桥梁结构动力损伤诊断方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在众多对结构进行损伤诊断的方法中,大多以简单结构为例进行分析,而且一般不考
     虑误差的影响,这都与实际工程结构的损伤诊断有一定距离。本文针对实际的工程结构,
     完成了以下的研究工作:
     l、以高墩粱式桥为研究对象,讨论基子灵敏度分析进行损伤诊断方法的优缺点。为
     克服灵敏度分析法不能对严重损伤进行识别的缺陷,本文提出用迭代法成功解决了严重
     损伤的识别问题。当结构中同时损伤的单元数目较多,以及结构单元数目远大于实测的
     模态阶数时,灵敏度分析法的识别结果严重下降,本文提出损伤识别的两步法,将结构
     的损伤分为定位和定量两个步骤,有效地改进了识别效果。为克服灵敏度分析法一阶近
     似的本质缺陷,基于正交条件灵敏度分析法,利用MSECR对结构的损伤进行粗略定位
     后,给出了准确的识别结果,但这种方法的缺点是需要完备的实测振型。
     2、本文详细分析了模型误差对损伤识别结果的影响,经过公式推导及实例分析说
     明,损伤灵敏度矩阵用有模型误差的理论分析模型来建立,如果损伤前后都用无模型误
     差的实测数据来识别,此时误差为二阶微量可以忽略;如果损伤前采用有模型误差的数
     据而损伤后采用无模型误差的实测数据,此时误差为一阶量,可能引起较大的识别误差。
     3、将测量误差的影响考虑为正态分布的高斯白噪声,通过理论分析和数值模拟,
     说明用灵敏度分析法识别结构损伤时,损伤识别结果也服从高斯正态分布,其平均值保
     持不变,而方差则与误差水平成线性关系。
     4、本文以结构的低阶频率和少数节点的一阶振型分量,经预处理后作为神经网络
     输入,准确实现了对一钢析粱桥的损伤位置和损伤程度识别。在选取少数节点的振型分
     量用于网络训练时,提出根据单元应变能系数的大小来选择节点,这些节点一般来讲在
     振动中振幅较大,易于实测和用于网络训练。误差分析的结论同样在基于神经网络对结
     构进行损伤诊断的方法中得以体现。
     5、以北川河钢管混凝土拱桥为对象,研究采用神经网络方法实现大型结构的损伤
     监测。对于拱肋的损伤,本文采用拱肋单元在结构损伤前后一阶应变模态的相对改变量
     来实现。构造了一个由四个子网组成的组合网络,每个子网分别针对拱肋中的部分单元
     进行训练,然后由各子网的输出共同给出整个拱肋的损伤状态。本文还对吊杆损伤对拱
     肋应变模态的影响进行了初步分析,认为少量吊杆的损伤不会对拱肋的应变模态产生很
     大的影响,即在少数吊杆存在损伤时,网络仍能对拱肋的损伤进行识别。
     6、对于吊杆的损伤监测,本文根据桥面板节点在吊杆损伤前后一阶振型的变化,
     采用 Kohonen网络来实现吊杆的损伤位置识别。以 10%、90%的吊杆损伤对应的数据验
     证网络,准确地识别了吊杆的损伤位置。经过对比说明,不同位置拱肋单元的损伤,对
     吊杆损伤位置识别的影响不同。
Among many methods that deal with structural damage assessment, most of them focus on simple structures and don抰 consider any errors, so there is a certain distance before they can be used to assess the damage of real structures. This dissertation carries on research of real engineering structures. The main contents include:
    
     1 Take high pile and beam bridge for example, this paper discusses the merits and defects of the damage assessment method based on sensitivity analysis. In order to overcome the defect that this method can抰 identify serious damage, this paper presents iteration method to solve this problem. When damaged elements increase at the same time and the number of element is much more than that of measured modes, the sensitivity analysis method can抰 give desired results. Therefore, a method which can identify damage though two steps, Location and Extent, is put forward. After probable damage location through MSECR, the method based on the sensitivity of orthogonality conditions gives good predictions of damage. This method overcomes the natural defect of the concept first order approximation of the ordinary sensitivity analysis method. But this method needs complete measured modes.
    
     2. The influence of model error on damage assessment results is analyzed. We get the sensitivity matrix using the model that contains model error in the following two cases. If the identification data are got using the model without model error before and after the damage, the error resulted from model error can be overlooked. If the data are got using model with model error before the damage and using the model without model error after the damage, error results from model error is first order and model error can bring more assessment errors. All above is proved by equations and examples.
    
     3.. The effect of measurement error is considered as Gauss white noise. Through theoretical analysis and numerical simulation, damage assessment results are also subject to Gauss distribution. Furthermore, results indicate that the mean keeps intact, but the standard deviation is linear to error level.
    
     4. Using processed frequencies and first order modal DOFs in a few points as network inputs, trained neural network gives excellent assessment results of a steel truss bridge. A method is put forward which selects modal DOFs in a few points according to element strain energy coefficient. Therefore, the selected modal DOFs in a few points usually have large amplitude, which is conducive to be measured and the network training. The effect of model error on assessment results is also reflected in the ANN method.
    
     5. This paper uses ANN to realize the damage monitoring of a large structure, a concrete-filled steel tubular bridge of Beichuan River. For the damage of the main arch-ring elements, this paper uses the relative change of first order strain mode before and after the
    
    
    
    damage. A combined network which consists of four subnets is put forward. Every subnet is trained using the data of one portion of arch-ring elements, and the outputs from all subnets give the whole damage information of the arch-ring. The influence of hanger damage on the archring strain mode is also considered and get the conclusion that there is no much change in strain mode when the damaged hangers is small. Therefore, network can still gives good results when some hangers are damaged lightly.
     6.. For the damage of the hanger elements, the change of first order mode of deck nodes before and after the damage is used. The Kohonen network was put forward to realize the location of the damaged hangers. When the hangers are damaged as seriously as 10%. 90%, the network still gives good predictions. At last, comparisons indicate that the damage of arch-ring elements with different location have different influence on the location of the damaged hangers.
引文
1、 邓焱,严普强,“桥梁结构损伤的振动模态检测”,振动、测试与诊断,1999,19(3) , 157-162.
    2、 袁万城,崔飞,张启伟,“桥梁健康检测与状态评估的研究现状与发展”,同济大学 学报,1999,27(2) ,184-188.
    3、 Cawley, and R.D. Adams, “The location of defects in Structures from measurements of the natural frequencies”, Journal of Strain Analysis, 1979, 14(2) , 49-57.
    4、 Norris Stubbs, Taft H.Broome, and Roberto Osegueda, “Nondestructive construction error detection in large space structures”, AIAA, 1990, 28(11) , 146-152.
    5、 G.Heam, and R.B.Testa, “Modal analysis for damage detection in structures”, Journal of Structural Engineering, ASCE, 1991, 117(10) , 3042-3061.
    6、 S.Hassiotis, and G.D.Jeong, “Assessment of structural damage from natural frequency measurement”, Computers and Structures, 1993, 49(4) , 679-691.
    7、 S.Hassiotis, “Identification of damage using natural frequencies and Markov parameters”, Computers and Structures, 2000,74, 365-373.
    8、 王德明,“近似估计裂缝部位的折线图谱”,振动与冲击,1987,2,32-36.
    9、 M.Biswas, A.K.Pandey, and M.M.Samman, “Diagnostic experimental spectral/modal analysis of highway bridge”, The International Journal of Analytical and ExperimentalModal Analysis,1990,5(1) ,33-42.
    
    
    10、 Charbel Farhat, and Francois M.Hemez, “Updating finite element dynamic models using an element-by-element sensitivity methodology”, AIAA, 1993,31(9) , 1702-1711.
    11、 M.M.F.Yuen, “A numerical study of the eigenparameters of a damaged cantilever”, Journal of Sound and Vibration, 1985,103(3) , 301-310.
    12、 A.K.Pandy, M.Biswas, and M.M.Samman, “Damage detection from changes in curvature mode shapes”, Journal of Sound and Vibration, 1991,145(2) , 321-332.
    13、 袁向荣,“梁的破损对频率、振型及振型曲率的影响”,振动、测试与诊断,1994,2, 40-44.
    14、 徐宜桂,史铁林,杨叔子,“基于神经网络的结构动力模型修改和破损诊断研究”, 振动工程学报,1997,10(1) ,8-12.
    15、 郭国会,钢筋混凝土结构破损评估的神经网络方法,硕士学位论文,湖南大学,1998, 3.
    16、 J.M.Ricles, and J.B.Kosmatka, “Damage detection in elastic structures using vibratory residual forces and weighted sensitivity”, AIAA, 1992,30(9) , 2310-2316.
    17、 H.Baruh, and S.Ratan, “Damage detection in the flexible structures”, Journal of Sound and Vibration, 1993, 166(1) , 21-30.
    18、 周先雁,混凝土平面杆系结构破损评估理论及试验研究,博士学位论文,湖南大学, 1996,7.
    19、 Berman, A., and Nagy, E.J., “Improvement of a large analytical model using test data”, AIAA, 1983,21(8) , 1168-1173.
    20、 Baruch, M., “Optimal correction of mass and stiffness matrices using measured modes”, AIAA, 1982, 1623-1626.
    21、 Ivar M.Kabe, “Stiffness matrix adjustment using modal data”, AIAA, 1985, 23(9) , 1431-1436.
    22、 P.Hajela, and F.J.Soeiro, “Structural damage detection based on static and modal analysis”, AIAA, 1990,28(6) , 1110-1115.
    23、 Scott W. Doebling, “Improved damage location accuracy using strain energy-based mode selection criteria”, AIAA, 1997, 35(4) , 693-699.
    24、 Juan R.Casas, and Angel C.Aparicio, “Structural Damage identification from dynamic test data”, Journal of Structural Engineering, ASCE, 1994, 120(8) , 2437-2449.
    25、 王长新,易伟建,“带刚臂梁-柱特征值分析与损伤识别研究”,湖南大学学报,1995, 22(4) ,56-59.
    
    
    26、 Y.S.Park, H.S.Park, and S.S.Lee, “Weighted-error-matrix application to detect stiffness damage by dynamic-characteristic measurement”, The International Journal of Analytical and Experimental Modal Analysis, 1988, 3(3) , 101-107.
    27、 H.P.Gysin, “Critical application of the error matrix method for localization of finite element modeling inaccuracies”, Proceedings of the 4th International Modal Analysis Conference, 1986, Vol.2, 1339-1351.
    28、 A.K.. Pandy, M. Biswas, “Damage detection in structures using changes in flexibility”, Journal of Sound and Vibration, 1994, 169, 3-17.
    29、 A.K.Pandy, and M.Biswas, “Experimental verification of flexibility difference method for locating damage in structures”, Journal of Sound and Vibration, 1995, 184(2) , 311-328.
    30、 綦宝晖,邬瑞锋,蔡贤辉,“一种桁架结构损伤识别的柔度阵法”,计算力学学报, 2001,l8(1) ,42-47.
    31、 Fox, R.L., Kapoor, M.P., “Rates of change of eigenvalues and eigenvectors”, AIAA, 1968, 6(12) , 2426-2429.
    32、 Richard B.Nelson, “Simplified calculation of eigenvector derivatives”, AIAA, 1976, 14(9) , 1201-1205.
    33、 William C.Mills-Curran, “Calculation of eigenvector derivatives for structures with repeated eigenvalues”, AIAA, 1988, 26(7) , 867-871.
    34、 A.messina, E,J,Williams, and T.Contursi, “Structural damage detection by a sensitivity and statistical-based method”, Journal of Sound and Vibration, 1998, 216(5) , 791-808.
    35、 Z.Y.Shi, S.S.Law, and L.M.zhang , “Damage localization by directly using incomplete mode shapes”, Journal of Engineering Mechanics, ASCE, 2000,126(6) , 656-660.
    36、 H.F.Lam, J.M.Ko, and C.W.Wong, “Localization of damaged structural connections based on experimental modal and sensitivity analysis”, Journal of Sound and Vibration, 1998, 210(1) , 91-115.
    37、 Klaus George Topole, Norris Stubbs, “Non-destructive damage evaluation of a structure from limited modal parameters”, Earthquake Engineering and Structural Dynamics, 1995, 24,1427-1436.
    38、 J.V.Arajo dos Santos, C.M.Mota Soares, C.A. Mota Scares, H.L.G.pina, “A damage identification numerical model based on the sensitivity of orthogonality conditions and least squares techniques”, Computers and Structures, 2000, 78, 283-291.
    39、 易伟建,王迪薇,钢筋混凝土梁动刚度识别,结构可靠性鉴定,全国第三届学术讨 论会论文集,桂林,1993.
    
    
    40、 邵旭东,混凝土桥梁承载力评定的理论与应用,博士学位论文,湖南大学,1991,12.
    41、 G.C.Yao, K.C.Chang, and G.C.Lee, “Damage diagnosis of steel frame using vibration signature analysis,” Journal of Engineering Mechanics, ASCE, 1992, 118(9) , 1949-1961.
    42、 李德葆,“实验应变模态分析原理和方法”,清华大学学报,1990,30(2) ,22-26.
    43、 徐丽,框架结构损伤诊断理论及实验研究,硕士学位论文,湖南大学,2000,6.
    44、 Jay-Ching Chen, and John A.Garba, “On-orbit damage assessment for large space structures”, AIAA, 1988,26(9) , 11198-1126.
    45、 Tae W.Lim, “Structural damage detection using modal test data”, AIAA, 1991, 29(12) , 2271-2275.
    46、 Jeong-Tae Kim, and Norris Stubbs, “Model-uncertainty impact and damage detection accuracy in plate girder”, Journal of Structural Engineering, ASCE, 1995, 121(10) , 1409-1417.
    47、 Z.Y.Shi, S.S.Law, and L.M.Zhang, “Structural damage detection from modal strain energy change”, Journal of Engineering Mechanics, 2000, 126(12) , 1216-1223.
    48、 S.Law, Z.Y.Shi, L.M.Zhang, “Structural damage detection from incomplete and noisy modal test data”, Joumal of Engineering Mechanics, ASCE, 1998, 124(11) , 1280-1288.
    49、 Shi, Z.Y., Law, S.S., and Zhang, L.M., “Structural damage localization from modal strain energy change”, Journal of Sound and Vibration, 1998,218(5) , 825-844.
    50、 易伟建,刘霞,“基于遗传算法的结构损伤诊断研究”,工程力学,2001,18(2) , 64. 71.
    5l、刘霞,非数值优化算法应用研究,硕士学位论文,湖南大学,2000,4.
    52、 M.I.Friswell, J.E.T.Penny, and S.D.Garvey, “A combined genetic and eigensensitivity algorithm for the location of damage in structures”, Computers and Structures, 1998, 69(5) , 547-556.
    53、 Mannan, M.A., and Richardson, M.H., “Detection and location of structural cracks using FRF measurements”, Proceedings of the 8th International Modal Analysis Conference,Florida, 1990,652-295.
    54、 李德葆,“海洋平台结构损伤检测的传递函数法”,第四届全国振动理论及应用学 术会议论文集,1990,166-176.
    55、 李杰,陈隽,“结构参数未知条件下的地震动反演研究”,地震工程与工程振动, 1997,17(3) ,27-34.
    56、 R.J.Allemany and D.L.Brown, “A correction coefficient for modal vector analysis”, Proc. of the first IMAC, 1982, 110-116.
    
    
    57、 Sreenivas Alampalli, Gongkang Fu, and Everett W.Dillon, "Signal versus noise in detection by experimental modal analysis", Journal of Structural Engineering, ASCE, 1997, 123(2) , 237-245.
    58、 N.A.J.Lieven and D.LJ.Ewins, "Spatial correlation of modal shapes, the coordinate modal assurance criterion(COMAC)", Proc. of the 4th IMAC, 1986, 1-5.
    59、 Mohamed Kaouk, and David C.Zimmerman, "Structural damage assessment using a generalized minimum rank perturbation theory", AIAA, 1994, 32(4) , 836-842.
    60、 Tae W.Lim, and Thomas A.L.Kashsngak, "Structural damage detection of space truss structures using best achievable eigenvectors", AIAA, 1994, 32(5) , 1049-1057.
    61、 Liew K,M, and Wang Q., "Application of wavelet theory for crack identification in structure" , Journal of Engineering Mechanics, ASCE, 1998, 124(2) , 152-157.
    62、 Hojjat Adeli, "Neural networks in civil engineering: 1989-2000", Computer-Aided Civil and Infrastructure Engineering, 2001, 16, 126-142.
    63、 Gary R.Consolazio, "Iterative equation solver for bridge analysis using neural networks", Computer-Aided Civil and Infrastructure Engineering, 2000, 15, 107-119.
    64、 A.Mathew, B.Kumar, B.P.Sinha, and F.Pedreschi, "Analysis of masonry panel under biaxial bending using ANNs and CBR", Journal of Computing in Civil Engineering, ASCE, 1999, 13(3) , 170-177.
    65、 W.M.Jenkins, "A neural network for structural re-analysis", Computers and Structures, 1999, 72, 687-698.
    66、 Sunil K.Sinha and Robert A.McKim, " Artifical neural network for measuring orgnizational effectiveness" , Journal of Computing in Civil Engineering, ASCE, 2000, 14(1) , 9-14.
    67、 Wu., X., Ghabousisi, J., and Garret, J.H., Jr., "Use of neural networks in prediction of structural damage", Computers and Structures, 1992, 42(4) , 649-659.
    68、 Szewczyk, Z. P., Hajela, P., "Damage detection in structures based on feature-sensitive neural networks," Journal of Computing in Civil Engineering, ASCE, 1994, 8(2) , 163-178.
    69、 Elkordy, M.F., Chang, K.C., and Lee, G.C., "A Structural damage neural network monitoring system", Microcomputers in Civil Engineering, 1994, 9, 83-96.
    70、 Elkordy, M.F., Chang, K.C., and Lee, G.C., "Neural networks trained by analytical simulated damage states." Journal of Computing in Civil Engineering, ASCE, 1998, 7, 130-145.
    
    
    71、 Stephens, J,E., Vonluchene, R.D., “Integrated assessment of seismic damage in structures”, Microcomputers in Civil Engineering, 1994, 9(2) , 119-128.
    72、 Poyu Tsou, M.H.Herman Shen, “Structural damage detection and identification using neural networks”, AIAA, 1994,32(1) , 176-183.
    73、 Pandy, P. C, Barai, S. Y, “Multilayer perceptron in damage detection of bridge structures,” Computers and structures, 1995, 54(4) , 597-608.
    74、 Barai, S. V, Pandey, P.C., “Vibration signature analysis using artificial neural networks”, Journal of Computing in Civil Engineering, ASCE, 1995, 9(4) , 259-265.
    75、 S.F.Masri, M.Nakamura, A.G.Chassiakos, T.K.Caughey, “Neural network approach to detection of changes in structural parameters”, Journal of Engineering Mechanics, ASCE, 1996, 122(4) , 350-360.
    76、 S.F.Masri, Smyth, A. W., Chassiakos, A.G., Caughey, F. K., and Hunter, N.F., “Application of neural networks for detection of changes in nonlinear systems”, Journal of Engineering Mechanics, ASCE, 2000, 126(7) , 666-676.
    77、 H.M,Chen, G.Z.Qi, J.C.S.Yang, F.Amini, “Neural nerwork for structural dynamic model identification”, Journal of Engineering Mechanics, ASCE, 1995,121(12) , 1377-1381.
    78、 Mikami, I., Tanaka, S., and Hi watashi, F., “Neural network system for reasoning residual axial forces of high-strength bolts in steel bridges”, Computer-Aided Civil and Infrastructure Engineering, 1998, 13(4) , 237-246.
    79、 Feng, M.Q., Bahng, E. Y, “Damage assessment of jacketed RC columns using vibration tests”, Journal of Structural Engineering, ASCE, 1999, 125(4) , 265-271.
    80、 R.I.Levin, N.A.J.Lieven, “Dynamic finite element modal updating using neural networks”, Journal of Sound and Vibration, 1998, 210(5) , 593-607.
    81、 Chung-Bang Yun, Eun Young Bahng, “Substructural identification using neural networks”, Computers and Structures, 2000, 77,41-52.
    82、 Sang-Hyo Kim, Chongyul Yoon, and Byoung-jin Kim, “Structural monitoring system based on sensitivity analysis and a neural network”, Computer-Aid Civil and Infrastructure Engineering, 2000, 15,309-318.
    83、 R.A.Manning, “Structural damage detection using active members and neural networks”, AIAA, 1992,30(6) , 1331-1333.
    84、 H.Luo, S.Hanagud, “Dynamic learning rate neural network training and composite structural damage detection”, AIAA, 1997, 35(9) , 1522-1527.
    85、 于德介,雷慧,“用BP神经网络诊断结构破损”,工程力学,2001,18(1) ,28-31.
    
    
    86、 易伟建,郭国会,“框架结构损伤诊断的神经网络方法研究”,工程力学增刊,1999, l,465-470
    87、 傅余萍,弹性地基板上中厚板损伤评估的神经网络方法研究,硕士学位论文,湖南 大学,1999,5.
    88、 段雪平,朱宏平,熊世树,“神经网络在建筑物有限元模型修正中的应用”,噪声 与振动控制,2000,2,11-15
    89、 王柏生,倪一清,高赞明,“框架结构连接损伤识别神经网络的输入参数确定”, 振动工程学报,2000,13(1) ,137-142.
    90、 王柏生,倪一清,高赞明,“用概率性神经网络进行结构损伤位置识别”,振动工 程学报,2001,14(1) ,60-64.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.