燃机叶片测量系统软件设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为现代舰船的主要动力装置之一,燃气轮机的重要性举足轻重,因此燃气轮机技术得到了突飞猛进的发展。西方各国都在加大对燃气轮机技术的研究,经过多年的发展已经取得了很多成果,我国在燃气轮机方面起步晚,基础薄弱,经过多年研究仍然和发达国家具有较大的差距。
     为了提高燃机的输出功率和效率,增大燃气压强和提高工作温度成为燃气轮机的发展趋势,然而受制于材料科学的发展,燃机叶片承受高温高压的能力有限,因此不能无限制的增大压强和提高温度,提高燃机性能最直接有效地方法是在燃气轮机稳定工作的前提下尽可能地增大压强和提高温度。为了保证燃机能稳定工作,实时监测燃机叶片上作状态变得十分重要,准确评估燃机叶片的性能和诊断燃机叶片的故障现象能大大提高燃机性能,具有重大意义。
     本课题根据辐射测温原理,结合乌克兰涡轮叶片测温技术和虚拟仪器技术实现燃气轮机的叶片温度测量。该系统采用比色测温方法,根据两个不同波长的辐射光强度计算物体温度,实验证明此方法可以大大减小物体发射率对测温精度的影响,并且响应时间快,可靠性高,成本低,同时使用LabVIEW语言编程。LabVIEW是图形化编程语言,使用程序框图实现相关功能,并且采用数据流驱动,编程方便简单,可以大大缩减项目研发周期。该系统能够根据不同的外围硬件电路进行相关参数设置以适应不同的测温环境。系统不仅能实时测量叶片温度,还能准确的分割叶片温度数据,并对其进行有效的分析、处理,掌握叶片工作状态,同时将所有处理结果通过直观的方式显示出来。系统还具有一定的存储功能,可以将当前数据保存下来做后续分析,也可以将不同时间的数据进行对比,有助于叶片状态的分析和系统的改进。经过多次实验证明该系统不仅测温精度高,还能准确的判定叶片特征温度,具有一定的抗干扰性,并且稳定可靠。
As one of the main power plant of modern ship, gas turbine is very important, therefore, gas turbine technology has been rapid development. Western countries are increasing research on the gas turbine technology, and have achieved a lot after years of development. China started late in the gas turbine area, and had a poor foundation, so still have large gaps between developed countries after years of research.
     In order to improve the output power and efficiency of gas turbine, increasing the pressure and raising the temperature of gas is the development trend of gas turbine. However, because of the conditionality of the development of materials science, the ability to withstand high temperature and pressure of turbine blades is limited, so it can not be unlimited to increase the pressure and raise the temperature of gas turbine. The most direct and effective method to improve the performance of gas turbine is increasing the pressure and raising the temperature as much as possible under the premise of stable work of gas turbine. In order to ensure stable work of gas turbine, it has become very important to real-time monitor the work state of gas turbine blades, and it can improve the performance of gas turbine greatly to assess the performance and diagnose the failure phenomenon of gas turbine blades accuracy, which is significant.
     This subject realizes the temperature measurement of gas turbine blade based on the principle of radiation and combined with Ukraine turbine blade temperature measurement technology and virtual instrument technology. This system uses colorimetric temperature measurement method which calculates the object temperature according to two different wavelengths of radiation intensity, and experiments show that this method can greatly reduce the impact of temperature measurement accuracy caused by the emissivity of the object and has advantages such as fast response time, high reliability, low cost, etc. This software is written by the LabVIEW which is a graphical programming language, and LabVIEW achieve relevant functions by block diagram which is driven by data flow and program easy and convenient, so programming in LabVIEW can greatly reduce the project development cycle. This system can modify the relevant parameters settings according to different peripheral hardware circuits to adapt to different temperature environment. The system not only can real-time measure the temperature of blades, but also split the temperature data of blades accurately, analyze and process the data effectively, master the working state of blades, and display the results intuitively at the same time. The system also has a storage function which can help to analyze the state of blade and improve the system by saving the current data for follow-up analysis and comparing data at different time. Experiments show that this system not only has high temperature measurement accuracy, but also identify the characteristic temperature of blades accurately, and has advantages of anti-interference, stabilize and reliably.
引文
[1]孟劲松,张钟铮.炼钢系统温度优化的实践[A].2001年中国钢铁年会论文集[C].北京:冶金工业出版社,2001:488-491页.
    [2]牛利民,李淑英.船舶燃气轮机结构[M].哈尔滨:哈尔滨工程大学出版社,2007:1-7页.
    [3]刘大响,金捷.21世纪世界航空动力技术发展趋势与展望[J].北京:中国工程科学,2004,6(9):1-8页.
    [4]J. Castrellon-Unbe. Experimental results of the performance of a laser fiber as a remote sensor of temperature. Optics and Laser in Engineering,2005,43:633-644P.
    [5]Yoav Heichal, Sanjeev Chandra, Evgueni Bordatchev. A fast-response thin film thermocouple to measure rapid surface temperature changes. Experimental Thermal and Fluid Science,2005,30(2):153-159P.
    [6]Clive Kerr, Paul Ivey. An Overview of the Measurement errors associated with gas turbine aeroengine pyrometer systems[J]. Measurement Science and Technology, 2002(13):873-881P.
    [7]熊兵,侯敏杰,陈洪敏等.辐射测温技术在涡轮叶片温度场中的应用[J].成都:燃气涡轮试验与研究,2008,21(3):50-54页.
    [8]戴景民.多光谱辐射测温研究[D].哈尔滨:哈尔滨工业大学,1995.
    [9]J. V. Nicholas and D. R. White. Traceable Temperature-An Introduction to Temperature Measurement and Calibration[M], John Wiley& Sons,2nd Edition,2001:6-19P.
    [10]David Monzon-Hernandez, Donato Luna-Moreno, Dalia Martinez-Escobar. Fast response fiber optic hydrogen sensor based on palladium and gold nano-layers. Sensor and Actuators B:Chemical,2009,136(2):562-566P.
    [11]Yoon-Chang Kim, Jean-Francois Masson, Karl S. Booksh. Single crystal sapphire fiber optic sensors based on surface plasmon resonance spectroscopy for in situ monitoring. Talanta,2005,67(5):908-917P.
    [12]王瑞.蓝宝石光纤黑体腔温度传感器外推测试技术研究[D].太原:中北大学,2009.
    [13]焦树建.探讨21世纪上半叶我国燃气轮机发展的途径[J].南京:燃气轮机技术 2001,14(1):10-12页.
    [14]吴铭岚.俄罗斯的燃气轮机状况[J].南京:燃气轮机技术,2001,14(4):1-5页.
    [15]倪维斗,焦树建.我国发展燃气轮机的可行道路[J].上海:上海汽轮机,2001,3(1):1-9页.
    [16]戴景民.辐射测温的发展现状与展望[J].哈尔滨:自动化技术与应用,2004,23(3):1-7页.
    [17]仲崇权.工业现场数据采集与工业以太网若干关键技术[D].重庆:重庆大学,2006.
    [18]黄尚廉,梁大巍,刘龚.分布式光纤传感器系统的研究[J].北京:仪器仪表学报,1991,12(4):359-364页.
    [19]邹建.分布式光纤温度测量系统关键技术研究[D].重庆:重庆大学,2005.
    [20]王玉田,史锦珊,王莉田.新型比色式光纤温度测量仪的研究[J].北京:电子测量与仪器学报,1993,7(4):34-39页.
    [21]施德恒,戴启润,陈玉科.一种实用化双波长高精度光纤测温仪的优化设计[J].北京:仪器仪表学报,2005,26(12):1238-1243页.
    [22]朱达荣,孙兵,张丽.光纤比色测温传感器的原理及设计[J].合肥:合肥工业大学学报(自然科学版),2006,29(7):864-867页.
    [23]蔡璐璐.双波长光纤辐射温度测量仪的设计及其应用技术的研究[D].秦皇岛:燕山大学,2004.
    [24]李艳萍,包长春,闫栋梁.热辐射型光纤高温传感器的研究[J].北京:计算机测量与控制,200715(3):416-417页.
    [25]刘玉莎.基于黑体空腔的光纤高温测试系统的研究[D].秦皇岛:燕山大学,2009.
    [26]K. L. Cashdollar, M. Hertzberg. Infrared Pyrometers for Measuring Dust Explosion Temperatures[J]. Opt. Eng.,1982,21(1):82-86P.
    [27]S. G. Murdoch, D. A. Svendsen. An Improved Method for the Distributed Measurement of the Chromatic Dispersion of an Optical Fiber Using a Wavelength Tunable OTDR[J]. Optical Fiber Measurements,2004 Technical Digest.
    [28]曹立军.分布式光纤温度测量及数据处理技术研究[D].合肥:合肥工业大学,2006.
    [29]S. Johansson. Detection of Internal Erosion in Embankment Dams-Possible Methods in Theory and Practice, Key Note Lecture, Proceeding-Stability and Breaching of Embankment Dams, EBL, OSLO,2004.
    [30]S. Johansson. Application of Fiber-Optics Systems in Embankment Dams for Temperature, Strain and Pressure Measurements-some Comparisons and Experiences, ICOLD, Congress, Beijing,2000.
    [31]李松林.非接触人体表面温度测量方法的研究[D].天津:天津大学,2005.
    [32]周涛.光纤高温测量研究[D].武汉:武汉理工大学,2003.
    [33]方卓毅.基于辐射吸收的火焰温度计算机断层扫描摄影测量研究[D].杭州:浙江大学,2001.
    [34]张威克.爆炸场温度的多谱线测试方法研究[D].南京:南京理工大学,2009.
    [35]张高振.高温高速流场光辐射特性计算软件的研制[D].哈尔滨:哈尔滨工业大学,2007.
    [36]李鹏.基于吸收光谱气体温度测量方法的研究[D].秦皇岛:燕山大学,2009.
    [37]白日午,宋立,王浦.比色温度计的波长选择[J].北京:冶金自动化,2003,(3):45-47页.
    [38]张希.基于LabVIEW的电能质量检测系统[D].西安:西安科技大学,2009.
    [39]岂兴明,周建兴,矫津毅.Lab VIEW 8.2入门与典型实例[M].北京:人民邮电出版社,2008:3页.
    [40]National Instruments.基于NI LabVIEW FPGA平台的用户案例集[Z].2008.
    [41]National Instruments.军用与航空成功案例研究[Z].2009.
    [42]卫成业.燃煤锅炉炉膛火焰温度场和浓度场测量及燃烧诊断的研究[D].杭州:浙江大学,2001.
    [43]X. Changbo, L. Congcong, B. Zhenfu. PID Self-tuning Immune Fuzzy Control of Steam Temperature Control System in Fossil-fired Power Plant. Intelligent Control and Automation,2006, WCICA 2006.
    [44]吴吕斌.利用辐射能信号优化锅炉主蒸汽温度控制的研究[D].武汉:华中科技大学,2009.
    [45]孔琛,孙坚,徐红伟.工业现场环境下提高红外测温精度的方法探究[J].西安:工业仪表与自动化装置,2008,(6):60-62P.
    [46]宋迎军,陈代富.涡轮叶片温度分布新式测量技术[J].沈阳:航空发动机,2004,30(2):25-27页.
    [47]赵俭,王鹏.涡轮后温度现场校准技术研究[J].北京:计测技术,2009,29(4):8-11页.
    [48]杨丽丽.基于DSP的比色光纤高温测量的研究[D].秦皇岛:燕山大学,2009.
    [49]Cong Dacheng, Dai jingming, Sun Xiaotao. Devlopment of Infrared Multi-Spectral Radiation Thermometer[J], Harbin Institute of Technology, Proceeding of the Second International Symposium on Instrumentation Science and Technology, Jinan China, 2002:337-342P.
    [50]V Krivtzum, B Grass, R Hergenroder. Temperature Measurement of Liquids by Different Absorption of Two Diode Laser:Application of Contactless Optical Detection[J]. Applied Spectroscopy.2001,55(9):1251-1258P.
    [51]胡艳玲,王兴英.亮度式光纤高温测量仪的研制[J].重庆:自动化与仪器仪表,2001,5:55-59页.
    [52]施德恒,黄国庆,刘玉芳.光源对测温系统测温精度及测温范围的影响[J].天津:光电子·激光,2003,14(5):529-533页.
    [53]郭文,吉洪湖,蔡毅等.高压涡轮动叶内部冷却结构的改进设计[J].南京:南京航空航天大学学报,2006,38(4):408-412页.
    [54]艾青.热辐射与高速流耦合换热的数值研究[D].哈尔滨:哈尔滨工业大学,2009.
    [55]史珂.蒸汽冷却涡轮导向叶片流动与传热的数值模拟和分析[D].南京:南京航空航天大学,2007.
    [56]张婷.基于软件测试技术的软件质量保证研究[D].成都:中国科学院成都计算机应用研究所,2006.
    [57]韩庆良.软件性能测试过程研究与应用[D].济南:山东大学,2007.
    [58]付丽萍.软件质量评估技术的分析与研究[D].成都:电子科技大学,2007.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.