Wnt/β-catenin信号传导在高压氧诱导离体大鼠神经干细胞增殖分化中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
缺氧缺血性脑病(hypoxic-ischemic encephalopathy, HIE)是指围产期窒息导致脑的缺氧缺血性损伤,而出现的一系列中枢神经系统异常的表现,是新生儿时期脑损伤的常见原因,也是导致儿童发生严重神经系统后遗症的主要原因。2005年WHO资料显示,全球每年有400万新生儿死亡,与窒息相关者占23%,欧美等发达国家,中重度新生儿HIE的死亡和严重伤残率高达53%~61%,而发展中国家的状况远甚于此。目前临床上对于HIE的发病机制的研究虽然取得了很大进展,但仍缺乏特效治疗方法。
     长期以来,人们认为中枢神经系统损伤后不能修复,但近年来在对神经干细胞(neural stem cells, NSCs)的研究中,人们发现在大脑的某些部位如侧脑室管膜下(subventricular zone, SVZ)和海马齿状回(hippocampus dentate gyrus, DG)终身存在着内源性的NSCs,脑损伤可刺激这些NSCs增殖、分化,进行自我修复。已经有文献报道,新生大鼠在缺氧缺血性脑损伤(hypoxic-ischemic brain damage, HIBD)后,脑内源性NSCs有增殖和分化现象。但内源性NSCs不仅数量有限,而且受到神经营养因子缺乏、轴突生长抑制因子存在等因素影响,大脑的这种自生修复潜能有限,因此,能够找到一种将大脑自生修复功能放大的方法将为HIE的治疗带来广阔的前景。
     高压氧(hyperbaric oxygen HBO)应用于新生儿HIE的治疗已经有数十年的历史。我国从上世纪90年代开始应用HBO治疗HIE以来,大部分文献报道认为HBO可减轻患儿症状,降低病死率和伤残率。我们最近的研究也已证实,HBO不仅可促进HIBD新生大鼠内源性NSCs的增殖,并且还可促进增殖的内源性NSCs向损伤的大脑皮层迁移并分化为成熟的神经元。近来,国外有学者回顾分析近15年来NCBI(National Center for Biotechnology Information)关于HBO治疗脑缺血的文章,有六十多个关于HBO治疗动物及人脑缺血性损伤的研究,结果显示,HBO可以改善局灶性脑缺血、全脑缺血、新生儿HIE、蛛网膜下腔出血的预后,HBO可以用于治疗人中枢神经系统缺血性损伤
     HBO可以减轻HIBD大鼠的神经损伤并促进其恢复,HBO治疗HIBD新生大鼠时,可促进脑内NSCs的增殖,其机制可能与Wnt信号的活化有关。过去几年中,一系列在体与离体的研究已经显示Wnt信号分子对组织干细胞包括NSCs的增殖分化及命运决定起着重要调控作用。β-catenin是Wnt信号通路中关键分子,缺血性脑损伤时,β-catenin在调节神经干细胞的增殖、分化、移位过程中起着关键作用。β-catenin在神经前体细胞(neural precursor cells, NPCs)的高表达会引起大脑皮质神经前体细胞的增殖,相反,如果NPCsβ-catenin缺失,将会导致神经元损伤,细胞增殖减少,并引起细胞凋亡。研究显示,β-catenin激活后转入胞核内,与TCF结合为复合体(β-catenin/TCF)后,激活神经元素(neurogenins, Ngns)和细胞周期蛋白(CyclinD1), Ngn1作为转录激活剂,使下游的分化基因NeuroD, Math2等增多,诱导晚期NPCs分化为神经元。NPCs在分化成神经元的过程中,骨形成蛋白(bone morphogenetic protein, BMP)的表达日益增多,BMP则反馈抑制NPCs向神经元分化,而促进其向星型胶质细胞分化。那么,HBO治疗新生儿HIBD时Wnt/β-catenin信号系统是如何调控NSCs增殖分化的?目前仍不是十分清楚。鉴于Wnt信号通路在NSCs的增殖、迁移和分化中的重要地位,我们对HBO能够促进HIBD新生大鼠NSCs增殖这一现象提出如下工作假设:
     HBO→Wnt→β-catenin进入细胞核→形成β-catenin /TCF→转录Ngn1基因→诱导NPCs向神经元分化(?)BMP→诱导NPCs向星形胶质细胞分化
     故本课题旨在离体细胞水平,进一步探讨HBO促HIBD新生大鼠NSCs增殖分化的机制,以期为HBO治疗HIBD的临床应用提供有力的理论依据。为此,我们参照文献分别将NSCs在正常脑组织匀浆及HIBD脑组织匀浆中培养,以模拟正常及HIBD时脑内微环境,再给予HBO处理,通过将β-catenin siRNA转染到NSCs内来验证这一假说:离体细胞水平,β-catenin调控了HBO引起的HIBD新生大鼠NSCs的增殖分化。
     本研究分三部分:
     一、构建靶向大鼠β-catenin基因的shRNA的真核表达质粒,并筛选出沉默β-catenin基因效果最明显的shRNA表达质粒
     目的构建靶向大鼠β-catenin基因的shRNA的真核表达质粒,并筛选出沉默β-catenin基因效果最明显的shRNA表达质粒。
     方法设计3对针对β-catenin基因不同位点的shRNA片段,构建携带此shRNA片段的真核表达质粒(shRNA1-3)并行测序分析。然后通过电穿孔法将重组质粒转染到神经干细胞中,48 h后测定转染率,并分别采用RT-PCR及Western blot检测β-catenin mRNA和β-catenin蛋白表达情况。
     结果靶向大鼠β-catenin基因的shRNA真核表达重组质粒pGCPU6/GFP/Neo shRNA-1,2,3经测序证实构建成功。质粒在神经干细胞中的转染率约为62.63%±15.9%。shRNA1,shRNA2,shRNA3转染入神经干细胞48 h后,β-catenin RNA水平和蛋白水平均明显低于阴性对照组和空白对照组(0.17±0.01、0.09±0.01、0.08±0.00vs 0.75±0.01,0.74±0.02;0.21±0.16.0.19±0.12.0.12±0.10, vs 0.56±0.02,0.65±0.01,均P<0.01)。与shRNA1和shRNA2相比,shRNA3对β-catenin mRNA和蛋白的抑制作用均最强(89.37% vs 77.08%,88.02%;77.95% vs 61.31%、65.65%).
     结论成功构建并筛选出的靶向大鼠β-catenin基因的shRNA真核表达质粒对神经干细胞的β-catenin表达具有明显抑制作用。为研究Wnt/β-catenin信号途径在NSCs生长分化中的作用奠定基础。
     二、HBO对NSCs增殖分化的影响
     目的探讨HBO和脑组织匀浆上清液对离体SD大鼠NSCs分化的影响。
     方法传至2-3代的SD大鼠NSCs,随机分为九个组,未转染质粒者设为空白对照组(CON),其余8组根据转染阴性对照质粒和转染β-catenin shRNA真核表达质粒及给予后续处理的不同分组,九组细胞在同一时间行免疫荧光染色,分别进行NSE、GFAP、04染色,荧光显微镜下计数各组NSCs分化为NSE阳性细胞、GFAP阳性细胞和O4阳性细胞的百分率,并进行比较。
     结果与CON组相比,转染阴性对照质粒的NSCs(ncNSCs)中:HBO组,N组,HIBD组分化为神经元和少突胶质细胞的百分比明显增加(P<0.05),其中HIBD组增加最多,在此基础上再给予HBO处理,ncNSCs向神经元的分化会进一步增加,少突胶质细胞的分化也相应增加;N组,HIBD组,HIBD+HBO组分化为星形胶质细胞的百分比明显减少了(P<0.05)。与CON组相比,转染β-catenin shRNA的4组NSCs(siNSCs),分化为神经元的百分比都明显减少了(P<0.01),分化为星形胶质细胞的百分比都明显增加了(P<0.01);少突胶质细胞的分化增加,但少于ncNSCs(P<0.01),其中HIBD组分化为神经元和少突胶质细胞较多,在此基础上再给予HBO处理,神经元和少突胶质细胞的分化进一步增加。
     结论(1)HBO可促进HIBD大鼠ncNSCs分化为神经元和少突胶质细胞而抑制其向星形胶质细胞分化。(2)β-catenin shRNA抑制了siNSCs向神经元分化而促进了其向星形胶质细胞的分化,这一作用虽可被HBO弱化但不能被HBO逆转。(3)β-catenin参与了HBO引起的HIBD大鼠ncNSCs向神经元分化。
     三、HBO对NSCs Ngn1, BMP4表达的影响
     目的探讨HBO和脑组织匀浆上清液对离体SD大鼠神经干细胞Ngn1, BMP4表达的影响。
     方法传至2-3代的SD大鼠NSCs,随机分为九个组,未转染质粒者设为空白对照组(CON),其余8组根据转染阴性对照质粒和转染β-catenin shRNA真核表达质粒及给予后续处理的不同分组,在同一时间收集上述9组细胞,分别提取细胞总RNA和总蛋白,行RT-PCR和Western blot,以测定Ngn1, BMP4 mRNA和Ngn1, BMP4蛋白的表达情况,并进行比较。
     结果与CON组相比,4组ncNSCs的Ngn1 mRNA和Ngn1蛋白的表达明显增加(P<0.01)而BMP4 mRNA和BMP4蛋白的表达明显减少(P<0.01);在siNSCs,与CON组和ncNSCs组相比,4个siNSCs组的Ngn1 mRNA和Ngn1蛋白的表达明显减少(P<0.01), BMP4 mRNA和BMP4蛋白的表达明显增加(P<0.01),4个siNSCs组间Ngn1和BMP4的表达无统计学差异。
     结论(1)HBO可促进ncNSCs Ngnl的表达,抑制BMP4的表达,(2)β-catenin基因被抑制后,siNSCs的Ngn1蛋白和mRNA的表达被抑制,BMP4蛋白和mRNA的表达被促进,(3) BMP4和Ngn1在大鼠NSCs的增殖分化中起着重要的协调作用,Ngn1可能是一种潜在的神经元促成剂。
     综上所述,本研究结论如下:
     1、成功构建并筛选出的靶向大鼠β-catenin基因的shRNA真核表达质粒对大鼠神经干细胞的β-catenin表达具有明显抑制作用。
     2、HBO可促进离体HIBD大鼠NSCs分化为神经元和少突胶质细胞而抑制其向星形胶质细胞分化。
     3、HBO促进离体大鼠神经干细胞分化为神经元与β-catenin的激活有关
     4、离体细胞水平,HBO是通过激活β-catenin上调Ngn 1的表达促进NSCs分化为神经元,通过下调BMP4的表达减少NSCs分化为星形胶质细胞。
Hypoxic ischemic encephalopathy (HIE) is the major recognized perinatal cause of neurological morbidity in full-term newborns and can result in mental impairment, seizures and permanent motor deficits, such as cerebral palsy. At present, there are no effective measures of treating HIBD (hypoxic-ischemic brain damage, HIBD)
     Ever since a long time ago, people considered that the central lesion could not be recovered. But now we have found that there are many endogenous neural stem cells(NSCs) at subventricular zone (SVZ) and hippocampus dentate gyrus(DG) lifetimes these cells can proliferate, differentiate by stimulation of pathologic impairments. It is found that NSCs were capable of being activated to proliferation and differentiation. However the capacity for recruiting endogenous NSCs is limited.Thus,other strategies used to modify endogenous neurogenesis after ischemic brain gamage have been described.
     Study showed there were proliferation of endogenous neural stem cells in hypoxic-ischemic neonate rats . Hyperbaric oxygen therapy has been used in HIE for decades, many studies have reported improved neurological outcomes with hyperbaric oxygen therapy. We also have found HBO therapy promoted the proliferation of endogenous neural stem cells in hypoxic-ischemic neonate rats. In a review, about hyperbaric oxygen therapy and cerebral ischemia, with an emphasis on the mechanisms of hyperbaric oxygen therapy-related neuroprotection, relevant literature was located in the National Library of Medicine and National Institutes of Health Database, and from bibliographies of articles reviewed. In the last 15 years,there have been no fewer than 65 animal and human studies of hyperbaric oxygen therapy in cerebral ischemic injury. Numerous studies have demonstrated a protective effect of hyperbaric oxygen therapy in experimental ischemic brain injury, and many physiological and molecular mechanisms of hyperbaric oxygen therapy-related neuroprotection have been identified. Hyperbaric oxygen therapy has been shown to ameliorate brain injury in a variety of animal models including focal cerebral ischemia, global cerebral ischemia, neonatal hypoxia-ischemia and subarachnoid hemorrhage.Human clinical studies have shown hyperbaric oxygen therapy may be beneficial in chronic cerebral vascular disease or in the setting of cardiopulmonary bypass to date.
     Recent studies have shown that HBO therapy may alleviate neuronal injury and promote the recovery of HIBD in rats an effect that is correlated with Wnt-3 protein. Several studies have shown that Wnt signaling is involved in cell fate decision during neurogenesis and embryonic development as well as in adult stem cells differentiation in the nervous system, the Wnt signaling plays a key role on modulating cell differentiation or proliferation states.β-Catenin is a critical downstream mediator of the canonical Wnt pathway, which functions in gene transcription and cell adhesion, and plays vital roles in the proliferation and differentiation of neural progenitor cells. Overexpression ofβ-catenin in cortical neural precursors leads to expansion of the precursor population and cortical overgrowth.On the contrary, conditional deletion ofβ-catenin from cortical neural precursors results in delamination of neuroepithelial cells, loss of adherens junctions, impaired radial migration of neurons, decreased cell proliferation. Studies have shown that in the presence of Wnt signals, (3-catenin is stabilized and translocates to the nucleus,where it interacts with transcription factors of the LEF/TCF(lymphoid enhancer-binding factor/T cell-specific tran-scription factor) family to induce changes in gene expression, theβ-catenin/TCF complex appears to directly regulate the promoter of neurogenin1(Ngn1), a gene implicated in cortical neuronal differentiation. Ngn1 promotes neural progenitor cell differentiation into neurons. Bone morphogenetic protein 4(BMP4) belongs tothe TGF-b (transforming growth factor-b) superfamily. Study has shown that BMP and Wnt signaling could antagonize each other for self-renewal or differentiation of stem cells at specific tissues and times, and BMP4 has a potential to repress neurogenesis and induce astrocyto-genesis of neuroepithelial cells .
     Therefore, transfectingβ-catenin siRNA into NSCs and then treatting with HBO after cultured with HIBD brain tissue extract conditioned cultures and normal brain tissue extract conditioned cultures respectively as previously described in vitro, we tested the hypothesis thatβ-catenin regulated the proliferation of rats NSCs after HBO therapy.
     Our investigation was divided into the follwing three parts. PartⅠConstruction and screening of eukaryotic expression plasmids containing short hairpin RNA targeting at the ratβ-catenin gene
     Objective To construct eukaryotic expression plasmids containing short hairpin RNA (shRNA) that target at the neural stem cells (NSCs)β-catenin gene, and to select the plasmids that silenceβ-catenin gene most efficiently.
     Methods Three pairs of shRNAs that target atβ-catenin gene were designed. The eukaryotic expression plasmids (named shRNA1-3) were constructed and identified sequencing analysis. The plasmids were then transfected into NSCs by electroporation. The transfection rate of recombinant plasmids was measured 48 h after transfection, andβ-catenin mRNA and protein expression was determined using reverse transcriptase-polymerase chain reaction and Western blotting.
     Results The expression plasmids were confirmed by sequencing analysis. The transfection rate of recombinant plasmids in NSCs was approximately 62.63%±15.9%. Forty-eight hours after transfection,theβ-catenin mRNA and protein levels of shRNA1-3 group were tested.
     Conclusions The shRNA eukaryotic expression plasmid targeting atβ-catenin gene is constructed and selected successfully. Theβ-catenin mRNA and protein expression was suppressed significantly in NSCs by this given plasmid.we can use it to study the role of the wnt/β-catenin signaling in the development of NSCs.
     PartⅡInfluence of HBO on NSCs differentiation
     Objective To investigate the influences of HBO and rat brain extracts on proliferation of rats neural stem cells in vitro
     Methods Immunocytochemical staining was performed simultaneously on the 9 groups of NSCs on precoated chamber slides. The NSCs were processed for immunofluorescent labeling of FITC and CY3. The nucleus were counterstained with Hoechst 33258. The percentages of FITC-positive and CY3-positive cells were determined. NSE-positive NSCs,O4-positive NSCs and GFAP-positive NSCs were counted. The data represent the mean±SD of six separate experiments.
     Results In vitro HBO alone promoted ncNSCs (NSCs infected with negative control siRNA) differentiate into neurons and oligodendrocytes but not depressed astrogliosis;HIBD or normal brain tissue extract cultures promoted ncNSCs differentiate into neurons and oligodendrocytes but depressed astrogliosis, the effectus of HIBD brain extract cultures was superior to the latter and could be further increased by HBO.β-catenin siRNA decreased the NSE-positive neurons and increased GFAP-positive astrocytes in the siNSCs (NSCs infected withβ-catenin siRNA) in vitro,the effectus can not be inversed by HBO, though can be alleviate.
     Conclusions (1) HBO could promote ncNSCs differentiate into neuronal or Oligodendrocyte, and inhibited ncNSCs differentiate into astrocytes (2)β-catenin siRNA depressed neurogenesis, and promoted astrogliosis. (3) HBO therapy promotes the proliferation of NSCs in vitro, an effect that is correlated withβ-catenin protein.
     PartⅢInfluence of HBO on the expression of Ngn1 and BMP4 in the NSCs
     Objective To investigate the influences of HBO and rat brain extracts on the expression of Ngn1 and BMP4 in the NSCs
     Methods Quantitative RT-PCR was used to detect the relative contents of Ngn1 mRNA and BMP4 mRNA in the 9 groups of NSCs. Western blot was used to detect the relative contents of Ngnl protein and BMP4 protein in the 9 groups NSCs.
     Results HBO alone increased the level of Ngn1 mRNA and decreased BMP4 mRNA of ncNSCs; HIBD and normal brain tissue extract cultures increased the level of Ngn1 mRNA and decreased BMP4 mRNA of ncNSCs, the effect of HIBD brain extract cultures is superior to the latter and treatment with HBO further increased it; transfection ofβ-catenin siRNA could down-regulate the expression of Ngn1 mRNA and up-regulate BMP4 mRNA of NSCs in vitro respectively. HBO alone increased the level of Ngn1 protein and decreased BMP4 protein of ncNSCs;HIBD and normal brain extract cultures increased the level of Ngn1 protein and decreased BMP4 protein of ncNSCs,and the effectus of HIBD brain extract cultures is superior to the latter; it is more significant for HIBD accompany HBO to increased the level of Ngnl protein; transfection ofβ-catenin siRNA could down-regulate the expression of Ngnl protein and up-regulate BMP4 protein of NSCs in vitro respectively.
     Conclusions (1) HBO alone increased the level of Ngn1 gene and decreased BMP4 gene of ncNSCs, (2) transfection ofβ-catenin siRNA could down-regulate the expression of Ngnl and up-regulate the expression of BMP4 of NSCs in vitro (3) there is potential cooperative actions of BMP4 and Ngn1 on differentiating rat neural stem cell in cerebral ischemic brain. The ability of Ngnl to promote neurogenesis may allow Ngn1 to act as a potent neuronal commitment factor.
     The main contents and conclusions of the research are summarized as following:
     1. The shRNA eukaryotic expression plasmid targeting atβ-catenin gene is constructed and selected successfully.
     2. HBO could promote NSCs cultured with HIBD brain extract cultures differentiate into neuronal or Oligodendrocyte, and inhibited them differentiate into astrocytes.
     3. HBO therapy promotes the proliferation of NSCs in vitro, an effect that is correlated withβ-catenin protein.
     4. HBO therapy could promote neurogenesis byβ-catenin-induced activated Ngn1, could repress astrocytogenesis byβ-catenin-induced down regulated BMP4.
引文
[1]Bryce J, Boschi—Pinto C, Shibuya K, et al. WHO Child Health Epidemiology Reference groupt WHO estimates of the causes ofdeath in children[J]. Lancet, 2005,365:1147—1152
    [2]Gluclanan PD,Wyatt JS,Azzopardi D, et al. Selective head cooling with mild systemic hypoth-ermia after neonatal encephalopathy:muhicentre randomised trial[J]. Lancet,2005,365(9460):663--670
    [3]Yue F, Chen B, Wu D, et al.Biological properties of neural progenitor cells isolated from the hippocampus of adult cynomolgus monkeys. Chin Med J (Engl),2006,119 (2):110-116
    [4]Hayashi T, Iwai M, Ikeda T, et al.Neural precursor cells division and migration in neonatal rat brain after ischemic/hypoxic injury. Brain Res,2005,1038 (1):41-49
    [5]胡电,古航,洪新如,等.高压氧对窒息新生儿血中孤啡肽含量的影响.中华物理医学与康复杂志,2004,26(4):200-202
    [6]盖勇,张曦.高压氧对新生儿重度缺氧缺血性脑病的治疗时间选择.实用儿科临床杂志,2005,20(5):489-490
    [7]余小河,杨于嘉,王霞,等.高压氧对缺氧缺血性脑损伤新生大鼠内源性神经干细胞和髓鞘的保护作用.中国当代儿科杂志,2006,8(1):33-37
    [8]Yang YJ, Wang XL, Yu XH,et al. Hyperbaric oxygen induces endogenous neural stem cells to proliferate and differentiate in hypoxic-ischemic brain damage in neonatal rats. Undersea and Hyperbaric Medical Society,2008, 35(2):113-129
    [9]Gerald A. Matchett, Robert D. Martin, John H. Zhang. Hyperbaric oxygen therapy and cerebral ischemia:neuroprotective mechanisms. Neurological Research,2009,31(3):114-121
    [10]Zhang JZ, Takkin L, Mychaskiw G, et al. Mechanisms of hyperbaricoxygen and neuroprotection in stroke. Pathophysiology,2005,12(1):63-77
    [11]Ostrowski RP, Colohan AR, Zhang JH. Neuroprotective effect of hyperbaric oxygen in a rat model of subarachnoid hemorrhage.Acta Neurochir Suppl,2006, 96:188-193
    [12]Ostrowski RP, Tang J, Zhang JH. Hyperbaric oxygen suppresses NADPH oxidase in a rat subarachnoid hemorrhage model. Stroke,2006,47(5):1314-1318
    [13]Ostrowski RP, Colohan AR, Zhang JH. Mechanisms of hyperbaric oxygen-induced neuroprotection in a rat model of subarachnoid hemorrhage. J Cereb Blood Flow Metab,2005,25(5):554-571
    [14]Vila JF, Balcarce PE, Abiusi GR, et al. Improvement in motor and cognitive impairment after hyperbaric oxygen therapy in a selected group of patients with cerebrovascular disease:A prospective single-blind controlled trial. Undersea Hyperb Med,2005,32(5):341-349
    [15]Singahl AB. A review of oxygen therapy in ischemic stroke. Neurol Res,2007, 29(2):173-183
    [16]Gill AL, Bell CNA. Hyperbaric oxygen:Its uses, mechanisms of action and outcomes. Q J Med,2004,97(7):385-395
    [17]Fawke J, McIntyre J. Recent advances in neonatology. Curr Opin Obstet Gynecol,2002,14(2):153-158
    [18]Gage FH. Mammalian neural stem cells. Science,2000,287(5457):1433-1438
    [19]Vehkamp R, Siebing DA, Heiland S, et al. Hyperbaric oxygen induces rapid protection against cerebral ischemia. Brain Res,2005,1037(1-2):134-138
    [20]Goings GE, Sahni V, Szele FG. Migration patterns of subventricular zone cells in adult mice change after cerebral cortex injury. Brain Res,2004, 996(2):213-226
    [21]Felling RJ, Snyder MJ, Romanko MJ,et al. Neural stem/progenitor cells participate in the regenerative response to perinatal hypoxia/ischemia. J Neurosci,2006,26(16):4359-4369
    [22]Wang XL, Yang YJ, Xie M,et al.Proliferation of neural stem cells correlates with wnt-3 protein in hypoxic-ischemic neonate rats after hyperbaric oxygen therapy. Neuroreport,2007,18(1629):1753-1756
    [23]Enrique M. T, Marcela C, Nibaldo C. I. Wnt signaling in neuroprotection and stem cell differentiation.Progress in Neurobiology,2008,86(3):281-296
    [24]Zhi-Nian Lei, Lin-Mei Zhang, Feng-Yan Sun.β-Catenin inhibits ischemia-induced striatal neurogenesis in adult rat brain following a transient middle cerebral artery occlusion.Neuroscience Letters,2008,435(2):108-112
    [25]A. Chenn, C.A.Walsh. Increased neuronal production, enlarged forebrains and cytoarchitectural distortions in beta-catenin overexpressing transgenic mice. Cereb. Cortex,2003,13(6):599-606
    [26]A. Chenn, C.A. Walsh. Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science,2002,297(5580):365-369
    [27]O.Machon, C.J. van den Bout,M. Backman, et al.Role of beta-catenin in the developing cortical and hippocampal neuroepithelium.Neuroscience,2003,122 (1):129-143
    [28]Hirabayshi Y, Gotoh Y. Stage-dependent fate determination of neural precursor cells in mouse forebrain. Neuroscience Res,2005.51(4):331-336
    [29]Kasai M, Satoh K, Akiyama T. Wnt signaling regulates the sequential onset of neurogenesis and gliogenesis via induction of BMPs. Genes to Cells, 2005. 10 (8):777-783
    [30]Kleber M, Lee H-Y, Wurdak H, Buchstaller J, Riccomagno MM, Ittner LM, Suter U, Epstein DJ. Sommer L. Neural crest stem cell maintenance by combinatiorial Wnt and BMP signaling. J Cell Biol,2005,169 (2):309-320
    [31]Chen X, Li Y, Wang L,et al. Ischemic rat brain extracts induce human marrow stromal cell growth factor production. Neuropathology,2002,22(4):275-279
    [32]Hirsch C, Campano LM, Wohrle S, et al. Canonical Wnt signaling transiently stimulates proliferation and enhances neurogenesis in neonatal neural progenitor cultures[J]. Exp Cell Res,2007,313(3):572-587
    [33]Zecher D, Fujita Y, Hulsken T,et al. Beta-Catenin signals regulate cell growth and the balance between progenitor cell expansion and differentiation in the nervous system. Dev Biol,2003,258(2):406
    [34]Belosludt sev YY, Bowerman D, Weil R, et al. Organism identification using a genome sequence-independent universal microarray probe set [J]. Biotech-niques,2004,37 (4):654
    [35]Levicky R, Horgan A. Physicochemical perspectives on DNA microarray and biosensor technologies. Trends in Biotechnology.2005,23(3):143-149
    [36]Ryther RC, Flynt AS, Phillips JA, et al. siRNA therapeutics:big potential from small RNAs. Gene Ther,2005,12(1):5-11
    [37]Holen T, Amarzguioui M, Wiiger MT,et al.Positional effects of short interfering RNAs targeting the human coagulation trigger Tissue Factor. Nucleic Acids Res,2002,30(8):1757-1766
    [38]Lin X, Yu Y, Zhao H,et al. Overexpression of PKCalpha is required to impart estradiol inhibition and tamoxifen-resistance in a T47D human breast cancer tumor model. Carcinogenesis,2006,27(8):1538-1546
    [39]Steven P. Zielske, Mario Stevenson. Importin 7 May Be Dispensable for Human Immunodeficiency Virus Type 1 and Simian Immunodeficiency Virus Infection ofPrimary Macrophages. JOURNAL OF VIROLOGY, Sept.2005,79(17): 11541-11546
    [40]Rudolf Pullmann, Jr. Magdalena Juhaszova, Isabel Lo'pez de Silanes, et al. Enhanced Proliferation of Cultured Human Vascular Smooth Muscle Cells Linked to Increased Function of RNA-binding Protein HuR. J Biol Chem.2005, 280(24):22819-22826
    [41]McKay R. Stem cells in the central nervous system. Science,1997, 276(5309):66-71
    [42]Itoh T,Satou T,Hashimoto S,et al.Isolation of neural stem cells from damaged rat cerebral cortex after traumatic brain injury.Neurorepore,2005,16(15):1687-1691
    [43]Goh EL,Ma D,Ming GL,et al.Adult neural stem cells and repair of the adult central nervous system.J Hematother Stem Cell Res,2003,12(6):671-179
    [44]Mi K, Dolan PJ, Johnson GV. The low denisity lipoprotein Receptor-related protein 6 interacts with glycogen synthase kinase 3 and attenuates activity [J]. Biol Chem,2006,281(8):4748-4794
    [45]DasGupta R, Kaykas A, Moon RT,et al.Functional genomic analysis of the Wnt-wingless signaling-pathway[J].Science,2005,308(5723):826-833
    [46]Yusuke Hirabayashi, Yasuhiro Itoh, Hidenori Tabata et al. The Wnt/β-catenin pathway directs neuronal differentiation of cortical neural precursor cells. Development,2004,131 (12):2791-2801
    [47]M. Yashar S. Kalani, Samuel H. Cheshier, Branden J. Cord,et al. Wnt-me-diated self-renewal of neural stem/progenitor cells. PNAS,2008,105(44): 16970-16975
    [48]Jose Javier Otero, Weimin Fu, Lixin Kan et al. β-Catenin signaling is required for neural differentiation of embryonic stem cells. Develop-ment,2004, 131(15),3545-3557
    [49]Triulzi F, Parazzini C, Righini A. Patterns of damage in the mature neonatal brain. Pediatr Radiol,2006,36(7):608-620
    [50]Makinen PI, Koponen JK, Karkkainen AM, et al.Stable RNA interference: comparison of U6 and H1 promoters in endothelial cells and in mouse brain. J Gene Med,2006; 8 (4):433-441
    [51]Brummelkamp TR, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells. Science,2002; 296(5567):550-553
    [52]Ming-Chi Lai,San-Nan Yang. Perinatal Hypoxic-Ischemic Encephalopathy. Journal of Biomedicine and Biotechnology.2011,1-6
    [53]Wyer P-Ioannidis J, GuyaU G. When to believe asub-group analysis.// Guyatt G, Rennie D。eds. The Users' Guides tO the Medical Literature: A Manual for Evidence·Based Clinical VrilL:tice. Chicago:IL:AMA, 2007:64-79.
    [54]Calvert JW,Zhou C,Nanda A.Effect of hyperbaric oxygen on apoptosis in neonatal hypoxia-ischemia rat model.J Appl physiol,2003,95(5):2072-2080
    [55]Vehkamp R,Siebing DA,Heiland.Hyperbaric oxygen induces rapid protection against focal cerebral ischemia.Brain Res,2005,1037(1-2):134-138
    [56]Wang XL,Zhao YS,Yang YJ,et al.Therapeutic window of hyperbaric oxygen therapy for hypoxic-ischemic brain damage in newborn rats.Brain Res,2008, 1222:87-94
    [57]Reynolds BA,Weiss S.Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell[J].Dev Biol,1996,175(1):1-13
    [58]Gensburger C,Labourdette QSensenbrenner M.Brain basis fibroblast growth factor stimulates the proliferation of rat neuronal precursor cells in vitro[J].FEBS Lett,1987,217(1):1-5
    [59]Brannen CL,Sugaya K.In vitro differentiation of multipotent human neural progenitors in serum-free medium [J].Neuroreport,2000,11(5):1123-1128
    [60]Vescovi AL,Reynolds BA,Fraser DD,et al.bFGF regulates the proliferative fate of unipotent(neuronal) and hipotent(neuronal/astroglial) EGF-generated CNS progenitor cells[J].Neuron,1993,11 (5):951-966
    [61]刘丽旭,杨于嘉.高压氧治疗新生大鼠缺氧缺血性脑损伤量效及时效关系[J].中国当代儿科杂志,2001,3(4):355-358
    [62]Yu JY, DeRuiter SL, Turner DL. RNA interference by expression of shon—interfering RNAs and hairpin RNAs in mammalian cells. Prec Nail Acad Sci U S A,2002,99(9):6047-6052
    [63]R.J. Lichtenwalner, J.M. Parent. Adult neurogenesis and the ischemic fore-brain. J. Cereb. Blood Flow Metab,2006,26(1):1-20
    [64]Sanchez EC. Hyperbaric oxygenation in peripheral nerve repair and regeneration. Neurol Res,2007,29(2):184-198
    [65]Yu XH, Yang YJ, Wang X, et al.Hyperbaric oxygen therapy protects rats from hypoxic-ischemic brain damage.Chin J Contemp Pediatr,2004,6(6):466-469
    [66]余小河,杨于嘉,王霞,王庆红,谢岷,祁伯祥,等.高压氧对缺氧缺血性脑损伤新生大鼠内源性神经干细胞和髓鞘的保护作用[J].中国当代儿科杂志,2006,8(1):33-37
    [67]Bouhon IA, Kato H, Chandran S, Allen ND. Neural differentiation of mouse embryonic stem cells in chemically defined medium. Brain Res Bull,2005,68 (1-2):62-75
    [68]Dieter-Chichung Lie, Sophia A Colamarino, et al. Wnt signalling regulates adult hippocampal neurogenesis. Nature,2005,437(7063):1370-1375
    [69]DasGupta R, Kaykas A, Moon RT,et al.Functional genomic analysis of the Wnt-wingless signaling-pathway[J].Science,2005,308(5723):826-833
    [70]Miller JR.The Wnts. Genome Biol,2002,3(1):3001.1-3001.15
    [71]Triulzi F, Parazzini C, Righini A. Patterns of damage in the mature neonatal brain. Pediatr Radiol,2006,36(7):608-620
    [72]Fawke J, McIntyre J. Recent advances in neonatology. Curr Opin Obstet Gynecol,2002,14(2):153-158
    [73]Gerald A. Matchett, Robert D. Martin, John H. Zhang. Hyperbaric oxygen therapy and cerebral ischemia:neuroprotective mechanisms. Neurological Research,2009,31(3):114-121
    [74]Hayashi T, Iwai M,Ikeda T,et al.Neural precursor cells division and migration in neonatal rat brain after ischemic/hypocic injury.Brain Res,2005,1038 (1):41-49
    [75]Springer JE,Nottingham SA,Mcewen ML.Caspasa-3 apoptotic signaling following injury to the central nervous system.Clin Chem Lab Med,2001,39(4):299-307
    [76]Yun L,Changman Z,John WC,et al.Multiple effects of hyperbaric oxygen on the express of HIF-la and apoptotic gene in a global ischemia-hypotension rat model.Experimental Neurology,2005,191 (1):198-210
    [77]Lou M,Chen Y,Ding M,et al.Involvement of the mito-chondrial ATP-sensitive potassium channel in the neuron-protective effect of hyperbaric oxygenation after cerebral ischemic.Brain Res Bull,2006,69(2):109-116
    [78]Calvert JW,Zhou C,Nanda A.Effect of hyperbaric oxygen on apoptosis in neonatal hypoxic-ischemia rat model.J Appl physiol,2003,95(5):472-481
    [79]Cheng X, Hsu C M, Currled D S, et al. Central roles of the roof plate in telencephalic development and holoprose-ncephaly[J]. J Neurosei,2006, 26(29):7640-7649
    [80]Kasai M, Satoh K, Akiyama T. Wnt signaling regulates the sequential onset of neurogenesis and gliogenesis via induction of BMPs[J]. Genes Cells,2005, 10(8):777-783
    [81]Nakayama N, Han CE, Scully S,et al.A novel chordin-like protein inhibitor for bone morphogenetic proteins expressed preferentially in mesenchymal cell lineages.Dev Biol,2001,232(2):372-87
    [82]Sanchez EC. Hyperbaric oxygenation in peripheral nerve repair and regeneration. Neurol Res,2007,29(2):184-198
    [83]Gerald A. Matchett, Robert D. Martin, John H. Zhang. Hyperbaric oxygen therapy and cerebral ischemia:neuroprotective mechanisms. Neurological Research,2009,31(3):114-121
    [84]Yu XH, Yang YJ, Wang X, et al.Hyperbaric oxygen therapy protects rats from hypoxic-ischemic brain damage.Chin J Contemp Pediatr,2004,6(6):466-469
    [85]Yu XH, Yang YJ, Wang X, et al. Effect of hyperbaric oxygenation on neural stem cells and myelin in neonatal rats with hypoxic-ischemic brain damage. Chin J Contemp Pediatr,2006,8(1):33-37
    [86]Sun Y,Nadal-Vicens M,Miso S,et al.Neurogenin promotes neurogenesis and inhibits glial diferentiation by independent mechanisms[J].Cell,2001,104(3): 365-376
    [87]M. Backman, O.Machon, L.Mygland,et al.Effects of canonical Wnt signaling on dorso-ventral specification of the mouse telencephalon. Dev. Biol,2005, 279(1):155-168
    [88]Shinya Obayashi, Hiroko Tabunoki,Seung U. Kim,et al. Gene Expression Profiling of Human Neural Progenitor Cells Following the Serum-Induced Astrocyte Differentiation. Cell Mol Neurobiol,2009,29(3):423-438
    [1]Shi Y, Sun G, Zhao C, et al. Neural stem cell self-renewal. Crit Rev Oncol Hematol.2008,65(1):43-53
    [2]Zhang R,Zhang Z,Wang L,et al.Activated neural stem cells contribute to stroke-induced neurogenesis and neuroblast migration toward the infarct boundary in adult rats. Journal of Cerebral Blood Flow & Metabolism,2004, 24 (4):441-449
    [3]Muroyama Y,Kondoh H,Takada S.Wnt proteins promote neuronal differentiation in neural stem cell culture.Biochemical and biophysical research communication,2004,313 (4):915-920
    [4]McKay R. Stem cells in the central nervous system. Science,1997, 276(5309):66-71
    [5]He X, Semenov M, Tamai K, et al. LDL receptor-related proteins 5 and 6 in Wnt/betacatenin signaling:arrows point the way. Development,2004,131(8): 1663-77
    [6]Wharton KA Jr. Running with the Dvl:proteins that associate with Dsh/Dvl and their significance to Wnt signal transduction. Dev Biol,2003,253(1):1-17
    [7]Kleber M, Lee H, Wurdak H, et al. Neural crest stem cell maintenance by combinatorial Wnt and BMP signaling. The Journal of cell biology,2005, 169(2):309-317
    [8]Ling L, Nurcombe V, Cool S. Wnt signaling controls the fate of mesenchymal stem cells. Gene,2009,433(1-2):1-7
    [9]Huelsken J,Birchmeier W.New aspects of Wnt signaling pathways in higher vertebrates.Curr Opin Genet Dev,2001,11(5):547-553
    [10]Kuhl M. The WNT/calcium pathway:biochemical mediators, tools and future requirements. Font Biosci,2004,9:967-974
    [11]Van Amerongen R, Nusse R. Towards an integrated view of Wnt signaling in development. Development,2009,136(19):3205-3210
    [12]Parish C,Castelo-Branco GRawal N, et al. Wnt5a-treated midbrain neural stem cells improve dopamine cell replacement therapy in parkinsonian mice. Journal of Clinical Investigation,2008,118(1):149-157
    [13]Katoh M. Wnt signaling pathway and stem cell signaling network. Clinical cancer research,2007,13(14):4042-4049
    [14]Miller JR. The Wnts. Genome BiOl,2002,3(1):3001.1-3001.15
    [15]Hirabayashi Y,Itoh Y,Tabeta H et al.The Wnt/beta-catenin pathway directs neuronal dieeerentiation of cortical neural precursor cells.Development.2004, 131(12):2791-2795
    [16]Kim JS,Chang MY,Yu TT,et al.lithium selectively increases neuronal differentiation of hippocampal neural progenitor cells both in vitro and in vivo.J Neurochen.2004,89(2)324
    [17]Shinya Obayashi, Hiroko Tabunoki,Seung U. Kim,et al. Gene Expression Profiling of Human Neural Progenitor Cells Following the Serum-Induced Astrocyte Differentiation. Cell Mol Neurobiol,2009,29(3):423-438
    [18]Lie DC, Cplamarino SA, Song HJ, et al.Wnt signaling regulates adult hippocampal neurogenesis[J].Natural,2005,437(7063):1370-1375
    [19]Chenn A, Walsh CA. Increased neuronal production, enlarged forebrains and ctyoarchitectural distortions in beta-catenin orerexpressing transgenic mice[J].Cereb Cortex,2003,13(6):599-606
    [20]Woodhead GJ, Mutch CA, Olson EC, et al.Cell-autonomous beta-catenin signalling regulates cortical precursor proliferation[J]. J Neurosci,2006, 26(48):1262-1263
    [21]Megason SG, McMahon AP. A mitogen gradient of dorsal midline Wnts organizes growth in the CNS. Development,2002,129(9):2087-98
    [22]Hirsch C, Campano LM, Wohrle S, et al. Canonical Wnt signaling transiently stimulates proliferation and enhances neurogenesis in neonatal neural progenitor cultures[J]. Exp Cell Res,2007,313(3):572-587
    [23]Muroyama Y, Kondoh H, Takada S. Wnt proteins promote neuronal differentiation in neural stem cell culture[J]. Biochem Biophys Res Commun, 2004,313(4):915-921
    [24]Hirabayashi Y, Itoh Y, Tabata H, et al. The Wnt/{beta}-catenin pathway directs neuronal differentiation of cortical neural precursor cells.Development.2004, 131(12):2791-2801
    [25]Israsena N, Hu M, Fu W, et al. The presence of FGF2 signaling determines whether beta-catenin exerts effects on proliferation or neuronal differentiation of neural stem cells. Dev Biol,2004,268(1):220-231
    [26]Hirabayashi Y, Itoh Y, Tabata H, et al. The Wnt/β-catenin pathway directs neuronal differentiation of cortical neural precursor cells[J]. Development, 2004,131(12):2791-2801
    [27]Kasai M, Satoh K, Akiyama T. Wnt signaling regulates the sequential onset of neurogenesis and gliogenesis via induction of BMPs[J]. Genes Cells,2005, 10(8):777-783
    [28]Setoguchi T, Yone K, Matsuoka E, et al. Traumatic injury-induced BMP7 expression in the adult rat spinal cord. Brain Res[J],2001,921(1-2):219-25
    [29]Nakayama N, Han CE, Scully S,et al.A novel chordin-like protein inhibitor for bone morphogenetic proteins expressed preferentially in mesenchymal cell lineages.Dev Biol,2001,232(2):372-87
    [30]Yamamoto S, Nagao M, Sugimori M,et al. Transcription factor expression and Notch-dependent regulation of neural progenitors in the adult rat spinal cord.[J] Neurosci,2001,21(24):9814-23
    [31]Tanigaki K, Nogaki F, Takahashi J,et,al. Notchl and Notch3 instructively restrict bFGF-responsive multipotent neural progenitor cells to an astroglial fate.Neuron,2001,29(1):45-55
    [32]Reshef A, Sperling O, Zoref-Shani E. Opening of ATP-sensitive potassium channels by cromakalim confers tolerance against chemical ischemia in rat neuronal cultures_Neurosci Lett,1998,250(2):111-4
    [33]Hirahayashi Y.Gotoh Y. Stage-dependent fate determination of neural precursor cells in mouse forebrain[J]. Nenrosci Res,2005,51(4):331-336
    [34]Maurer MH, Bromme JO, Feldmann RE Jr, et al. Glycogen synthase kinase 3 beta(GSK 3 beta)regulates differentiation and proliferation in neural stem ceils from the rat subventricular zone[J]. J Proteome Res,2007,6(3):1198-1208
    [35]Huwelskon J, Behrens J. The Wnt signaling pathway[J]. J Cell Scien,2002, (155):3977-3978
    [36]Damien Coudreuse, Hendrik C. Korswagen. The making of Wnt:new insights into Wnt naturation, sorting and secretion[J],2007, (134):3-12
    [37]Jose M Gonzalez-Sancho, Keith R Brennan,Lslie A. et al. Wnt Proteins Induce Dishevelled Phosphorylation via an LRP5/6-Independent Mechanism, Irrespective of Their Ability To Stabilizeβ-catenin [J]. Mol Cell Biol,2004, (24):4757-4768
    [1]Ors F, Sonmez G, Yildiz S, et al. Incidence of ischemic brain lesions in hyperbaric chamber inside attendants. Adv Ther,2006,23 (6):1009-1015.
    [2]Gill AL, Bell CNA. Hyperbaric oxygen:Its uses, mechanisms of action and outcomes. Q J Med,2004,97(7):385-395
    [3]Zhang JZ, Takkin L, Mychaskiw G, et al. Mechanisms of hyperbaric oxygen and neuroprotection in stroke. Pathophysiology,2005,12(1):63-77
    [4]Ostrowski RP, Colohan AR, Zhang JH. Neuroprotective effect of hyperbaric oxygen in a rat model of subarachnoid hemorrhage.Acta Neurochir Suppl, 2006,96:188-193
    [5]Ostrowski RP, Tang J, Zhang JH. Hyperbaric oxygen suppresses NADPH oxidase in a rat subarachnoid hemorrhage model. Stroke,2006,47(5):1314-1318
    [6]Ostrowski RP, Colohan AR, Zhang JH. Mechanisms of hyperbaric oxygen-induced neuroprotection in a rat model of subarachnoid hemorrhage. J Cereb Blood Flow Metab,2005,25 (5):554-571
    [7]Vila JF, Balcarce PE, Abiusi GR, et al. Improvement in motor and cognitive impairment after hyperbaric oxygen therapy in a selected group of patients with cerebrovascular disease:A prospective single-blind controlled trial. Undersea Hyperb Med,2005,32(5):341-349
    [8]Alex J, Laden G, Cale ARJ, et al. Pretreatment with hyperbaric oxygen and its effect on neuropsychometric dysfunction and systemic inflammatory response after cardiopulmonary bypass:A prospective randomized double-blind trial. J Thorac Cardiovasc Surg,2005,130(6):1623-1630
    [9]Rusyniak DE, Kirk MA, May JD, et al. Hyperbaric oxygen therapy in acute ischemic stroke:Results of the hyperbaric oxygen in acute ischemic stroke pilot study. Stroke,2003,34(2):571-574
    [10]Daugherty WP, Levasseur JE, Sun D, et al. Effects of hyperbaric oxygen therapy on cerebral oxygenation and mitochondrial function following moderate lateral fluid-percussion injury in rats.J Neurosurg,2004,101 (3):499-504
    [11]Hou H, Grinberg O,Williams B, et al. The effect of oxygen therapy on brain damage and cerebral PO2 in transient focal cerebral ischemia in the rat. Physiol Meas,2007,28 (8):963-976
    [12]Huang ZX, Kang ZM, Gu GJ, et al. Therapeutic effects of hyperbaric oxygen in a rat model of endothelin-1-induced focal cerebral ischemia. Brain Res,2007, 1153:204-211
    [13]Lou M, Zhang H, Wang J, et al. Hyperbaric oxygen treatment attenuated the decrease in regional glucose metabolism of rats subjected to focal cerebral ischemia:A high resolution positron emission tomography study. Neuroscience, 2007,146 (2):555-561
    [14]Hiatra T, Cui YJ, Funakoshi T, et al. The temporal profile of genomic responses and protein synthesis in ischemic tolerance of the rat brain induced by repeated hyperbaric oxygen. Brain Res,2007,1130(1):214-222
    [15]Hampson NB, Bakker DJ, Camporesi EM, et al. Hyperbaric Oxygen Therapy Committee Statement, Durham, NC:Undersea and Hyperbaric Medicine Society:1999, available at:http://www.uhms.org
    [16]Tibbles PM, Edelsberg JS. Hyperbaric oxygen therapy. N Engl J Med,1996, 334(25):1642-1648
    [17]Calvert JW, Cahill J, Zhang JH. Hyperbaric oxygen and cerebral physiology. Neurol Res,2007,29(2):132-141
    [18]Barash PG, Cullen BF, Stoelting RK. Clinical Anesthesia,5th edn Lippincott: Williams & Wilkins,2006,551-552
    [19]Sunami K, Takeda Y, Hashimoto M, et al. Hyperbaric oxygen reduces infarct volume in rats by increasing oxygen supply to the ischemic periphery. Crit Care Med,2000,28(8):2831-2836
    [20]Mink RB, Dutka AJ. Hyperbaric oxygen after global cerebral ischemia in rabbits reduces brain vascular permeability and blood flow. Stroke,1995, 26(12):2307-2312
    [21]Rockswold SB, Rockswold GL, Vargo JM, et al. Effects of hyperbaric oxygen therapy on cerebral metabolism and intracra-nial pressure in severely brain injured patients. J Neurosurg,2001,94(3):403-411
    [22]Rogatsky GG, Kamenir Y, Mayevsky A. Effect of hyperbaric oxygenation on intracranial pressure elevation rate in rats during the early phase of severe traumatic brain injury. Brain Res,2005,1047 (2):131-136
    [23]Colonna S, Coluccia B, Micella A, et al. Hyperbaric oxygen in acute cerebral edema. Minerva Anestesiol.1991,57(10):976-977
    [24]Freiberger JJ, Suliman HB, Sheng H, et al. A comparison of hyperbaric oxygen versus hypoxic cerebral preconditioning in neonatal rats. Brain Res,2006, 1075(1):213-222
    [25]Miljkovic-Lolic M, Sillbergleit R, Fiskum G, et al. Neuroprotective effects of hyperbaric oxygen treatment in experimental focal cerebral ischemia are associated with reduced brain leukocyte myeloperoxidase activity. Brain Res, 2003,971(1):90-94
    [26]Wada K, Miyazawa T, Nomura N, et al. Preferential conditions for and possible mechanisms of induction of ischemic tolerance by repeated hyperbaric oxygen in gerbil hippocampus.Neurosurgery,2001,49(1):166-167
    [27]Wada K, Miyazawa T, Norura N, et al. Mn-SOD and Bcl-2 expression after repeated hyperbaric oxygenation. Acta Neurohchir Suppl,2000,76:285-290
    [28]Xoing L, Zhu Z, Dong H, et al. Hyperbaric oxygen preconditioning induces neuroprotection against ischemia in transient but not permanent middle cerebral artery occlusion rat model. Chin Med J,2000,113(9):836-839
    [29]Atochin DN, Fisher D, Demchenko IT, et al. Neutrophil sequestration and the effect of hyperbaric oxygen in a rat model of temporary middle cerebral artery occlusion. Undersea Hyperb Med,2000,27(4):185-190
    [30]Veltkamp R, Sun L, Herrmann O, et al. Oxygen therapy in permanent brain ischemia:Potential and limitations. Brain Res,2006,1107(1):185-191
    [31]Veltkamp R, Bieber K, Wagner S, et al. Hyperbaric oxygen reduces basal lamina degradation after transient focal cerebral ischemia in rats. Brain Res,2006,1076(1):231-237
    [32]Calvert JW, Cahill J, Yamaguchi-Okada M, et al. Oxygen treatment after experimental hypoxia-ischemia in neonatal rats alters the expression of HIF-1a and its downstream target genes. J Appl Physiol,2006,101(3):853-865
    [33]Lou M, Chen Y, Ding M, et al. Involvement of the mitochondrial ATP-sensitive potassium channel in the neuroprotective effect of hyperbaric oxygenation after cerebral ischemia. Brain Res Bull,2006,69(2):109-116
    [34]Calvert JW, Yin W, Patel M, et al. Hyperbaric oxygen prevented brain injury induced by hypoxia-ischemia in a neonatal rat model.Brain Res, 2002,951(1):1-8
    [35]Yang JT, Chang CN, Lee TH, et al. Hyperbaric oxygen treatment decreases post-ischemic neurotropin-3 mRNA down-regulation in the rat hippocampus. Neuroreport,2001,12(16):3589-3592
    [36]Rosenthal RE, Silbergleit R, Hof PR, et al. Hyperbaric oxygen reduces neuronal death and improves neurological outcome after canine cardiac arrest. Stroke,2003,34(5):1311-1316
    [37]Gunther A, Kuppers-Tiedt L, Schneider PM, et al. Reduced infarct volume and differential effects on glial cell activation after hyperbaric oxygen treatment in rat permanent focal cerebral ischaemia. Eur J Neurosci,2005,21 (11):3189-3194
    [38]Cheng CF, Niu KC, Hoffer BJ, et al. Hyperbaric oxygen therapy for treatment of postischemic stroke in adult rats. Exp Neurol,2000,166 (2):298-306
    [39]Yin D, Changman Z, Kusaka I, et al. Inhibition of apoptosis by hyperbaric oxygen in a rat focal cerebral ischemic model. J Cereb Blood Flow Metab, 2003,23 (7):855-864
    [40]Acka G, Sen A, Canakci Z, et al. Effect of combined therapy with hyperbaric oxygen and antioxidant on infarct volume after permanent focal cerebral ischemia. Physiol Res,2007,56 (3):369-373
    [41]Lou M, Eschenfelder CC, Herdegen T, et al. Therapeutic window for use of hyperbaric oxygenation in focal transient ischemia in rats. Stroke,2004,35 (2): 578-583
    [42]Hjelde A, Hjelstuen M, Haraldseth O, et al. Hyperbaric oxygen and neurotrophil accumulation/tissue damage during permanent focal cerebral ischaemia in rats. Eur J Appl Physiol,2002,86 (5):401-405
    [43]Henninger N, Kuppers-Tiedt L, Sicard KM, et al. Neuroprotective effect of hyperbaric oxygen therapy monitored by MR-imaging after embolic stroke in rats. Exp Neurol,2006,201(2):316-323
    [44]Badr AE, Yin W, Mychaskiw G, et al. Dual effect of HBO on cerebral infarction in MCAO rats. Am J Physiol Regul Integr Comp Physiol,2001, 280(3):R766-R770
    [45]Yin D, Zhang JH. Delayed and multiple hyperbaric oxygen treatments expand therapeutic window in rat focal cerebral ischemic model. Neurocrit Care,2005, 2(2):206-211
    [46]Nighoghossian N, Trouillas P, Adeleine P, et al. Hyperbaric oxygen in the treatment of acute ischemic stroke:A double-blind pilot study. Stroke,1995,26 (8):1369-1372
    [47]Anderson DC, Bottini AG, Jagiella WM. A pilot study of hyperbaric oxygen in the treatment of human stroke. Stroke,1991,22(9):1137-1142
    [48]Bennett MH, Wasiak J, Schnabel A, et al. Hyperbaric oxygen therapy for acute ischaemic stroke. Cochrane Database Syst Rev,2005,3:1-10
    [49]Carson S, McDonagh M. Russman B, et al. Hyperbaric oxygen therapy for stroke:A systematic review of the evidence. Clin Rehabil,2005,19(8):819-833
    [50]Arrowsmith JE, Grocott HP, Reves JG, et al. Central nervous system complications of cardiac surgery. Br J Anaesth,2000,84(3):304-307
    [51]Van Dijk D, Jansen EW, Hijman R, et al. Cognitive outcome after off-pump and on-pump coronary artery bypass graft surgery:A randomized trial. JAMA,2002, 287(11):1405-1412
    [52]Van Dijk D, Spoor M, Hijman R, et al. Cognitive and cardiac outcomes 5 years after off-pump vs. on-pump coronary artery bypass graft surgery. JAMA, 2007,297(7):701-708
    [53]Gottesman RF, Wityk RJ. Brain injury from cardiac bypass procedures. Semin Neurol,2006,26(6):432-439
    [54]Ors F, Sonmez G, Yildiz S, et al. Incidence of ischemic brain lesions in hyperbaric chamber inside attendants. Adv Ther,2006,23(6):1009-1015.
    [55]Blenkarn GD, Schanberg SM, Saltzman HA. Cerebral amines and acute hyperbaric oxygen toxicity. J Pharmacol Exp Ther,1969,166 (2):346-353
    [56]Pablos ML, Reiter RJ, Chuang JI, et al. Acutely administered melatonin reduces oxidative damage in lung and brain induced by hyperbaric oxygen. J Appl Physiol,1997,83 (2):345-358
    [57]Chavko M, Xing G, Keyser DO. Increased sensitivity to seizures in repeated exposures to hyperbaric oxygen:Role of NOS activation.Brain Res,2001,900 (2):227-233
    [58]Demchenko IT, Boso AE, Bennett PB, et al. Hyperbaric oxygen reduces cerebral blood flow by inactivating nitric oxide. Nitric Oxide.2000,4 (6) 597-608
    [59]Schabitz WR, Schade H, Heiland S, et al. Neuroprotection by hyperbaric oxygenation after experimental focal cerebral ischemia monitored by MRI. Stroke,2004,35 (5):1175-1179
    [60]Mink RB, Dutka AJ. Hyperbaric oxygen after global cerebral ischemia in rabbits does not promote brain lipid peroxidation. Criti Care Med,1995,23 (8): 83-89
    [61]Calvert JW, Zhou C, Zhang JH. Transient exposure of rat pups to hyperoxia at normobaric and hyperbaric pressures does not cause retinopathy of prematurity. Exp Neurol,2004,189 (1):150-161
    [62]STOP-ROP Multicenter Study Group. Supplemental therapeutic oxygen for pre-threshold retinopathy of prematurity (STOP-ROP):A randomized, controlled trial. Pediatrics,2000,105 (2):295-310
    [63]Chow LC, Wright KW, Sola A, et al. Can changes in clinical practice decrease the incidence of severe retinopathy of pre-maturity in very low birth weight infants? Pediatrics,2003,111 (2):339-345
    [64]Gerald A. Matchett, Robert D. Martin, John H. Zhang. Hyperbaric oxygen therapy and cerebral ischemia:neuroprotective mechanisms. Neurological Research,2009,31(3):114-121
    [65]Nighoghossian N, Trouillas P. Hyperbaric oxygen in the treatment of acute ischemic stroke:An unsettled issue. J Neurol Sci,1997,150 (1):27-31
    [66]Perez-Pinzon MA. Mechanisms of neuroprotection during ischemic preconditioning:Lessons from anoxic tolerance. Comp Biochem Physiol,2007, 147 (2):291-299
    [67]Badr AE, Yin W, Mychaskiw G, et al. Effect of hyperbaric oxygen on striatal metabolites:A microdialysis study in awake freely moving rats after MCA occlusion. Brain Res,2001,916 (1-2):85-90
    [68]Yang ZJ, Camporesi C, Yang X, et al. Hyperbaric oxygenation mitigates focal cerebral injury and reduces striatal dopamine release in a rat model of transient middle cerebral artery occlusion.Eur J Appl Physiol,2002,87 (2):101-107
    [69]Calvert JW, Zhang JH. Oxygen treatment restores energy status following experimental neonatal hypoxia-ischemia. Pediatr Crit Care Med,2007,8 (2) 165-173
    [70]Mrsic-Pelcic J, Pelcic G, Vitezic D, et al. Hyperbaric oxygen treatment:The influence on the hippocampal superoxide dismutase and Na/K-ATPase activities in global cerebral ischemia-exposed rats. Neurochem Int,2004,44 (8):585-594
    [71]Yufu K, Itoh T, Edamatsu R, et al. Effect of hyperbaric oxygenation on the Na/K ATPase and membrane fluidity of cerebrocortical membranes after experimental subarachnoid hemorrhage.Neurochem Res,1993,18(9):1033-1039
    [72]Busija DW, Lacza A, Rajapakse N, et al. Targeting mitochondrial ATP-sensitive potassium channels-a novel approach to neuro-protection. Brain Res Rev,2004,46 (3):282-294
    [73]Qin Z, Karabiyikoglu M, Hua Y, et al. Hyperbaric oxygen-induced attenuation of hemorrhagic transformation after experimental focal transient cerebral ischemia. Stroke,2007,38 (4):1362-1367
    [74]Veltkamp R, Siebing DA, Sun L, et al. Hyperbaric oxygen reduces blood-brain barrier damage and edema after transient focal cerebral ischemia. Stroke,2005,36 (8):1679-1683
    [75]Nita DA, Nita V, Spulber S, et al. Oxidative damage following cerebral ischemia depends on reperfusion-a biochemical study in rat. J Cell Mol Med.2001,5 (2):163-170
    [76]Thom SR. Functional inhibition of leukocyte B2 integrins by hyperbaric oxygen in carbon monoxide-mediated brain injury in rats. Toxicol Appl Pharmacol, 1993,123 (2):248-256
    [77]Warner DS, Sheng H, Batinic-Haberle I. Oxidants, antioxidants, and the ischemic brain. J Exp Biol,2004,207 (18):3221-3231
    [78]Feurestein G. Inflammation and stroke:Therapeutic effects of adenoviral expression of secretory leukocyte protease Inhibitor.Front Biosci,2006,11: 750-757
    [79]YinW, Badr AE, Mychaskiw G, et al. Down-regulation of COX-2 is involved in hyperbaric oxygen treatment in a rat transient focal cerebral ischemia model. Brain Res,2002,926(1-2):2072-2080
    [80]Weisz G, Lavy A, Adir Y, et al. Modification of in vivo and in vitro TNF-alpha, IL-1 and IL-6 secretion by circulating monocytes during hyperbaric oxygen treatment in patients with perianal Crohn's disease. Eur Surg Res,1997,17(2): 154-159
    [81]Mattson MP, Culmsee C, Yu ZF. Apoptotic and antiapoptotic mechanisms in stroke. Cell Tissue Res,2000,301(1):173-187
    [82]Helton R, Cui J, Scheel JR, et al. Brain-specific knock-out of hypoxia-inducible factor-la reduces rather than increases hypoxic-ischemic damage. J Neurosci,2005,25(19):4099-4107
    [83]Li Y, Zhou C, Calvert JW, et al. Multiple effects of HBO on HIF-1alpha expression and apoptotic genes in a global ischemia rat model. Exp Neurol, 2005,191(1):198-210
    [84]Sanchez EC. Hyperbaric oxygenation in peripheral nerve repair and regeneration. Neurol Res,2007,29(2):184-198
    [85]Eguiluz-Ordonez R, Sanchez CE, Venegas A, et al. Effects of hyperbaric oxygen on peripheral nerves. Plast Reconstr Surg,2006,118 (2):350-357
    [86]Weinmann O, Schnell L, Ghosh A, et al. Intrathecally infused antibodies against Nogo-A penetrate the CNS and down regulate the endogenous neurite growth inhibitor Nogo-A. Mol Cell Neurosci,2006,32(1-2):161-173
    [87]Zhou C, Li Y, Nada A, et al. HBO suppresses Nogo-A, Ng-R, or RhoA expression in the cerebral cortex after global ischemia.Biochem Biophys Res Commun,2003,309:368-376
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.