkworm moth: structure of the pheromone-binding-protein-bombykol complex. Chem. Biol. 2000, 7:143-151
    193. Schweitzer E.S., Sanes J.R., Hildebrand J.G., Ontogeny of electroantennogram responses in the moth, Manduca sexta. J. Insect Physiol. 1976, 22:955-960
    194. Seabrook W.D., Linn C.E., Dyer L.J., Shorey H.H., Comparison of electroantennograms from female and male cabbage looper moths (Trichoplusia ni) of different ages and for various pheromone concentrations. J. Chem. Ecol. 1987,13:1443-1453
    195. Shepherd G.M., Modules for molecules. Nature 1992, 358:457-458
    196. Shepherd G.M., Discrimination of molecular signals by the olfactory receptor neuron. Neuron 1994, 13:771-779
    197. Smith D.P., Drosophila odor receptors revealed. Neuron 1999, 22: 203-204
    198. Spinelli S., Ramoni R., Grolli S., Bonicel J., Cambillau C, Tegoni M., The structure of the monomeric porcine odorant binding protein sheds light on the domain swapping mechanism. Biochemistry 1998,37:7913-7918
    199. Steinbrecht R.A., Ozaki M., Ziegelberger G., Immunocytochemical localization of pheromone binding protein in moth antennae. Cell Tissue Res. 1992,270:287-302
    200. Steinbrecht R.A., Laue M., Ziegelberger G., Immunocytochernical of pheromone-binding protein and general odorant-binding protein in olfactory sensilla of the silk moth Antheraea and Bombyx. Cell Tissue Res. 1995, 282:203-217
    201. Steinbrecht R.A., Laue M., Zhang S.G., Ziegelberger G., Immunocytochemistry of odorant binding proteins. In OIfaction and Taste Ⅺ. (eds. Kurihara K., Swmki N., Ogawa H. ), Springer, Tokyo, 1994, 804-807
    202. Steinbrecht R.A., Pore structures in insect olfactory sensilla: a review of data and concepts. Int. J. Insect. Morphol. Embryol. 1997, 26:229-245
    203. Steinbrecht R.A., Olfactory receptors, in Atlas of Arthropod Sensory Receptors, Dynamic Morphology in Relation to Function (eds. Eguehi E., Tominaga Y.) Springer-Vedag, Tokyo. 1999,
    204. Stengl M., Inositol-trisphosphate-dependent calcium currents precede cation currents in insect olfactory neurons in vitro. J. Comp. Physiol A 1994, 174:187-194
    205. Stocker R.F., The organization of the chemosensory system in Drosophila melanogaster: a review. Cell Tissue Res. 1994, 275:3-26
    206. Stoltzfus A., On the possibility of constructive neutral evolution. J. Mol. Evol. 1999, 49:169-181
    207. Storkuhl K.F., Kettler R., Functional analysis of an olfactory receptor in Drosophila melanogaster. Proc. Natl Aead. Sci. 2001, 98:9381-9385
    208. Strader C.D., Fong T.M., Tota M.R., Underwood D., Structure and function of G protein-coupled receptors. Annu. Rev. Biochem. 1994, 63:101-132
    209. Tamaki Y., Noguehi H., Yushima T., Sex pheromone of Spodoptera litura(F.) (Lepidoptera: Noctuidae): isolation, identification and synthesis. Appl. Ent. Zool. 1973, 8:200-203
    210. Tamaki Y., Osawa T., Yushima T., et al. Sex pheromone and related compounds secreted by the virgin female of Spodoptera litura (F.). Jap. J. Appl. Ent. Zool. 1976, 20:81-86
    211. Tegoni M., Pelosi P., Vincent F., Spinelli S., Campanacei V., Grolli S., Ramoni R., Cambillau C., Mammalian Odorant Binding Proteins. Biochim. Biophys. Acta 2000, 1482:229-240
    212. Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F., Higgin D.G., The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl. Acid Res. 1997, 25:4876-4882
    213. Troemel E.R., Chou J.H., Dwyer N.D., Colbert H.A., Bargmann C.I., Divergent seven transmembrane receptors are candidate chemosensory receptors in C.elegans. Cell 1995, 83:207-218
    214. Vaidehi N., Floriano W.B., Trabarfino R., Hall S.E., Freddolino P., Choi E.J. et al. Prediction of structure and function of G protein-coupled receptors. Proc. Natl. Acad. Sci. 2002, 99:12622-12627
    215. Venkatesh S., Singh R.N, Sensilla on the third antennal segment of Drosophila melanogaster Meigen (Diptera: Drosophilidae). Int.J.Insect Morphol.Embryol. 1984, 13:51-63
    216. Visser J.H., Host odor perception in phytophagous insects. Annu. Rev. Entonol. 1986, 31:121-144
    217. Vogt R.G., Biochemical diversity of odor detection: OBPs, ODEs and SNMPs. In Insect Pheromone Biochemistry and Molecular Biology. (eds. Blomquist G.J., Vogt R.G.), Elsevier Academic Press, London. 2003, 391-446
    218. Vogt R.G., Molecular basis of pheromone detection in insects.In Comprehensive Insect Physiology, Biochemistry, Pharmacology and Molecular Biology. (eds. Gilbert L.I, Iatro K., Gill S.). Elsevier. 2004
    219. Vogt R.G., Callahan F.E., Rogers M.E., Dickens J.C., Odorant binding protein diversity and distribution among the insect orders, as indicated by LAP, an OBP-related protein of the true bug Lygus lineolaris (Hemiptera, Heteroptera). Chem. Senses 1999, 24:481-495
    220. Vogt R.G., Kohne A.C., Dubnau J.T., Prestwich G.D., Expression of pheromone binding proteins during antennal development in the gypsy moth Lymantria dispar. J. Neurosci. 1989, 9:3332-3346
    221. Vogt R.G., Prestwieh G.D., Lerner M.R., Odorant binding protein subfamilies associate with distinct classes of olfactory receptor neurons in insects. Neurobiol. 1991, 22:74-84
    222. Vogt R.G., Riddiford L.M., Pheromone binding and inactivation by moth antennae. Nature 1981, 293:161-163
    223. Vogt R.G., Rogers M.E., Franco M.D., Sun M., A comparative study of odorant binding protein genes: differential expression of the PBP1-GOBP2 gene cluster in Manduca sexta (Lepidoptera) and the organization of OBP genes in Drosophila melanogaster (Diptera). J. Exp. Biol. 2002, 205:719-744
    224. Vosshall L.B., Olfaction in Drosophila. Curr. Opin. Neurobiol. 2000, 10:498-503
    225. Vosshall L.B., Diversity and expression of odorant receptors in Drosophila. In Insect Pheromone Biochemistry and Molecular Biology. (eds. Blomquist G.J., Vogt R.G.,), 2003, 567-591. Elsevier Academic Press, London.
    226. Vosshall L.B., Amrein H., Morozov P.S., Rzhetsky A., Axel R., A spatial map of olfactory receptor expression in the Drosophila antenna. Cell 1999, 96:725-736
    227. Vosshall L.B., Keller A., Decoding olfaction in Drosophila. Curr. Opin. Neurobiol. 2003, 13:103-110
    228. Vosshall L.B., Wong A.M., Axel R., An olfactory sensory map in the fly brain. Cell 2000, 102: 147-159
    229. Wakamura S., Takai M., Kozal S., Inoue H., Yamashita I., Kawahara S., Kawamura M., Control of the beet army worm Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae) using synthetic sex pheromone. I. Effect of communication disruption in Welsh onion fields. Appl. Entomol. Zool. 1989, 24:387-397
    230. Walsh J.B., How many processed pseudogenes are accumulated in a gene family? Genetics 1985, 110:345-364
    231. Wanner K.W., Anderson A.R., Trowell S.C., Theilmann D.A., Robertson H.M., Newcomb R.D., Female-biased expression of odourant receptor genes in the adult antennae of the silkworm, Bombyx mori. Insect Mol. Biol. 2007, 16(1):107-119
    232. Wang G.R., Wu K.M., GuoY.Y., Molecular cloning and bacterial expression of pheromone binding protein in the antennae of Helicoverpa armigera (Hübner). Arch. Insect Bioehem. Physiol. 2004, 57(1):15-27
    233. Wegener J.W, Hanke W., Breer H., Second messenger-controlled membrane conductance in loenst (Locust migratoria) olfactory neurons. J. Insect Physiol. 1997, 43:595-605
    234. Wetzel C.H., Behrendt H., Gisselmann G., Storkuhl K.F., Hovemann B., Hatt H., Functional expression and characterization of a Drosophila odorant receptor in a heterologous cell system. Proc. Natl Acad. Sci. 2001, 98:9377-9380
    235. Wetzel C.H., Oles M., Wellerdieck C., Kuezkowiak M., Gisselmann G., Hatt H., Specificity and sensitivity of a human olfactory receptor functionally expressed in human embryonic kidney 293 cells and Xenopus laevis oocytes. J. Neurosci. 1999, 19:7426-7433
    236. Willett C.S., Do pheromone-binding proteins converge in amino acid sequence when pheromone converge? J. Mol. Evol. 2000a, 50:175-183
    237. Willett C.S., Evidence for directional selection acting on pheromone-binding proteins in the genus Choristoneura. Mol. Biol. Evol. 2000b, 17:553-562
    238. Willett C.S., Harrison R.G., Pheromone binding proteins in the European and Asian corn borers: No protein change associates with pheromone differences. Insect Bioehem. Mol. Biol. 1999, 29:277-284
    239. Wojtasek H., Hansson B.S., Leal W.S., Attracted or repelled? a matter of two neurons, one pheromone binding protein, and a chiral center. Biochem. Biophys. Res. Commun. 1998, 250 (2):217-222
    240. Wojtasek H., Leal W.S., Conformational change in the pheromone-binding protein from Bornbyx mori induced by pH and by interaction with membranes. J. Biol. Chem. 1999, 274:30950-30956
    241. Xia Q., Zhou Z., Lu C., Cheng D., Dai F., Li B., et al. A draft sequence for the genome of the domesticated silkworm (Bombyx mori). Science 2004, 306:1937-1940
    242. Xia Y., Zwiebel L., Identification and characterization of an odorant receptor from the West Nile Virus mosquito, Culex quinquefasciatus Insect Biochem. Mol. Biol. 2006,36 (3): 169-176
    243. Yoshiyasu Y., Yamagishi M, Katayama J., Control of the beet army worm Spodoptera exigua (Hubner), on Welsh onion by synthetic sex pheromone in Yodo district Kyoto. Scientific reports of the Kyoto Prefectural University. 1995,47:1-8
    244. Young J.M., Friedman C, Williams E.M., Ross J.A., Tonnes-Priddy L., Trask B J., Different evolutionary processes shaped the mouse and human olfactory receptor gene families. Hum. Mol. Genet. 2002a, 11:535-546
    245. Young J.M., Trask B.J., The sense of smell: genomics of vertebrate odorant receptors. Hum. Mol. Genet. 2002b, 11:1153-1160
    246. Zhang Y., Chou J.H., Bradley J., Bargmann CI., Zinn K., The Caenorhabditis elegans seven-transmembrane protein ODR-10 functions as an odorant receptor in mammalian cells. Proc. Natl Acad. Sci. 1997, 94:12162-12167
    247. Zhang X., Firestein S., The olfactory receptor gene superfamily of the mouse. Nat. Neurosci. 2002, 5:124-133
    248. Zhang S.G., Maida R., Steinbrecht R.A., Immunolocalization of odorant-binding proteins in noctuid moths (insecta, lepidoptera). ChenrSenses 2001, 26:885-896
    249. Zhao H., Ivic L., Otaki J.M., Hashimoto M., Mikoshiba K., Firestein S., Functional expression of a mammalian odorant receptor. Science 1998,279: 237-242
    250. Ziegelberger G., Van Den Berg MJ., Kaissling K-E., Klumpp S., Schultz J.E., Cyclic GMP levels and gyanylate cyclase activity in pheromone sensitive antennae of the silkmoths Antheraea polyphemus and Bombyx mori. J. Neurosci. 1990, 10:1217-1225
    251. Ziegelberger G, Redox-shift of pheromone binding protein in the silk moth Antheraea polyphemus. Eur. J. Biochem. 1995,232:706-711
    252.Zubkov S., Gronenborn A.M., Byeon In-Ja L., Mohanty S., Structural consequences of the ph-induced conformational switch in A. polyphemus pheromone binding protein: mechanisms of ligand release. J. Mol. Biol. 2005, 354:1081-1090
    253. Zufall F., Hatt H., Dual activation of a sex pheromone-dependent ion channel from insect olfactory dendrites by proteins kinase C axtivators and cyclic GMP. Proc. Natl Acad. Sci. 1999, 88:8520-8524
    254. Zwiebel L.J., Takken W, Olfactory regulation of mosquito host interactions. Insect Biochem. Mol. Biol. 2004, 34 (7): 645-652
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.