开发早期岩性气藏动态描述
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以洛带气田为代表的岩性浅气藏,开发早期阶段由于静态资料少、动态资料缺乏,加上严重的层内和层间非均质性,要对气藏进行全面研究和评价,具有较大的难度。开发早期气藏描述的目的是尽可能地充分利用已有的静动态资料,从三维空间定量表征气藏静态特征,并且对单井、气藏的动态特征进行归纳和分析,在此基础上提出气田的初步开发方案。通过本次研究,取得了以下进展:
     1.根据有取心资料的关键井,提出了一种基于模糊聚类和人工筛选样本相结合划分储层类型的新方法,建立储层的单井分类标准。在此基础上,提出了一种基于岩心分析的模糊综合判别方法,用于储层分类的定量判识。
     2.在储层四性特征研究的基础上,针对BP神经网络的收敛速度慢、计算误差大的缺陷,首次提出了遗传-自适应神经网络算法,用于样本学习和样本预测,并且首次在洛带气田的孔隙度、渗透率和饱和度的测井二次解释中得到应用。与传统的多元统计算法和基本BP算法的结果进行的对比后,证明本文采用的遗传-自适应神经网络算法在计算速度和精度方面都有显著提高。
     3.本文对洛带气田气井产能和影响因素进行了分析,在此基础上,首次提出了气井压后产能的测井预测解释方法,对洛带气田的压后产能的测井预测解释作了可行性讨论,并且采用神经网络方法进行了样本训练和预测,从而为洛带气田开发决策及时提供了一定的依据。
     4.现代试井解释是开发早期从动态资料获取地层参数的重要手段,本文按照“模型判定—分段建立目标函数—最优化求解”的思路,阐述了最优化试井的计算步骤。首次提出了基于模拟退火原理的改进复合形全局最优算法,以气井的实际试井解释过程为例,具体阐明了这种全局最优化算法在实际试井分析中的应用步骤,并证明了该算法具有较强的稳定性和收敛性。
     5.首次提出了开发早期气井单井的分类动态分析方法:①对产量较稳定的气井,采用最优化算法联立求解气藏物质平衡方程式和气井二项式采气方程。在此基础上进行了定产量/压力条件下的动态预测;②对产量递减井,采用分形理论中的R/S方法,对气井产量变化作了连续趋势性论证,在此基础上采用GM(1,1)模型对递减气井的生产动态进行快速拟合和预测。采用提出的开发早期气井单井的分类动态分析方法进行拟合、分析与预测,解决了气井开发早期由于资料缺乏,难以进行单井动态分析的难题。
     6.针对低渗岩性气藏具有复杂含气边界,气井采用压裂开采等特点,采用了最新的径向+PEBI网格系统,将整个研究区域分成两个区域:气井区和气藏主体区。在气井区采用径向网格,可以充分刻画气井附近流动状态;在气藏主体区采用PEBI网格,可以很好地逼近复杂油藏边界形态,同时减少网格数。按上述网格系统把储层物性模型转化为气藏数值模型后,对气田的初步开发方案进行了论证,并且和多种其它方法相对照,寻求气田开采的最佳方式。
During the early stage of development of LuoDai gas field,which is typical of lithologic shallow-depth gas pool, both of the static and dynamic information is scarce to describe the heterogeneous character of 3-D geologic model, so it's quite difficult to evaluate the gas pool thoroughly. The main purpose of description in the early stage of development is to make use of all those available information, for the sake of characterizing the 3-D static model ,meanwhile, sum up and analyze the dynamic character on the scale of single well and gas field , which aims to bring up the elementary development project. There are several major progresses obtained in this research as below:
    1. On the basis of coring data from key-well, put forward a new method to classify reservoir ,which consists of fuzzy clustering and manual filtration. Furthermore ,taking use of coring data ,a new fuzzy differentiation is used to partition the reservoir quantificationally.
    2. According to the research on litho-electricity correlation of reservoir ,a new kind of GA-adaptive BP neural network is brought forward to train and forecast the samples in the secondary logging interpretation of porosity ,permeability and saturation in LuoDai gas field. The result is compared with traditional BP and linear multi-variant analysis to testify that iterative speed and accuracy is much better.
    3. Based on the analysis of productivity and it's influencing factor ,the feasibility and procedure of interpreting the productivity after artificial fracturing by logging method is demonstrated in the first time in LuoDai gas field. The anticipation from sample training can be useful proof for the early judgment of development.
    4. The modern transitional pressure test is a major method to determine the reservoir parameter via dynamic information. The interpretation procedure is explained as "firstly ,model judgment; secondly, multi-segment object function; thirdly ,global optimization solution", during which a new covering complex optimization method improved by simulated annealing is introduced .At last an actual gas well is interpreted following this procedure as an example, which proves the strong robust character.
    5. The dynamic analysis based classification method in the early stage of development is brought forward in the first time ,which consists of:firstly ,the material balance equation and the binomial production equation is solved together for those wells with stable production., to yield the anticipation under constant production ,and constant THP afterwards; Secondly, the R/S fractal method is used to demonstrate the declining tendency for those with
    
    
    degressive production, and the GM(1,1) model is adopted for simulation and anticipation. As a result ,the hard-nut in single well prediction because of deficiency of information is tackled better.
    6. Aiming at the complexity of tight shallow lithologic gas pool, which consists of irregular outer reservoir boundary, the fracturing of wellbore and so on , the brand new compound PEBI grid model is adopted . For the purpose of decreasing grid number and incarnate the reservoir ,the object area is divided into two parts: the near well bore area, which is described by radial grid, and the bulk area, which is described by PEBI grid. This type of compound grid is used in the simulation of LuoDai gas field to demonstrate the best recovery scheme , with the aiding of other methods.
引文
1.裘怿楠、陈子琪,油藏描述[M]北京:石油工业出版社,1996
    2. Haldorsen H H, Damsleth R. Stochastic modelling. JPT, 1990, 42(4), 404—412
    3.裘怿楠、薛叔浩等,油气储层评价技术[M]北京:石油工业出版社,1997
    4.王家华、张团峰,油气储层随机建模[M]北京:石油工业出版社,2001
    5.张一伟,陆相油藏描述[M]北京:石油工业出版社,1997
    6.金佩强,用神经网络方法预测进的动态.中外科技情报[J].2003(9),138—138
    7. J.J.Hopfield..D.W.Tank. neural computation of decision in optimization problems.Biological Cybernetics, 1985
    8.曹伟、刘纪常,成都洛带气田蓬莱镇组储层特征,石油与天然气地质[J].1999,20(1).78-81
    9.曹伟、匡建超、王允诚等,致密砂岩天然气藏地质特征-川西深井钻探的启示,矿物岩石[J],1997,18(3)22—25
    10.曹伟、陈伟明,金堂-新都-广汉-德阳地区浅层天然气综合评价及储量计算,地质科技通报[J].1998(9).41-42
    11.曾焱、黎华继、杨宇,洛带气田浅层常压低渗砂岩气藏的开发,天然气工业[J].2002,22(3).66-68
    12.中国石油天然气总公司勘探局—钻探地质录井手册[M].北京:石油工业出版社,1993(13)
    13.谢季坚,刘承平。模糊数学方法及其应用[M].湖北:华中理工大学出版社,2000
    14.宋晓秋,模糊数学原理与方法[M].徐州:中国矿业大学出版社,1999.166—194.
    15.曾焱,开发早期致密低渗气藏研究[硕士论文].成都:成都理工学院,2002.
    16.葛祥,洛带气田蓬莱镇组气藏的气水识别,测井与射孔[J],2002 12(3)
    17.孟宪军、曲寿利,洛带气田蓬莱镇组含气储集层描述研究,石油勘探与开发[J],2000,27(6).77-78
    18.曾文冲、欧阳健、何登春,测井地层分析与油气评价[M].北京:石油工业出版社,1987
    19.曹伟、刘纪常,成都洛带气田蓬莱镇组储层特征,石油与天然气地质[J].1999,20(1).78-81
    20.李成,神经网络系统理论[M].西安:西安电子科技大学出版社,1995.
    21. Grefenstetle J. Optimization of control parameteters for genetic algorithms[J]. IEEE Trans on Syst, man and Cybern, 1986, 16(1), 122—128.
    22.王建成,改进的遗传和BP杂交算法及神经网络经济预替系统设计.系统工程理论与实践[J],1998,18(4),136—141.
    
    
    23.代建华、刘群,遗传算法在决策系统离散化中的应用.微电子学与计算机[J],2003,20(2).19-21
    24. Baldwin J.L.:Application of a Neural Network to the Problem of Mineral Identification from Well Logs, Halliburtion Logging Serv. 1989
    25. Wiener Wiener J.M. et al: Predicting Carbonate Permeabilities from Logs Using a Back Propagation Neural Network, SPG, 1991
    26.周成当,人工神经网络—测井解释新的希望,测井技术[J],1993,17(1)21—25.
    27.王允诚,裂缝性致密油气储集层[M],北京:地质出版社,1992
    28.陈元千,油气藏工程计算方法[M],北京:石油工业出版社,1990
    29.邓聚龙,灰色控制系统[M],华中工学院出版社,1985
    30. Barenblatt G E. Zheltov IP. Kochina I N(1960), Basic concepts in the theory of homogeneous liquids in fissured rocks. J. Appl. Math. (USSR), 24(5) 1286-1303(8.1).
    31. Warren J E. Root P J(1963), Behavior of naturally fractured reserveoirs, Soc. Pet. Eng. J. (Sept),245-255, Frons. AIME, 228(8.1;8.2.1)
    32. Roland N. Horne. Modern Well Test Analysis ,Stanford University, 1990
    33.罗金丽、张国东,川西致密砂岩气藏试井曲线特征分析,致密岩石气藏勘探开发[J]2001(4).42-48
    34. Gringgarten A.C.,A:Comparsion Between Different Skin and Wellbore Type-Curve for Early Time Transien tAnalysis, SPE8205
    35. Bourdet D.:A New Set of type Curves Simplifies Well Test Analysis, World Oil,1983,95-106
    36. Horner D R (1951), Pressure build-up in wells. Proc. Third World Pet. Cong. The Hague sec. Ⅱ503-523. (4.6.3)
    37.刘能强,实用现代试井解释方法[M],北京,石油工业出版社,1992
    38.冯文光,污染引起的渗流异常机理与SLUG试井分析原理[M],成都,成都科技大学出版社,1993
    39.童宪章,压力恢复曲线在油气田开发中的应用[M],北京,石油化学工业出版社,1977
    40.林加恩,实用试井分析方法[M],北京,石油工业出版社,1996
    41.廖新维,现代试井分析[M],北京,石油工业出版社,2002
    42. Forrrester, J. W, Principles of Systems, Cambridge, Wright-Allen Press, 1968
    43. Stehfest H Numerical Inversion of Laplace Transform, Comm. ACM, 1970
    44. Ramey Jr HJ(1965),Non-Darcy flow and wellborne storage effects in pressure
    
    build-up and drawdown of gas wells, JPT(Feb)223-233, Trans, AIME, 234(4.6.2)
    45. Gringarten A C(1972), Pressure anulysis for fractured wells, Paper SPE, 4051 (4.7. 1)
    46. Gringarten A C et al(1979), A comparison between different skin and wellbore storage typecurves for early-time transient analysis. Paper SPE, 8205(5.6).
    47. Gringarten A C. Ramey jr H J (1973), The use of source and Green (s functions in solving unsteady flow problems in reservoir, SPEJ. (Oct) 285-295; Trans, AIME, 255(4.4.3;4.5.1)
    48. Najurieta, H.L., 1976. A theory for the pressure transient analysis in naturally fractured reservoirs. J. Pet. Technol., pp. 1241-1250.
    49. Proano, E. A. and Lilley, I.J.,1985. Derivative of pressure:application to bounded reservoir interpretation. Europ. Pet. Conf., London, October20-22, SPE Paper 15861.
    50. Ramey, H. J., Jr., 1982. Pressure transient testing. Distinguished Author Series, JPT,July, 1407-1636.
    51.R.E.科林斯著,陈钟祥,吴望一译.流体通过多孔材料的流动,北京:石油工业出版社,1984
    52.张俊心,关西普,何钟秀等编,软科学手册[M],天津,天津科技翻译出版公司,1989.
    53.杨宇,模拟退火算法在水驱气藏物质平衡计算中的应用,矿物岩石[J],2002(4)56—58.
    54. Ackoff, R.L., Science in the Systems Age, Beyond IE. OR. and MS, Operations Research, Vol. 21, No. 3:661-671,1973.
    55.杨宇,改进模拟退火算法在开发模式计算中的应用,桂林工学院学报[J],2003(4),22—23.
    56.Jardine D.et.酸盐岩油藏的描述,国际石油工程会议论文集,中译本第2卷15—49、1982.
    57.裘亦楠,储层地质模型.石油学报[J],1991,12(4)45—48.
    58.穆龙新,不同开发阶段的油藏描述[M],北京:石油工业出版计.1999.
    59. Haldorsen H H Stochastic Modeling ,JPT 1990(2): 404—412.
    60. Journal A G Stochastic Models of Reservoir Heterogeneity, Impact on Connectivity and Averave Permeabilities SPE, 24893
    61.文健,油藏早期评价阶段储层建模技术的发展方向,石油勘探与开发[J]1994,21(5),25—26.
    62.陈恭洋,碎屑岩储层随机建模的基本理论与实践,江汉石油学院学报[J]2001,
    
    23 (4), 55-58.
    63. Deutsch CV Geostatical software library and user's manual[M]New York, Oxford University, 1992.
    64. Damsleth E A two stage stochastic model applied to a north sea reservoir[J]SPE20605,1990.
    65.曾焱、杨君、谢峰等,洛带气田侏罗系蓬莱镇组储层追踪、描述及沙溪庙组和上三迭统须家河组上部气藏预测报告,西南石油局,2003.
    66.曹伟,四川成都龙泉洛带气田蓬莱镇组气藏新增探明储层报告,西南石油局,1998,10.
    67.刘成川,四川德阳新场气田上沙溪庙组JS2气藏开发方案,2000.10
    68.王家华,油气储层随机建模[M],北京:石油工业出版社,2001.
    69.景风江,储层地质模型与油藏模拟模型之间的桥梁—种有效的模型粗化方法,中国海上油气(地质)2002,16(3)45-48.
    70. Peaceman D.W.. Effective Transmissibilities of a Gridblock by Upscaling-Why Use Recormalization?.SPE36722,1996.
    71. Journal A .and Alabert F…New method for reservoir mapping. JPT, 211-218, February, 1990.
    72. Farmer C. L, Heath D. E. andMoody R. O.A Global Optimisation Approach to Grid Generation SPE 21236, 11 th SPE Symposium on Reservoir Simulation, Anaheim, 1991.
    73. Galli A. and Armstrong M.. Petroleum Geostatistic Technical Report Center de Getatistique, Fontainebleau. 1996.
    74.王鸣华、何晓东,一种计算气井控制储量的新方法,天然气工业.[J],1996,16(4).50-53.
    75.何晓东、王鸣华,一点法试井资料整理的新方法及应用,天然气工业[J].1997,17(2).78-81.
    76.万仁博,采油工程手册[M]北京:石油工业出版社,2000.
    77.黄炳光、刘蜀知,实用油藏工程与动态分析方法[M].北京:石油工业 出版社,1998
    78.陈元干,油气藏工程计算方法.北京:石油工业出版社,1996.
    79. U. Ikoku. Natural Gas Production Engineering. John Wiley&Sons. Inc. 1984
    80.杨川东,采气工程[M].北京:石油工业出版社.1997.
    81. Russel. E., Chiang. L.H, Bratz. R D. Data·driven Models for Fault Detection and Diagnosis in Chemical Process. Berlin: Springer—Verlag, 2000.
    82.杨继盛,采气工艺基础[M]。北京:石油工业出版社,1992.
    
    
    83.陈立平、王被兴,一种面向欠约束几何系统求解的二部图匹配优化处理方法.计算机学报[J],2000,23(5);523—528.
    84.楼顾天、施阳,基于MATLAB的系统分析与设计—神经网络[M].西安:西安电子科技大学出版社,1988.
    85.程成、孟祥旭,特征设计中有向约束机制及算法研究.计算机辅助设计与图形学报[J],2000,12(10):765—771.
    86.冯文光、胡常忠、杨风波,Arps递减开发模型.矿物岩石[J],1999,19(3).56—60.
    87.冯文光、Logistic递减开发模型,矿物岩石[J],2000,20(4):70—73.
    88.冯文光、FWG1幂指数递减开发模型,矿物岩石[J],1999,19(4):66—69.
    89.孟宪国,R/S分析和地球化学数据的分形处理.地球科学中国地质大学学报[J].1991,15(3):281—286.
    90. Donald L. Turcotte. Fractals and Chaos in Geology and Geophysics .Canbridge University Press 1997.158-162.
    91.岳结南、陈江峰、,徐文鹏,R/S分析及矿井瓦斯涌出量的分形预测.煤田地质与勘探[J],2001,29(3).14—15.
    92.傅立,灰色理论及其应用[M].北京:北京科学技术出版社,1996.
    93.邓聚龙,灰色系统理论教程[M].武汉;华中理工大学出版社,1999.
    94.宋子齐,灰色理论油气储层评价[M].北京:石油工业出版社.1995.
    95.刘思峰,灰色系统理论及其应用[M].北京:科学出版社,1999.
    96.潭冠军,GM(1,1)模型的背景构造方法和应用.系统工程理论与实践[J],2002,20(5),121—124.
    97.王义闹、刘光珍、刘开弟,GM(1,1)的一种逐步优化直接建模方法.系统工程理论与实践[J],2000,20(9):99—104.
    98.靳晓光、李晓红、边坡变形模拟预浏的普适灰色模型.中国地质灾害与防治学报[J],2001,12(2):50—55.
    99.曾焱、黎华继,洛带气田浅层常压低渗砂岩气藏的开发,天然气工业[J].2002,22(3).66-68.
    100.殷丽萍、王会祥、侯敏等,多学科油藏数值模拟技术的应用.承德石油高等专科学校学报[J].2003,5(2).11-14.
    101.冯增朝、赵阳升,岩石非均质性与冲击倾向的相关规律研究.岩石力学与工程学报[J].2003,22(11).1863-1865.
    102.孔祥言,高等渗流力学,北京:中国科学技术出版社,1999.
    103.张一伟、刘洛夫、欧阳健等,油气藏多学科综合研究,北京:石油工业出版社,1995.
    
    
    104.张箭,洛带气田蓬莱镇气藏开发部署优化研究,矿物岩石[J].2002,22(4).83-86.
    105.高承泰,气田动态预测与优化布井新方法.低渗透油气田[J].2002,7(3).58-60.
    106.罗治形,低渗透油田井网密度浅析.石油知识[J].2003(5).37-37.
    107.张正卿、曲海潮,油气田开发规划方案的编制,石油规划设计[J].1999,10(6).11-12.
    108.胡建国、陈元千,预测油气田产量和可采储量新模型,低渗透油气田[J].1997,2(4).37-42.
    109.陈元千,预测油井产能的新方法,新疆石油地质[J].1989,10(3).50-58.
    110.陈元千,新型IPR方程的应用与对比评价,油气井测试[J].2002,11(2).1-6.
    111.范江、张黔宁,考虑经济效益的单井控制面积最优解.水动力学研究与进展:A辑.1997.12(1).80-83.
    112.陈元千、田建国,塔河油田T48井的产能分析,试采技术[J].1999,20(3).8-13.
    113.陈月明、盖英杰,油田稳产措施规划数学模型,经济数学[J].2000,17(2).45-51.
    114.陈元千,预测油田天然气可采集量的方法,断块油气田[J].1999,6(1).26-30.
    115.陈月明、范海军,油田稳产措施最佳配置,石油勘探与开发[J].1998,25(3).66-68.
    116.赵庆飞、陈元千,确定油气田经济可采储量的方法,油气采收率技术[J].2000,7(4).39-41.
    117.王端平、时佃海等,低渗透砂岩油藏开发主要矛盾机理及合理井距分析.石油勘探与开发[J].2003,30(1).87-89.
    118.余进、李允,水驱气藏气水两相渗流及其应用研究的进展,西南石油学院学报[J].2003,25(3).36-39.
    119.朱宏绶、孙秀武、姜必武等,台兴油田井网适应性分析及下步小井距加密调整建议.试采技术[J].2003,24(2).18-22.
    120. Heinemann Z E. Modeling Reservoir Geometry With Irregular Grids, SPE 18412,1989.
    121. L.C.N. Finite Volume Discretization of Fluid Flow Equation on General Perpendicular Bisection Grids, 5th Intl. Forum on Reservoir Simulation ,Muscat, Oman(1994)
    122.钟孚勋、张永生,数值模拟技术在气田开发中的应用研究,天然气工业[J].1995,15(3).95-96.
    123.周涌沂、李允,校正双重介质模拟模型中迭代解的新方法,西安石油学院学报[J].2002,17(2).18-20,24.
    124. Heinemann Z E, Brand C W. Gridding Technique in reservoir simulation [C]Presented at first and second international Forum on Reservoir Simulation, 1989:339—426.
    
    
    125. Forsyth P A. A control volume finite element method for local mesh refinement. SPE1841 5,1989; 6—8.
    126. Fung L S K, Hiebert A D and Nghiem L. Reservoir simulation with a control-volume finite-element method[C],SPE21224, 1991: 17—20.
    127. Verma S. A flexible gridding scheme for reservoir simulation[C],Presented at SPE Intl. Student Paper Contest, 1 995: 657—672.
    128. Verma S. A. Aziz K. A Control Volume Scheme for Flexible Grids in Reservoir Simulation [C].SPE37999,1997:8-11.
    129.谢海兵、桓冠仁,郭尚平等.PEBI网格二维两相流数值模拟.石油学报[J],1999,20(2):57—61.
    130. Oswaldo A ,Pedrosa Jr, Khalid Aziz. Use of a hybrid grid in reservoir simulation[C]SPE13507,1986: 611—621.
    131.刘立明,数值试井理论研究[D].北京:石油大学,2001:16-29,63.
    132.韩大匡、陈钦雷,油藏数值模拟基础[M].北京:石油工业出版社,1993.
    133. Puchy P J. A numerical well test model[C], SPE 121815, 1991: 125—139.
    134.刘立明、陈钦雷,油水两相渗流压降数值试井模型的建立.石油大学学报[J],2001,25(2):42—45.
    135.刘立明、陈钦雷,单相流数值试井模型.油气井测试[J],2001,10(4):11—14.
    136. Graham J W, Richardson J G. Theory and Applicatlon of Imbibition Phenomena in Oil Recovery. Trans. AIME 1959, Vol(216).
    137. Gilman J R et al. Improvements in Simulation of Naturally Fractured Reservoirs. 6th SPE symposium on Reservoir Simulation, SPE Paper 10511, 1982(2).
    138.张烈辉、杜志敏,一个可靠的水平井混合网格模型,石油学报[J].1997,18(3).77-82.
    139.张烈辉、李允,裂缝性油藏水平井数值模拟的进展和展望,西南石油学院学报[J].1997,19(4).44-47.
    140.杨满平、王正茂、李治平,影响变形介质气藏储层渗透率变化的主要因素.天然气地球科学[J].2003,14(5).386-388.
    141. Thomas L K. Fractured Reservoir Simulation, SPEJ, 1983(2) 42-54.
    142. Saidi A M. Simulation of Naturally Fractured Reservoirs, SPE paper 12270,1983(11).
    143. Ivan Mrosovsky, Riding R L. Two-Dimensional Radial Treatment of Wells Within Three-Dimensional Reservoir Model. SPEJ 1974(1). 127-131.
    144. Saidi A M. Mathematical Simulation Model Describing Iranian Fractured
    
    Reservoirs and Application to Haft Kel Field. Tokyo:9th World Petroleum Congress, 1975. 209-219.
    145. Kazemi H et al. Numerical Simuation of Water-Oil Flow in Naturally Fractured Reservoirs. SPEJ 1976(12), 317-326.
    146.张旭、尹定.油藏数值模拟在任丘雾迷山组油藏开发中的应用.石油学报[J],1989(4),53-64.
    147.尹定,全隐式三维三相裂缝黑油模型.石油学报[J],1992(1),61-68.
    148.同登科、刘敏鸽,双重介质分形油藏非线性流动分析.石油大学学报[J]:自然科学版.2003,27(2).59-62.
    149.满江红,塔河油田碳酸岩盐地层试井分析应用.试采技术[J].2002,23(1).21-22.
    150.王瑞河,双重介质拟组分模型.石油学报[J],1991,24(3),83-92.
    151.T.D.范高尔夫-拉特,裂缝油藏工程基础[M],北京:石油工业出版社,1989.
    152.俞启泰,关于剩余油研究的探讨,石油勘探与开发[J],1997,24(2),46-50.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.