大熊猫源H1N1流感病毒的分离鉴定、全基因组序列分析、感染性克隆构建及疫苗研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
流感病毒(Influenza virus)属于正黏病毒科流感病毒属成员,可分甲、乙、丙三个型,其基因组由分节段单股负链的RNA组成。流感病毒广泛流行于世界各国,对养殖业造成了巨大经济损失的同时,对人类的健康也构成了潜在的威胁,因此,对流感病毒的研究在公共卫生上也有相当重要的意义。对此,本研究通过鸡胚接种、MDCK细胞培养、血凝及血凝抑制实验和RT-PCR等方法,首次从大熊猫鼻腔分泌物中分离并鉴定了一株既能在鸡胚上稳定传代又能在MDCK细胞上稳定产生细胞病变,即以细胞颗粒增多、肿胀、漂落为特征的大熊猫HINI亚型流感病毒,命名为A/Panda/Sichuan/01/2011(H1N1)。
     大熊猫流感病毒A/Panda/Sichuan/01/2011(H1N1)全基因克隆和序列分析本文根据GenBank报道的流感病毒H1N1亚型基因序列,对分离的流感病毒A/Panda/Sichuan/01/2011(H1N1)八个基因片段设计了包括全部基因组的8对引物,通过RT-PCR的方法扩增病毒全基因序列,扩增的PCR产物连接pMD18-T载体,转化DH5a感受态细胞,经质粒PCR鉴定出阳性克隆菌后送上海生工公司测序。测序结果通过GenBank的BLAST比对分析,同时使用MEGA5等生物信息学软件对测序结果进行序列同源性分析,并在此基础上建立了分子进化的系统发育树。测序结果发现,流感病毒A/Panda/Sichuan/01/2011(H1N1)的八个节段全基因组共13595bp,其中3’与5’末端有一段较短的保守序列;通过全基因组序列分析,发现本株流感病毒与2009H1N1流感病毒同源性较高,核苷酸序列同源性高达99%,结果表明,A/Panda/Si chuan/01/2011(H1N1)来源于2009H1N1人流感病毒。
     大熊猫流感病毒A/Panda/Sichuan/01/2011(H1N1)反向遗传技术的建立本文在大熊猫流感病毒A/Panda/Sichuan/01/2011(H1N1)全基因序列测序的基础上,将三个分段扩增的聚合酶基因连接成完整的基因,并根据序列信息设计八对包含全部完整基因的引物,同时引入酶切位点BspQI,通过PCR扩增出八个完整的基因,将PCR产物回收并磷酸化后连接pMD18-T,转化DH5a感受态细胞,挑选阳性菌落抽质粒酶切,回收酶切产物;同时使用BspQI对表达与转录载体PBD进行酶切。将二者电泳回收后使用T4DNA酶进行连接反应,将连接产物转化DH5a感受态细胞,挑选阳性克隆菌抽质粒酶切鉴定后,送上海生工公司测序并进行序列分析。酶切结果显示,在pBD载体中正确插入八个流感病毒基因片段;测序结果表明本次八质粒共转染系统的构建是成功的。
     将构建的八质粒共转染系统质粒重组菌扩大培养,进行质粒抽提并进行纯化和浓度的检测;同时在细胞瓶里培养293T细胞和MDCK细胞;将所得到的八个重组质粒通过共转染的方法转染到293T细胞,培养48h后收冻293T细胞培养物,将转染产物接种MDCK细胞扩大培养,待细胞产生明显的细胞病变后收冻细胞培养物。将MDCK细胞培养物的上清接种9日龄SPF鸡胚,72h后取尿囊液进行HA和HI实验,将呈阳性的样品通过电镜负染的方法观察病毒粒子。HA和Hl实验结果表明,转染产物在鸡胚尿囊液里得到增殖,产生了重组的病毒离子,通过电镜观察到流感病毒粒子存在。一系列的实验证明,本次反向遗传操作获得成功,为今后流感病毒的研究乃至这类病毒的研究提供了一个优越的操作平台。
     M2和HA基因融合表达重组质粒免疫效力研究将M2的C端与HA基因融合构建真核表达重组质粒pM2HA,该质粒可在细胞内转录表达;pM2HA免疫小鼠后,可以检测到M2特异性抗体,HI抗体效价与pCI-HA组差异不显著,而中和抗体稍高于后者但差异不显著;小鼠经致死剂量病毒攻击后,pM2HA组实验小鼠体重轻微下降,攻毒保护率达100%,在遭受中等剂量攻毒后能减轻肺脏病理损害程度;同时对于不同亚型的流感病毒也有一定免疫保护力。M2e与HA的联合应用为新型流感疫苗的研究提供了一条新的思路。
Influenza virus is a member of the genus Orthomyxovirus, family Orthomyxoviridae, which divided three types from the difference of protein M and NP, and influenza virus contains eight piece of negative sense single-stranded RNA. Currently, influenza virus circulate and be epidemic in different animal populations throughout of the world countries, and do great damage to the farms, and also threat the human health at all the time. So it is very important to do deeply research in the influenza virus. In order to do that, the author collected some samples of the Pandas and firstly, we isolated and identificated a strain Panda influenza virus which can be cultured stably both in MDCK cells and9-11day eggs by HA, HI and RT-PCR assays from a Sichuan pig samples, and the virus was named A/Panda/Sichuan/0]/20]1(H1N1).
     Influenza A virus is one of negative sense single-stranded RNA, and its genome is composed of eight solo genes. PB1. PB2and PA are coded by fragments1,2and three genes, and their function is about the virus genome synthesis when the virus infects the cells. HA and NA protein are the most important surface protein, and concerned with the infecting cells and the antigencity of the virus. NP protein is the cod of the genome, and composed of vRNPs with the PB2, PB1and PA protein. M1and M2protein are the peplos of the genome, and it is one of the evidence of the type of the virus. NS protein is the non-construction protein of the virus, and also, it is relation to the early synthesis, but now, human are not very clear about it'function. The each gene5'end and3'end of the virus is very conservative, so it give us a chance to design the primers at the end of the3'end and the5'end, according to the reference strain reported in NCBI, we design11pairs of primers for the virus'genome, and amplified the genome with RT-PCR assays, linked the8fragments to vector pMD18-T, and transfer to the DH5a cells. After the identification of the PCR of plasmids, we sent the recombinant plasmids to shanghai shenggong to determine the sequences of the virus genome. We have constructed the homology and the phylogenetic trees to analyses of H1N1Panda influenza a virus isolates from the world. As the result, A/Panda/Sichuan/01/2011(H1N1) is composed of13595bp and5'end and3'end is very conservative. Based on the phylogenetic analyses of H1N1Panda influenza virus, we found the virus genome is both closed to2009H1N1influenza virus strain.
     The future of reverse genetics to generate vaccine candidates is lactiferous. The influenza reverses genetics on plasmid DNA include two system12plasmids and8plasmids. The8plasmids system is a bi-directional two-expression construct that contains cDNA virus gene flanked by an RNA polymerase1(pol1) promoter for vRNA synthesis and an RNA polymerase Π (pol Π)promoter for mRNA synthesis. The key point is to screen influenza virus strain that is high yield on MDCK, and clone its whole genome. In this study, we amplified the virus genome cDNA and cloned the eight fragments to pMD18-T vectors, after digestion of BspQl, the fragments was sub-cloned into the vector pBD, then the eight plasmids based on the pBD vectors was constructed, then rescue the A/Panda/Sichuan/01/2011(H1N1).strain which have a high-growth property and the antigen characteristic of the circulating strain. Used HA and HI assays, the recombinant virus was detected, and the viruses also be detected in the electron microscope,
     The plasmid pM2HA construct expressing a fusion protein of M2joined to the N terminus of the HA could transcripe and translate. The special antibody of M2e of mouse immunized pM2HA show remarkable higher titer than pCI-M2immunized group, and almost no difference to pCl-HA immunized group in HI antibody but a slightly higher neutralization antibody but not significant. After challenged by lethal dose virus, pM2HA immunized group show a satisfied effectiveness according to body weight change and survival rate(100%) and own a good heterologous protecting capacity; After challenged by moderate dose virus, pM2HA group could alleviate lesion of lung compare to control group. It is that fusion HA and M2e provied a new method and ideal to research-develop a new type SI vaccine.
引文
[1]殷震,刘景华.动物病毒学(2版)[M].北京,科学出版社,1997.
    [2]斯特劳B E,阿莱尔S D,蒙加林WL.猪病学(8版)[M].北京,中国农业大学出版社,2000,287-300.
    [3]Shope R E. Swine influenza:Ⅲ. Filtration experiments and etiology[J]. Journal of Experimental Medicine,1931,54(3):373-385.
    [4]Keffaber K K. Reproductive failure of unknow etiology[J]. American Association of Swine Practitioness Newsterter,1989,1(2):1-9.
    [5]Wensvoort G, Eric P, J M A, et al. Lelystad virus:the cause of porcine epidemic abortion and respiratory syndrome:a review of mystery swine disease research at lelystad[J]. Veterinary Microbiology,1992,33(4):185-193.
    [6]郭宝清,陈章水,刘文兴.从疑似PRRS流产胎儿分离猪生殖与呼吸障碍综合征病毒(PRRSV)的研究[J].中国畜禽传染病,1996,(2):1-5.
    [7]Fouchier R, Munster V, Wallensten A, et al. Characterization of novel influenza A virus hemagglutinin subtype (H16) obtained from black-Headed Gulls[J]. Journal of Virology,2005, 79(5):2814-2822.
    [8]Brown 1 H, Alexander D J, Chakraverty P, Harris P A, et.al. Isolation of an influenza A virus of unusual subtype (H]N7) from pig in England and subsequent experimental transmission from pig to pig[J]. Veterinary Microbiology,39(1-2):125-134.
    [9]Kariasin A 1, Brown I H, Carman S, et.al. Isolation and characterization of H4N6 avian influenza viruses from pigs with pneumonia in Canda[J]. Journal of Virology,2000a,74(19):9322-9327.
    [10]Karasin A 1, Carman S, Olsen C W. Identification of human H1N2 and human-swine reassortant H1N2 and H1N1 influenza A viruses among pigs in Ontario, Canada(2003 to 2005)[J]. Journal of Clinical Microbiology,2006,44(3):1123-1126.
    [11]Karasin A I, Olsen C W, Brown 1 H, et.al. H4N6 influenza virus isolated from pigs in Ontario[J]. Canadian Journal of Veterinary,2000b,41(12):938-939.
    [12]Peiris J S, Guan Y, Markwell D, et.al. Cocirculation of avian H9N2 and contemporary "human'" H3N2 influenza A viruses in pigs in southeastern China:potential for genetic reassortment?[A]. Journal of Virology,2001,75(20):9679-9686.
    [13]Tsai C P, Pan M J. New H1N2 and H3N1 influenza viruses in Taiwanese pig herds[J]. Veterinary Research.2003,153(13):408.
    [14]Ma W. Vincent A L, Gramer M R, et.al. Identification of H2N3 influenza A virus from swine in the United States[J]. Proceedings of the National Academy of Science of USA,2007,104(52): 20949-20954.
    [15]李海燕,于康震,毕英佐.猪流感病毒的种间传播及分子进化[J].中国兽医学报,2004,24(3):304-309.
    [16]郭元吉,温乐英,王敏等.我国猪群中H9N2亚型毒株HA和NA基因特性的研究[J].中华实验和临床病毒学杂志,2004,18(1):7-1].
    [17]Brown I H. Done S H, Spencer Y I, et.al. A pathogenicity of a swine influenza H1N1 virus antigenically distinguishable from classical and Eourpean strain[J]. Veterinary Research,1993, 132(24):598-602.
    [18]Haesebrouck F, Pensaert M. Effect of intratracheal challenge of fattening pigs previously immunized with an inactivated influenza H1N1 vaccine[J]. Veterinary Microbiology,1986,11(3): 239-249.
    [19]Lanza 1, Brown I H, Paton D J, et.al. Pathogenicity of concurrent infection of pigs with porcine respiratory coronavirus and swine influenza virus[J]. Research in Veterinary Science,1992, 53(3):309-314.
    [20]Webster R G, Bean W J, Gorman O T, et.al. Evolution and ecology of influenza A viruses[M]. Microbiological Reviews,1992,56(1):152-179.
    [21]Beare A S, Webster R G. Replication of avian influenza viruses in humans[J]. Archives of Virology, 1991,119(1-2):37-42.
    [22]Murphy B R, Hinshaw V S, Sly D L, et.al. Virulence of avian influenza A virus forsquirrel monkeys[J]. Infection and Immunity,1982,37(3):1119-1126.
    [23]Hinshaw V S, Webster R G, Naeve C W, et.al. Altered tissue tropism of human-avian reassortant influenza viruses[J]. Virology,1983,128(1):260-263.
    [24]Connor R J, Kawaoka Y, Webster R G, et.al. Receptor specificity in human, avian, and equine H2 and H3 influenza virus isolates[J]. Virology,1994,205(1):17-23.
    [25]Gambaryan A S, Tuzikov A B, Piskare V E, et.al. Specifi-cation of receptor-bingding phenptypes of influenza virus isolates from different hosts using synthetic sialylglycopolymers:non-egg-adapeted human H1 and H3 influenza A and influenza B viruses share a common high binding affinity 69-sialy1(N-acetyllactosamine)[J]. Virology,1997,232(2):345-350.
    [26]Kida H, Ito T, Yasuda J, et.al. Potential for transmission of avian influenza viruses to pigs[J]. Journal of General Virology,1994,75(Pt9):2183-2188.
    [27]Matrosovich M N, Gambaryan A S, Teneberg S, et.al. Avian influenza a virus differ from human viruses by recognition of sialyloligosaccharides and gangliosides and by a higher conservation of the HA receptor-binding site[J]. Virology,1997,233(1):224-234.
    [28]Rogers G N, D'Souza B L. Receptor binding properties of human and animal H1 influenza virus isolates[J]. Virology,1989,173(1):317-322.
    [29]Rogers G N, Paulson J C. Receptor determinants of human and animal influenza virus isolates:differences in receptor specificity of the H3 hemagglutinin based on species of origin[J]. Virology.1983,127(2):361-373.
    [30]Suzuki Y. Gangliosides as influenza virus receptors variation of influenza viruses and their recognition of the receptor sialo-sugar chains[J]. Progress in Lipid Research,1994,33(4):429-457.
    [31]Couceiro J N S S, Paulson J C, Baum L G, et.al. Influenza virus strain selectively recognize sialyloligosaccharides on human respiratory epithelium:the role of the host cell in selection of hemagglutinin receptor specificity[J]. Virus Research,1993,29(2):155-165.
    [32]Ito T, Couceiro J N, Kelm S, et.al. Molecular basis for the generation in pigs of influenza A viruses with pandemic potential[J]. Journal of Virology,1998,72(9):7367-7373.
    [33]Naeve C W, Hinshaw V S, Webster R G, et.al. Mutations in the hemagglutinin receptor-binding site can change the biological properties of an influenza virus[J]. Journal of Virology,1984,51(2): 567-569.
    [34]Ito T, Suzuki Y, Takada A, et.al. Differences in sialic acid-galactose linkages in the amnion and allantois of chicken eggs influence human influenza virus receptor specificity and varian selection[J]. Journal of Virology,1997,71(4):3357-3362.
    [35]Taia T, Peter P. Unraveling the mystery of swine influenza virus[J]. Cell,2009,139(6):983-985.
    [36]Poon L L, Pritlove D C, Sharps J, et.al. The RNA polymerase of influenza virus, bound to the 5' end of virion RNA, act in cis to polyadenylate mRNA[J]. Journal of Virology,1998,72(10): 8214-8219.
    [37]Poon L M, Pritlove D C, Fodor E, et.al. Direct evidence that the poly(A) tail of influenza A virus is synthesized by reiterative copying of a U track in the virion RNA template[J]. Journal of Virology, 1999,73(4):3473-3476.
    [38]Leahy M B, Pritlove D C, Poon L M, et.al. Mutagenic analysis of the 5'arm of the influenza A virus virion RNA promoter defines the sequence requirements for endonuclease activity[J]. Journal of Virology,2000,75(1):134-142.
    [39]Klenk H D, Rott R. The molecular biology of influenza virus pathogenicity[J]. Advances in Virus Research,1988,34:247-281.
    [40]Vey M, Orlich M, Adler S, et.al. Hemagglutinin activation of pathogenic avian viruses of serotype H7 requires the protease recognition motif R-X-K/R-R[J]. Virology,1992,188(1):408-413.
    [41]Steinhauer D A. Role of hemagglutinin cleavage for the pathogenicity of influenza virus[J]. Virology,1999,258(1):1-20.
    [42]Colman P M, Laver W G, Varqhese J N, et.al. Three-dimensional structure of a complex of antibody with influenza virus neuraminidase [J]. Nature,1987,326(6111):358-363.
    [43]Baigent S J, Bethell R C, McCauley J W, et.al. Genetic analysis reveals that both haemagglutinin and neuraminidase determine the sensitivity of naturally occurring avian viruses to zanamivir in vitro[J]. Virology,1999,263(2):323-338.
    [44]Kobasa D, Kodihalli S, Luo M, et.al. Amino acid residues contributing to the substrate specificity of the influenza A virus neuraminidase[J]. Journal of Virology,1999,73(8):6743-7651.
    [45]Baum L G, Paulson J C. The N2 neuraminidase of human influenza viruses has acquired a substrate specificity complimentary to the hemagglutinin receptor specificity[J]. Virology,1991, 180(1):10-15.
    [46]Colman P M, Varghese J N, Laver W G, et.al. Structure of the catalytic and antigenic sites in influenza virus neuraminidase[J]. Nature,1983,303(5912):41-44.
    [47]Castrucci M R, Kawaoka Y. Biologic importance of Neuraminidase stalk length in influenza A virus[J]. Journal of Virology,1993,67(2):759-764.
    [48]Els M C, Air G M, Murti K G, et.al. An 18-amino acid deletion in an influenza neuraminidase[J]. Virology,1985,142(2):241-247.
    [49]Luo G, Chung J, Palese P. Alterations of the stalk of the influenza virus neuaminidase:deletion and insertion[J]. Virus Research,1993,29(3):141-153.
    [50]Hay A J. Textbook of influenza[M]. London, Blackwell Science Ltd,1998:43-53.
    [51]Varghes J N. Structure of the influenza virus glycoprotion antigen neuraminidate at 2.9 A resolution[J]. Nature,1983,303(5912):35-40.
    [52]Shu L L, Lin Y P. Wright S M, et.al. Evidence for interspecies transmission and reassortment of influenza A viruses in pigs in southern China[J]. Virology,1994,202(2):825-833.
    [53]Davey J, Dimmock N J, Colman A, et.al. Identification of the sequence responsible for the nuclear accumulation of the influenza virus nucleoprotein in Xenopus oocytes[J]. Cell,1985, 40(3):667-675.
    [54]Neumann G, Castrucci M R, Kawaoka Y. Nuclear import and export of influenza virus nucleoprotein[J]. Journal of Virology,1997,71(12):9690-9700.
    [55]Wang P, Palese P, O'Neil R E. The NPI-1/NPl-3(karyopherin alpha)binding site on the influenza a virus nucleoprotein NP is a nonconventional nuclear localization signal[J]. Journal of Virology, 1997,71(3):1850-1856.
    [56]Biswas S K, Boutz P, Nayak D P, et.al. Influenza virus nucleoprotein interacts with influenza virus polymerase protein[J]. Journal of Virology,1998,72(7):5493-5501.
    [57]Yewdell J W, Bennink J R, Smith G L, et.al. Influenza A virus nucleoprotein is a major target antigen for cross-reactive anti-influenza A virus cytotoxic T lymphocytes[J]. Proceedings of the National Academy of Science of USA,1985,82(6):1785-1789.
    [58]Christensen J P, Dotherty P C, Branum K C, et.al. Profound protection against respiratory challenge with a lethal H7N7 influenza A virus by increasing the the magnitude of CD8(+) T-cell memory[J]. Journal of Virology,2000,74(24):11690-11696.
    [59]Biswas S K, Nayak D P. Mutational analysis of the conserved motifs of influenza A virus polymerase basic protein l[J]. Journal of Virology,1994,68(3):1819-1826.
    [60]Shi L, Summers D F, Peng Q. Influenza A virus RNA polymerase subunit PB2 is the endonuclease which cleaves host cell and function only as the trimeric enzyme[J]. Virology,1995,208(1):38-47.
    [61]Nakagawa Y, Kimura N, Toyoda, et.al. The RNA polymerse PB2 subunit is not required for replication of the influenza virus genome but is involved in capped mRNA synthesis[J]. Journal of Virology,1995,69(2):728-733.
    [62]Hatta M, Asano Y, Masunaqa K, et.al. Mapping of functional domains on influenza A virus RNA polymerase PB2 molecule using monoclonal antibodies[J]. Archives of Virology,2000,145(9): 1947-1961.
    [63]Helenius A. Unpacking the incoming influenza virus[J]. Cell,1992,69(4):577-578.
    [64]Watanabe K. Handa H, Mizumoto K. et.al. Mechanism for inhibition of influenza virus RNA polymerase activity by matrix protein[J]. Journal of Virology,1996,70(1):241-247.
    [65]Sha B, Luo M. Structure of a bifunctional membrane RNA binding protein, influenza virus matrix protein M1[J]. Nature Structural Biology,1997,4(3):239-244.
    [66]Elster C, Larsen K, Gagnon J, et.al. Influenza virus M1 protein binds to RNA through its nuclear localization signal[J]. Journal of General Virology,1997,78(Pt7):1589-1596.
    [67]Sakaguchi T, Tu Q, Pinto L H, et.al. The active oligomeric state of the minimalistic influenza virus M2 ion channel is a tetramer[J]. Proceedings of the National Academy of Science of USA,1997, 94(10):5000-5005.
    [68]Holsinger L J, Nichani D, Pinto L H, et.al. Influenza A virus M2 ion channel protein:a structure-function analysis[J]. Journal of Virology,1994,68(3):1551-1563.
    [69]Zebedee S L, Lamb R A. Influenza virus M2 virus protein:monoclonal antibody restriction of virus growth and detection of M2 in virions[J]. Journal of virology,1989,62(8):2762-2772.
    [70]Yasuda J, Nakada S, Kato A, et.al. Molecular assembly of influenza virus:association of the NS2 protein with virion matrix[J]. Virology,1993,196(1):249-255.
    [71]Enami M, Enami K. Characterization of influenza virus NS1 protein by using a novel helper-virus-free reverse genetic system[J]. Journal of Virology,2000,74(12):5556-5561.
    [72]Bergmann M, Garcia-Sastre A, Carnero E, et.al. Influenza virus NS1 protein counteracts PKR-mediated inhibition of replication[J]. Journal of Virology,2000,74(13):6203-6206.
    [73]Falcon A M, Marion R M, Zurcher T, et.al. Defective RNA replication and late gene expression intemperature-sensitive influenza viruses expressing deleted forms of the NS1 protein[J]. Journal of Virology,2004,78(8):3880-3888.
    [74]Donelan N R, Basler C F, Garcia-Sastre A. A recombinant influenza a virus expressing an RNA-binding-defective NS1 protein induced high levels of beta interferon and is attenuated in mice[J]. Journal of Virology,2003,77(24):13257-13266.
    [75]Lew D E, Garcia-Sastre A. The virus battles:IFN induction of the antiviral state and mechanisms of viral evasion[J]. Cytokine Growth Factor Review,2001,12(2-3):143-156.
    [76]Wang X, Li M, Zheng H, et.al. Influenza A virus NS1 protein prevents activation of NF-κappa β and induction of alpha/beta interferon[J]. Journal of Virology,2000,74(24):11566-11573.
    [77]Zurcher T,Marion R M, Ortin J. Protein synthesis shut-off induced by influenza virus infection is independent of PKR activity[J]. Journal of Virology,2000,74(18):8781-8784.
    [78]Julkunen I, Sareneva T, Pirhonen J, et.al. Molecular pathogenesis of influenza A virus infection and virus-induced regulation of cytokine gene expression[J]. Cytokine Growth Factor Review,2001, 12(2-3):171-180.
    [79]Stephan L, Wang X Y, Christina E, et.al. The influenza A virus NS1 protein inhibits activation of N-terminal kinase and AP-Itrascription factors[J]. Journal of Virology,2002,76(21):11166-11171.
    [80]Suarez D L. Evolution of avian influenza viruses[J]. Veterinary Microbiology,2000,74(1-2): 15-27.
    [81]Brown 1 H. The epidemiology and evolution of influenza viruses in pigs[J]. Veterinary Microbiology,2000,74(1-2):29-46.
    [82]Ma W, Kahn R E, Richt J A. The pig as a mixing vessel for influenza A viruses:human and veterinary implications[J]. Journal of Molecular and Genetic Medicine,2008,3(1):158-166.
    [83]Castrucci M R, Donatelli I, Sidoli L, et.al. Genetic reassortment between avian and human influenza A virus in Italian pigs[J]. Virology,1993,193(1):503-506.
    [84]Karasin A], Schutten M M, Cooper L A, et.al. Genetic characterization of H3N2 influenza viruses isolated from pig in North America,1977-1999:evidence for wholly human and reassortant virus genotypes[J]. Virus Research,2000,68(1):71-85.
    [85]Zhou N N, Senne D A, Landgraf J S, et.al. Genetic reassortment of avian, swine and human influenza A virus in American pigs[J]. Virology,1999,73(10):8851-8856.
    [86]Webby R J, Swenson S L, Krauss S L, et.al. Evolution of swine H3N2 influenza viruses in the United States[J]. Journal of Virology,2000,74(18):8243-8251.
    [87]Olsen C W. The emergence of novel swine influenza viruses in North American[J]. Virus Research, 2002,85(2):199-210.
    [88]Nerome K, Jshida M, Oya A, et.al. The possible origin H1N1(Hsw1N1) virus in the swine population of Japan and antigenic analysis of the isolates[J]. Journal of General Virology,1982, 62(Pt1):171-175.
    [89]Brown l H, Chakraverty P, Harris P A, et.al. Disease outbreaks in pigs in Great Britain due to an influenza A virus of H1N2 subtype[J]. Veterinary Record,1995,136(13):328-329.
    [90]Nerome K, Yoshioka Y. Sakamoto S. et.al. Characterization of a 1980-swine recombinant influenza virus possessing H1 hemagglutinin and N2 neuraminidase similar to that of the earliest Hong Kong (H3N2) virus[J]. Archives of Virology,1985.86(3-4):197-211.
    [91]Nerome K, Kanegae Y. Shortridge K F, et.al. Genetic analysis of porcine H3N2 viruses originating in southern China[J]. Journal of General Virology,1995,76(Pt3):613-624.
    [92]Brown 1 H, Harris P A, McCauley J W, et.al. Multiple genetic reassortment of avian and human influenza A virus in European pigs, resulting in emergence of an H1N2 virus of novel genotype[J]. Journal of General Virology,1998,79(Pt12):2947-2955.
    [93]Van Reeth K, Brown I H, Pensaert M. Isolation of H1N2 influenza A virus from pigs in Belgium[J]. Veterinary Record,2000,146(20):588-589.
    [94]Marozin S, Gregory V, Cameron K, et.al. Antigenic and genetic diversity among swine influenza A H1N1 and H1N2 viruses in Europe[J]. Journal of General Virology,2002,83(Pt4):735-745.
    [95]James C M, Abdad M Y, Mansfield J P, et.al. Differential activities of alpha/beta 1FN subtpyes against influenza virus in vivo and enhancement of specific immune response in DNA vaccinated mice expressing haemagglutinin and nucleoprotein[J]. Vaccine,2007,25(10):1856-1867.
    [96]Asselin-Palturel C, Boonstra A, Dalod M, et.al. Mouse type I IFN-producing cells are immature APCs with plasmacytoid morphology[J]. Nature Immunology,2001,2(12):1144-1150.
    [97]Esptein S L, Abigail S, Julia A, et.al. Vaccination with DNA encoding internal proteins of influenza virus does not require CD8+cytotoxic T lymphocytes:either CD4+or CD8+can promote survival and recovery after challenge[J]. International Immunology,12(1):91-101.
    [98]Mandelboim O, Lieberman N, Lev M, et.al. Recognition of haemagglutinins on virus-infected cells by NKp46 activates lysis by human NK cells[J]. Nature,2001,409(6823):1055-1060.
    [99]Lui B, Mori I, Hossain M J, et.al. Local immune responses to influenza virus infection in mice with a targeted disruption of perforin gene[J]. Microbial Pathologenesis,2003,34(4):161-167.
    [100]Verhagen A, Mackay 1R, Rowley M, et.al. Comparison of augmentation of human natural killer cell cytotoxicity by interferon-alpha subtypes[J]. Natural Immunity and Cell Growth Regulation. 1990,9(5):325-333.
    [101]Fonteneau J F, Gilliet M, Larsson M, et.al. Activation of influenza virus-specific CD4+ and CD8+ T cells:anew role for plasmacytoid dendritic cells in adaptive immunity [J]. Blood,2003,101(9): 3520-3526.
    [102]Woodland D L, Hogan R J, Zhong W. Cellular immunity and memory to respiratory virus infections[J]. Immunology Research,2001,24(1):53-67.
    [103]Rowe T, Abernathy R A, Hu-Primmer J, et.al. Detection of antibody to avian influenza A (H5N1)virus in human serum by using a combination of serologic assays[J]. Journal of Clinical Microbiology,1999,37(4):937-943.
    [104]Wang D Q, Christopher M E, Nagata L P, et.al. Intranasal immunization with liposome-encapsulated plasmid DNA encoding influenza virus hemagglutinin elicits mucosal, celluar and humoral immune response[J]. Journal of Clinical Virology,2004, Suppl 1:s99-106.
    [105]Skehel J J, Stevens D J, Daniels R S, et.al. A carbohydrate side chain on hemagglutinins of Hong Kong influenza viruses inhibits recognition by a monoclonal antibody[J]. Proceedings of the National Academy of Science of USA,1984,81(6):1779-1783.
    [106]Bennink J R, Yewdell J W, Smith G L, et.al. Anti-influenza virus cytotoxic T lymphocytes recognize the three viral polymerases and a nonstructural protein:responsiveness to individual viral antigens is major histocompatibility complex controlled[J], Journal of Virology,1987,61(4): 1098-1102.
    [107]Lawson C M, Bennink J R, Restifo N P, et.al. Primary pulmonary cytotoxic T lymphocytes induced by immunization with a vaccinia recombinant expressing influenza A virus nucleoprotein peptide do not protect mice against challenge[J]. Journal of Virology,1994,68(6):3505-3511.
    [108]Webby R J, Andreansky S, Stambas J, et.al. Protection and compensation in the influenza virus-specific CD8+T cell response[J]. Proceedings of the National Academy of Science of USA, 2003,100(12):7235-7240.
    [109]Allan W, Tabi Z, Cleary A, et.al. Cellular events in the lymph node and lung of mice with influenza. Consequences of depleting CD4+ T cells[J]. Journal of Immunology,1990,144(10): 3980-3986.
    [110]Zhong W, Roberts A D, Woodland D L, et.al. Antibody-dependent antiviral function of memory CD4+T cells in vivo requires regulatory signals from CD8+ effector T cells[J]. Journal of Immunology,2001,167(3):1379-1386.
    [111]Doherty P C, Riberdy J M, Belz G T, et.al. Quantitative analysis of the CD8+T-cell response to readily eliminated and persistent viruses[J]. Philosophical Transactions of the Royal Society B: Biologic Science,2000,355(1400):1093-1101.
    [112]Jeon S H, Ben-Yedidia T, Arnon R. Intranasal immunization with synthetic recombinant vaccine containing multiple epitopes of influenza virus[J]. Vaccine,2002,20(21-22):2772-2780.
    [113]Mackenzie C D. Taylor P M, Askonas B A. Rapid recovery of lung histology correlates with clearance of influenza virus by specific CD8+ cytotoxic T cells[J]. Immunology.1989,67(3): 375-381.
    [114]Ohba K, Yoshida S, Zahidunnabi D, et.al. Mutant influenza A virus nucleoprotein is preferentially localized in the cytoplasm and its immunization in mice shows higher immunogenicity and cross-reactivity[J], Vaccine,2007,25(21):4291-4300.
    [115]Tamara K B, Matthew H, Patrick J, et.al. Potent CD8+ T-cell immunogenicity in humans of a novel heterosubtypic influenza A vaccine, MVA-NP+M][J]. Clinical Infectious Disease,2011, 52(1):1-7.
    [116]Rogers G N, Pritchett T J. Differential sensitivity of human, avian, and equine influenza A viruses to a glycoprotein inhibitor of infection:selection of receptor specific variants[J]. Virology,1983, 131(2):394-408.
    [117]Ito T, Suzuki Y. Receptor specificity of influenza A viruses correlates with the agglutination of erythrocytes from different animal species[J]. Virology,1997,227(2):493-499.
    [118]Van-Deusen R A, Hinshaw V S. Micro neuraminidase—inhibition for classification of influenza A virus neuraminidases[J]. Avian Disease,1983,27(3):745-750.
    [119]Huber V C, Raelene M, McKeon, et.al. Distinct Contributions of Vaccine-Induced lmmunoglobulin G1 (IgG1) and]gG2a Antibodies to Protective Immunity against Influenza[J]. Clinical and Vaccine Immunology,2006,13(9):981-990.
    [120]Jennings R, Potter C W, McLaren C.et al. Effect of pre-infection and pre-immunization on the serum antibody response to subsequent immunization with heterotypic influenza vaccines[J]. Journal of Immunology,1974,113(6):1834-1843.
    [121]丁选亚.H3N2亚型猪流感病毒进化分析及重组HA1蛋白间接ELISA诊断方法的建立[D].哈尔滨,中国农业科学院哈尔滨兽医研究所,2007.
    []22]王方昆.H9N2亚型猪流感病毒M1、NS1、NP基因的原核表达和NP-ELISA检测技术的研究[D].济南,山东农业大学,2008.
    [123]杨焕良.猪流感病毒RT-PCR快速检测方法的建立[J].动物医学进展,2007,28(1):42-45.
    [124]陈坚.猪流感RT-PCR诊断方法的建立[J].中国兽药杂志,2009,43(11):17-20.
    [125]Anjeanette R, Evelyne K, Archibald S P,et.al. Vaccination with a recombinant vesicular stomatitis virus expressing an influenza virus hemagglutinin provides complete protection from influenza virus challenge[J]. Journal of Virology.1998,72(6):4704-4711.
    [126]Tang M, Harp J A, Wesley R D, et.al. Recombinant adenovirus encoding the HA gene from swine H3N2 influenza virus partially protects mice from challenge with heterologous virus: A/HK/1/68(H3N2)[J]. Archives of Virology,2002,147(11):2125-2141.
    [127]Tian Z J, Zhou G H, Zheng B L, et.al. A recombinant pseudorabies virus encoding the HA gene from H3N2 subtype swine influenza virus protects mice from virulent challenge[J].Veterinary Immunology and lmmunopathology,2006,111(3-4):211-218.
    [128]Ronald D W, Tang M, Kelly M L. Protection weaned pigs by vaccination with human adeovirus 5 recombinant viruses expressing the hemagglutinin and the nucleoprotein of H3N2 swine influenza virus[J]. Vaccine,2004,22(25-26):3427-3434.
    [129]Epstein S L, Kong W P, Misplon J A, et.al. Protection against multiple influenza A subtypes by vaccination with highly conserved nucleoprotein[J]. Vaccine,2005,23(46-47):5404-5410.
    [130]Harriet L R, Christine A B, David M, et.al. DNA immunization for influenza virus:studies using hemagglutinin and nucleoprotein expressing DNAs[J]. The Journal of Infectious Disease,1997, 176(1):50-55.
    [131]Chen Z, Yoshikawa T, Kadowaki S, et.al. Protection and antibody response in different strains of mouse immunized with plasmid DNAs encoding influenza virus haemagglutinin, neuraminidase and nucleoprotein[J]. Journal of General Virology,1999,80(Pt10):2559-2564.
    [132]Li G X, Tian Z J, Yu H, et.al. Fusion of C3d hemagglutinin enhances protective immunity against swine influenza virus[J]. Research in Veterinary Science,2009,86(3):406-413.
    [133]Gessner J E, Heiken H, Tamm A, et.al. The lgG Fc receptor family[J]. Annals of Hematology. 1998,76(6):231-248.
    [134]Huber V C, Lynch J M, Bucher D J, et.al. Fc receptor-mediated phagocytosis makes a significant contribution to clearance of influenza virus infections[J]. Journal of Immunology,2001, 166(12):7381-7388.
    [135]Kipps T J, Parham P, Punt J, et.al. Importance of immunoglobulin isotype in human antibody-dependent, cell-mediated cytotoxicity directed by murine monoclonal antibodies[J]. The Journal of Experimental Medicine,1985,161(1):1-17.
    [136]Kodihalli S, Goto H, Kobasa D L. et.al. DNA vaccine encoding hemagglulinin provides protective immunity against H5N1 influenza virus infection in mice[J]. Journal of Virology,1999, 73(3):2094-2098.
    [137]Nimmerjahn F, Bruhns P, Horiuchi K, et.al. FcgammaRlV:a novel FcR with distinct lgG subclass specificity[J]. Immunity,2005,23(1):41-51.
    [138]Belshe R B, Gruber W C, Mendelman P M, et.al. Correlates of immune protection induced by live, attenuated, cold-adapted, trivalent, intranasal influenza virus vaccine[J]. Journal of Infectious Disease,2000,181(3):1133-1137.
    [139]Saha S. Yoshida S, Ohba K, et.al. A fused gene of nucleoprotein (NP) and herpes simplex virus genes (VP22) induces highly protective immunity against different subtypes of influenza virus[J]. Virology.2006,354(1):48-57.
    [140]Luo M C, Tao P, Li J W, et.al. Immunization with plasmid DNA encoding influenza A virus nucleoprotein fused to a tissue plasminogen activator signal sequence elicits strong immune responses and protection against H5N1 challenge in mice[J]. Journal of Virological Methods,2008, 154(1-2):121-127.
    [141]Okuda K, Ihata A, Wataba S. et.al. Protective immunity against influenza A virus induced by immunization with DNA plasmid containing influenza M gene[J]. Vaccine,2001,19(27): 3681-3691.
    [142]Xie H, Liu T, Chen H, et.al. Evaluating the vaccine potential of an influenza A viral hemagglutinin and matrix double insertion DNA plasmid[J]. Vaccine,2007,25(44):7649-7655.
    [143]Tao P, Luo M C, Pan R G, et.al. Enhanced protective immunity against H5N1 influenza virus challenge by vaccination with DNA expressing a chimeric hemagglutinin in combination with an MHC class 1-restricted epitope of nucleoprotein in mice[J]. Antiviral Research,2009,81(3): 253-260.
    [144]Zebedee S L, Lamb R A. Influenza A virus M2 protein:monoclonal antibody restriction of virus growth and detection of M2 in virions[J]. Journal of Virology,1988,62(8):2762-2772.
    [145]Treanor J J, Tiemey E L, Zebedee S L, et.al. Passively transferred monoclonal antibody to the M2 protein inhibits influenza A virus replication in mice[J]. Journal of Virology,1990,64(3): 1375-1377.
    [146]Liu W L, Zou P, Ding J, et.al. Sequence comparison between the extracellular domain of M2 protein homan and avian influenza A virus provides new infonrmation for bivalent influenza vaccine design[J]. Microbes and Infection,2005,7(2):171-177.
    [147]Liu W L. Zou P, Chen Y H. Monoclonal antibodies recognizing EVETPIRN epitope of influenza A virus M2 protein could protect mice from lethal influenza A virus challenge[J]. Immuology Letters,2004,93(2-3),131-136.
    [148]Zou P, Liu W L, Chen Y H. The epitope recognized by a monoclonal antibody in influenza A virus M2 protein is immunogenic and confers immune protection[J]. International Immunopharmacology, 2005,5(4):631-635.
    [149]Wang R F, Song A, Levin J, et.al. Therapeutic potential of a fully human monoclonal antibody against influenza A virus M2 protein[J]. Antiviral Research,2008,80(2):168-177.
    [150]Slepushkin V A, Katz J M, Black R A, et.al. Protection of mice against influenza A virus challenge by vaccination with baculovirus-expressed M2 protein[J]. Vaccine,1995,13(15): 1399-1402.
    [151]Neirynck S, Deroo T, Saelens X, et.al. A universal influenza A vaccine based on the extracellular domain of the M2 protein[J]. Nature Medicine,1999,5(10):1157-1163.
    [152]Fiers W, Filette M D, Birkett A, et.al. A"universal"human influenza A vaccine[J]. Virus Research, 2004,103(1-2):173-176.
    [153]De Filette M, Min Jou W, Birkett A, et.al. Universal influenza A vaccine:Optimization of M2-based constructs[J]. Virology,2005,337(1):149-161.
    [154]De Filette M, Ramne A, Birkett A, et.al. The universal influenza vaccine M2e-HBc administered intranasally in combination with the adjuvant CTA1-DD provides complete protection[J]. Vaccine, 2006,24(5):544-551.
    [155]Eliasson D G, Bakkouri K E, Schon K, et.al. CTA1-M2e-DD:A novel mucosal adjuvant targeted influenza vaccine[J]. Vaccine,2008,26(9):1243-1252.
    [156]Mozdzanowska K,Feng JQ,Eid M,et al.Induction of influenza type A virus specific resistance by immunization of mice with a synthetic multiple antigenic peptide vaccine that contains ectodomains of matrix protein 2[J].Vaccine,2003,21(20):2616-2626.
    [157]Fan J,Liang X,Horton MS,et al. Preclinical study of influenza virus A M2 peptide conjugate vaccines in mice.ferrets and rhesus monkeys[J]. Vaccine,2004,22(23):2993-3003.
    [158]Denis J, Acosta-Ramirez E, Zhao Y, et.al. Development of a universal influenza A vaccine based on the M2e peptide fused to the papaya mosaic virus (PapMV) vaccine platform[J]. Vaccine,2008. 26(27-28):3395-3403.
    [159]Huleatt J W, Nakaar V. Desai P. et.al. Potent immunogenicity and efficacy of a universal influenza vaccine candidate comprising a recombinant fusion protein linking influenza M2e to the TLR5 ligand flagellin[J]. Vaccine,2008,26(2):201-214.
    [160]Wu F. Huang J H, Yuan X Y, et.al. Characterization of immunity induced by M2e of influenza virus[J]. Vaccine,2007,25(52):8868-8873.
    [161]Wu F, Yuan X Y, Huang W S, et.al. Heterosubtypic protection conferred by combined vaccination with M2e peptide and split influenza vaccine[J]. Vaccine,2008,27(43):8710-8716.
    [162]Wu F, Yuan X Y, Li J, et.al. The co-administration of CpG-ODN influenced protective activity of influenza M2e vaccine[J]. Vaccine,2009,27(32):9250-9254.
    [163]Heinen P P, Rijsewijk F A, De Boer-Luijtze E A, et.al. Vaccination of pigs with a DNA construct expressing an influenza virus M2-nucleoprotein fusion protein exacerbates disease after challenge with influenza A virus[J]. Journal of General Virology,2002,83(Pt8):1851-1859.
    [164]杨靖.甲型流感病毒M2基因真核表达载体的构建及其免疫保护性的初步研究[D].成都,四川大学,2006.
    [165]匡海门,王芙艳,杨忠冬等.流感病毒基质蛋白DNA疫苗的免疫保护作用研究[J]生命科学研究,2009,]3(1):42-45.
    []66]王丰平.M2e基因诱导的特异性抗流感病毒免疫应答及保护作用[D].成都,四川大学,2007.
    [167]Fan J, Liang X P, Horton M S, et.al. Preclinical study of influenza virus A M2 peptide conjugate vaccines in mice, ferrets, and rhesus monkeys[J]. Vaccine,2004,22(23-24):2993-3003.
    [168]Liu W L, Zou P, Ding J, et.al. Sequence comparison between the extracellular domain of M2 protein human and avian influenzaA virus provides new information for bivalent influenza vaccine design[J]. Microbes and Infection,2005,7(2):171-177.
    [169]Mozdzanowska K, Maiese K, Furchner M,et.al.Treatment of influenza virus-infected SC1D mice with nonneutralizing antibodies specific for the transmembrane proteins matrix 2 and neuraminidase reduces the pulmonary virus titer but fails to clear the infection[J]. Virology,1999, 254(1),138-146.
    [170]Zhang M, Zharikova D, Mozdzanowska K, et.al Fine specificity and sequence of antibodies directed against the ectodomain of matrix protein 2 of influenza A virus[J]. Molecular Immunology,
    [171]Fu T M, Freed D C, Horton M S, et.al. Characterizations of four monoclonal antibodies against M2 protein ectodomain of influenza A virus[J]. Virology,2009,385(1):218-226.
    [172]葛金玲,贺冰,袁静等.IL-18基因佐剂协同HSV-1 gB DNA疫苗免疫诱导的特异性免疫应答[J].中国免疫学杂志,2007,23(4):317-319.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.