西藏沙棘的谱系地理学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
青藏高原的隆升和第四纪气候变化是高原上生物分布和进化的决定因素。青藏高原的隆升剧烈改变了亚洲的地形和气候,并影响了高原上和邻近地区的生物多样性。然而,青藏高原隆升的过程和时间存在争议,第四纪冰期-间冰期交替对植物遗传分化的影响模式也不确定,使得研究高原隆升对植物的传播、分化和适应的影响仍是一个难题。为了阐明高原上植物进化与高原隆起和第四纪冰期的关系,我们测序了高原上特有植物西藏沙棘(Hippophae tibetana Schlecht.)37个居群891个个体叶绿体DNA的trnT-trnF片段,并测序了外类群中国沙棘、云南沙棘、中亚沙棘、江孜沙棘、肋果沙棘、密毛肋果沙棘和理塘沙棘的个体。在西藏沙棘中研究共得到50种单倍型,并检测到了很强的谱系地理结构。结果表明西藏沙棘单倍型分为三个谱系,分别占据了整个地理分布范围的西部、中部和东部,其分化时间在距今约3.15百万年(Ma)。50种单倍型中,33种是私有单倍型,并散布在西藏沙棘现在的整个地理分布范围中;这些私有单倍型起源于多次分化,并且很多的分化时间在].0 Ma前。这些结果强烈表明在西藏沙棘现在的地理分布范围内,广泛存在着末次冰盛期,甚至是之前几次冰期时的微避难所。此外,在西部的居群平均海拔高于4500米,考虑到末次冰盛期时高原内部的冰川平衡线比现在仅下降500-300米,这意味着很多西藏沙棘末次冰盛期的微避难所海拔在4000米以上,这是目前世界上已知最高的植物避难所。对西藏沙棘三枝谱系之间和内部的分化时间,它们各自独立的分布范围以及造成隔离的气候原因的分析表明,我们的结果支持青藏高原在最近3.4 Ma快速隆升的假说。高原的快速隆升和伴随的环境变化影响了西藏沙棘的传播和分化,塑造了西藏沙棘现在的谱系地理结构。
     本研究还利用叶绿体trnT-trnF序列和5个微卫星位点研究了在一个具体的微避难所——珠穆朗玛峰北坡绒布河谷里不同海拔西藏沙棘的遗传变异,并整合冰川学、地貌学、第四纪地质学、气象学的资料来研究这一低矮的灌木是如何在此适应过去2万5千年剧烈的气候波动的。微避难所在物种的冰期后扩张中起着至关重要的作用,并且有助于人们理解物种应对现在和未来全球气候变化的响应。然而,学者们仍没有了解植物为什么能在微避难所中避难,以及如何度过冰期时以及冰期之后剧烈的气候波动。本研究的结果表明,绒布河谷是西藏沙棘的一个有很长历史的微避难所;末次冰盛期时西藏沙棘分布在河谷里海拔4800米以下的区域,而在末次冰盛期之后通过在海拔5000米附近的分布范围的上下变化度过了剧烈的气候波动。随着近40年来温度的上升,西藏沙棘的分布上限也已向上迁移了至少30米;并且出乎意料的是,这些新向上扩张的斑块不是来自附近区域,而是来自河谷里海拔最低处的群体。研究结果还表明山坡地形对于西藏沙棘的避难是重要的,同时冰雪和冰川融水也是西藏沙棘生存的关键因素。将种群历史和近期的分布变化相结合,是预测物种在未来气候变化中命运的重要手段。
The uplift of the Qinghai-Tibetan Plateau (QTP) and Quaternary climate changes are crucial aspects affecting the distribution and evolution of the plateau biota. The uplift of the QTP dramatically changed the topography and climate of Asia and affected the biodiversity of the plateau and its adjacent areas. However, the effects of the uplift on the dispersal, differentiation and adaptation of plants remain a puzzle when the date and process of the uplift cannot be determined with certainty and the impacts of the alternations of Quaternary glacial-intergalcial on plants on the QTP are unknown. To clarify the relationships among plants on the QTP with the plateau uplift and the Quaternary glaciations, the cpDNA trnT-trnF regions of 891 individuals from 37 populations of Hippophae tibetana Schlecht., endemic to the QTP, were sequenced in the present study, as well as individuals of the outgroup species H. rhamnoides subsp. sinensis, H. rhamnoides subsp. yunnanensis, H. rhamnoides subsp. turkestanica, H. gyantsensis, H. neurocarpa, H. neurocarpa subsp. stellatopilosa and H. litangensis. In H. tibetana, a total of 50 h aplotypes were found and a strong phylogeographic structure was revealed. The results show that three main lineages of the present populations of H. tibetana occupy the western, the middle, and the eastern geographical range, respectively, and their divergence time dates back to 3.15 Ma before present. Of 50 h aplotypes,33 are private haplotypes are scattered throughout the present geographical range of H. tibetana. They originated from multiple differentiations in many lineages during a more than 1.0 M a period, strongly suggesting that multiple microrefugia of H. tibetana existed throughout the present geographical range during the last glacial maximum (LGM) and even earlier glaciations. Additionally, the average elevation of present populations is over 4500 m in the west and the equilibrium-line of glaciers in the LGM was 500-300 m lower than present in the major interior part of the plateau suggesting that at most sites in the west, LGM microrefugia of H. tibetana may have been over 4000 m above sea level, the highest of all known plant refugia. Besides, the divergence times among and within the three lineages and their distinct distributions as well as dispersal barriers support the theory of the recent and rapid uplift of the QTP. The rapid uplift of the plateau within the last 3.4 Ma and the associated environmental changes may have affected the dispersal and differentiation of H .tibetana and shaped its phylogeographic structure.
     Furthermore, using cpDNA trnT-trnF regions and five microsatellite loci, this study investigated the genetic varations of H. tinetana at different elevations along Rongbuk valley, north of Mt. Everest, which is one of the LGM microrefugia, and by integrating geological, glaciological and meteorological information, to study how the low shrub has adapted to the extreme climate fluctuations of the last 25,000 years. Microrefugia are thought to play an important role in the post-glacial colonization of species, and are pertinent to understanding how species might respond to recent and future climate changes. But why species could survive in such microrefugia and how they responded to climate changes in the glacial and post-glacial periods remain unclear. The results show that Rongbuk Valley was a microrefugium of H. tibetana with a long history, and that H. tibetana survived below 4800 m during the LGM and survived the extreme climate fluctuations after the LGM by upward and downward migrations at around~5000 m. Moreover, with the rise of temperature in the last four decades, the upper limit of H. tibetana has shifted at least 30 m upward; surprisingly, these new arrivals did not expand from adjacent areas but from populations near the lower altitudinal limit. Our results demonstrate that not only did mountain slopes play an important part in H. tibetana finding refuges, but that ice and glacial meltwater were also critical for its survival. Combining population history and recent range shifts of this species is important in predicting the fate of this species to future climate changes.
引文
[1]Abbott R. J., Brochmann C. History and evolution of the arctic flora: in the footsteps of Eric Hulten [J]. Molecular Ecology,2003,12(2):299-313
    [2]Abbott R. J., Smith L. C., Milne Richard I. et al. Molecular Analysis of Plant Migration and Refugia in the Arctic [J]. Science,2000,289(5483):1343-1346
    [3]Akgun F., Sozbilir H. A palynostratigraphic approach to the SW Anatolian molasse basin: Kale-Tavas molasse and Denizli molasse [J]. Geodinamica Acta,2001,14(1-3):71-93
    [4]Alvarez I., Wendel J. F. Ribosomal ITS sequences and plant phylogenetic inference [J]. Molecular Phylogenetics and Evolution,2003,29(3):417-434
    [5]An Z-S, Kutzbach J. E., Prell W. L. et al. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times [J]. Nature,2001,411(6833):62-66
    [6]Anderson L. L, Hu F. S., Nelson D. M. et al. Ice-age endurance:DNA evidence of a white spruce refugium in Alaska [J]. Proceedings of the National Academy of Sciences of the United States of America,2006,103(33):12447-12450
    [7]Avise J. C. Phylogeography: the history and formation of species [M]:Harvard University Press,2000
    [8]Bandelt H. J., Forster P., Rohl A. Median-joining networks for inferring intraspecific phylogenies [J]. Molecular Biology and Evolution,1999,16(1):37-48
    [9]Bartish I. V., Jeppsson N., Nybom H. et al. Phylogeny of Hippophae (Elaeagnaceae) inferred from parsimony analysis of chloroplast DNA and morphology [J]. Systematic Botany, 2002,27(1):41-54
    [10]Bartish I. V., Kadereit J. W., Comes H. P. Late Quaternary history of Hippophae rhamnoides L. (Elaeagnaceae) inferred from chalcone synthase intron (Chsr) sequences and chloroplast DNA variation [J]. Molecular Ecology,2006,15(13):4065-4083
    [11]Bennett K. D., Provan J. What do we mean by'refugia'? [J]. Quaternary Science Reviews, 2008,27(27-28):2449-2455
    [12]Birks H. J. B. Modem pollen assemblages and vegetational history of the moraines of the Klutlan Glacier and its surroundings, Yukon Territory, Canada [J]. Quaternary Research,1980, 14(1):101-129
    [13]Birks H. J. B., Willis K. J. Alpines, trees, and refugia in Europe [J]. Plant Ecology & Diversity,2008,1(2):147-160
    [14]Chase M. W., Soltis D. E., Olmstead R. G. et al. Phylogenetics of Seed Plants - an Analysis of Nucleotide-Sequences from the Plastid Gene Rbcl[J]. Annals of the Missouri Botanical Garden, 1993,80(3):528-580
    [15]Chen K. M., Abbott R. J., Milne R. Let al. Phylogeography of Pinus tabulaeformis Carr. (Pinaceae), a dominant species of coniferous forest in northern China [J]. Molecular Ecology, 2008,17(19):4276-4288
    [16]Chung S. L., Lo C. H., Lee T. Y.et al. Diachronous uplift of the Tibetan plateau starting 40 Myr ago [J]. Nature,1998,394(6695):769-773
    [17]Coleman M., Hodges K. Evidence for Tibetan Plateau Uplift before 14-Myr Ago from a New Minimum Age for East-West Extension [J]. Nature,1995,374(6517):49-52
    [18]Colwell R. K., Brehm G., Cardelus C. L. et al. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics [J]. Science,2008,322(5899):258-261
    [19]Cornuet J. M., Luikart G. Description and Power Analysis of Two Tests for Detecting Recent Population Bottlenecks From Allele Frequency Data [J]. Genetics,1996,144(4): 2001-2014
    [20]Cruzan M. B., Templeton A. R. Paleoecology and coalescence:phylogeographic analysis of hypotheses from the fossil record [J]. Trends in ecology & evolution (Personal edition),2000, 15(12):491-496
    [21]Cui Z. J., Gao Q. Z., Liu G. N. et al. Planation surfaces, palaeokarst and uplift of Xizang (Tibet) plateau [J]. Science in China Series D-Earth Sciences,1996,39(4):391
    [22]Dobrowski S. Z. A climatic basis for microrefugia: the influence of terrain on climate[J]. Global Change Biology,2011,17(2):1022-1035
    [23]Doyle J. J., Doyle J. L. A rapid DNA isolation procedure for small quantities of fresh leaf material [J]. Phytochemical Bulletin,1987,19:11-15
    [24]Dupanloup I., Schneider S., Excoffier L. A simulated annealing approach to define the genetic structure of populations [J]. Molecular Ecology,2002,11(12):2571-2581
    [25]Ennos R. A. Estimating the relative rates of pollen and seed migration among plant populations [J]. Heredity,1994,72(3):250-259
    [26]Evanno G., Regnaut S., Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study [J]. Molecular Ecology,2005,14(8): 2611-2620
    [27]Excoffier L., Laval G., Schneider S. Arlequin (version 3.0): an integrated software package for population genetics data analysis [J]. Evolutionary bioinformatics online,2005,1:47-50
    [28]Excoffier L. Patterns of DNA sequence diversity and genetic structure after a range expansion:lessons from the infinite-island model [J]. Molecular Ecology,2004,13(4):853-864
    [29]Fang X. M., Lu L. Q., Yang S. L. et al. Loess in Kunlun Mountains and its implications on desert development and Tibetan Plateau uplift in west China [J]. Science in China Series D-Earth Sciences,2002,45(4):289-299
    [30]Felsenstein J. Phylogenies from Molecular Sequences:Inference and Reliability [J]. Annual Review of Genetics,1988,22(1):521-565
    [31]Felsenstein J. Confidence Limits on Phylogenies:An Approach Using the Bootstrap [J]. Evolution,1985,39(4):783-791
    [32]Frenzel B., Brauning A., Adamczyk S. On the problem of possible last-glacial forest-refuge areas within the deep valleys of Eastern Tibet [J]. Erdkunde,2003,57:182-198
    [33]Fu Y. X. Statistical Tests of Neutrality of Mutations Against Population Growth, Hitchhiking and Background Selection [J]. Genetics,1997,147(2):915-925
    [34]Gao L. M., MOLler M., Zhang X. M. et al. High variation and strong phylogeographic pattern among cpDNA haplotypes in Taxus wallichiana (Taxaceae) in China and North Vietnam [J]. Molecular Ecology,2007,16(22):4684-4698
    [35]Gasse F., Arnold M., Fontes J. C. et al. A 13,000-Year Climate Record from Western Tibet [J]. Nature,1991,353(6346):742-745
    [36]Geffen E. L. I., Waidyaratne Sitara, DalEN Love et al. Sea ice occurrence predicts genetic isolation in the Arctic fox [J]. Molecular Ecology,2007,16(20):4241-4255
    [37]Godbout J., Jaramillo-Correa J. P., Beaulieu Jeanet al. A mitochondrial DNA minisatellite reveals the postglacial history of jack pine (Pinus banksiana), a broad-range North American conifer [J]. Molecular Ecology,2005,14(11):3497-3512
    [38]Goudet J. FSTAT (Version 1.2):A Computer Program to Calculate F-Statistics [J]. Journal of Heredity,1995,86(6):485-486
    [39]Grabherr G., Gottfried M., Pauli H. Climate Effects on Mountain Plants [J]. Nature,1994, 369(6480):448
    [40]Hall T. A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT [J]. Nucleic Acids Symposium Series,1999,41:95-98
    [41]Hansen J., Sato M., Ruedy R. et al. Global temperature change [J]. Proceedings of the National Academy of Sciences of the United States of America,2006,103(39):14288-14293
    [42]Harris H. Enzyme Polymorphisms in Man [J]. Proceedings of the Royal Society of London. Series B, Biological Sciences,1966,164(995):298-310
    [43]Harrison T. M., Copeland P., Kidd W. S. F. et al. Raising Tibet [J]. Science,1992, 255(5052):1663-1670
    [44]Hewitt G. M. Some genetic consequences of ice ages, and their role in divergence and speciation [J]. Biological Journal of the Linnean Society,1996,58(3):247-276
    [45]Hewitt G. M. Genetic consequences of climatic oscillations in the Quaternary [J]. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences,2004, 359(1442):183-195
    [46]Hewitt G. The genetic legacy of the Quaternary ice ages [J]. Nature,2000,405(6789): 907-913
    [47]Holderegger R., Thiel-Egenter C. A discussion of different types of glacial refugia used in mountain biogeography and phylogeography [J]. Journal of Biogeography,2009,36(3):476-480
    [48]Huelsenbeck J. P., Ronquist F., Nielsen R. et al. Bayesian Inference of Phylogeny and Its Impact on Evolutionary Biology [J]. Science,2001,294(5550):2310-2314
    [49]Huntley B. J., Webb T. Vegetation history [M]:Kluwer Academic Publishers,1988
    [50]Jump A. S., Matyas C., Penuelas J. The altitude-for-latitude disparity in the range retractions of woody species [J]. Trends in Ecology & Evolution,2009,24(12):694-701
    [51]Kapp P., DeCelles P. G., Gehrels G. E. et al. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet [J]. Geological Society of America Bulletin,2007,119(7-8):917-932
    [52]Kimura M. Estimation of evolutionary distances between homologous nucleotide sequences [J]. Proceedings of the National Academy of Sciences,1981,78(1):454-458
    [531 Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences [J]. Journal of Molecular Evolution,1980,16(2): 111-120
    [54]Kuhle M. Subtropical mountain- and highland-glaciation as ice age triggers and the waning of the glacial periods in the Pleistocene [J]. GeoJoumal,1987,14(4):393-421
    [55]Kuhle M. The cold deserts of high Asia (Tibet and contiguous mountains) [J]. GeoJournal, 1990,20(3):319-323
    [56]Lenoir J., Gegout J. C., Marquet P. A. et al. A significant upward shift in plant species optimum elevation during the 20th century [J]. Science,2008,320(5884):1768-1771
    [57]Li J. J., Fang X. M., Ma H. Z. et al. Geomorphological and environmental evolution in the upper reaches of the Yellow River during the late Cenozoic [J]. Science in China Series D-Earth Sciences,1996,39(4):380-390
    [58]Lindbladh M., O'Connor R., Jacobson G. L. Morphometric analysis of pollen grains for paleoecological studies:classification of Picea from eastern North America[J]. American Journal of Botany,2002,89(9):1459-1467
    [59]Lisiecki L. E., Raymo M. E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18 O records [J]. Paleoceanography,2005,20
    [60]Liu J-Q, Gao T-G, Chen Z-D et al. Molecular phylogeny and biogeography of the Qinghai-Tibet Plateau endemic Nannoglottis (Asteraceae) [J]. Molecular Phylogenetics and Evolution,2002,23(3):307-325
    [61]Liu K. B., Yao Z. J., Thompson L. G. A pollen record of Holocene climatic changes from the Dunde ice cap, Qinghai-Tibetan Plateau [J]. Geology,1998,26(2):135-138
    [62]Liu Shiyin, Wang Ninglian, Duan Keqin et al. Recent progress of glaciological studies in China [J]. Journal of Geographical Sciences,2004,14(4):401-410
    [63]Liu X. D., Yin Z. Y. Sensitivity of East Asian monsoon climate to the uplift of the Tibetan Plateau [J]. Palaeogeography Palaeoclimatology Palaeoecology,2002,183(3-4):223-245
    [64]Magri D., Fineschi S., Bellarosa R. et al. The distribution of Quercus suber chloroplast haplotypes matches the palaeogeographical history of the western Mediterranean [J]. Molecular Ecology,2007,16(24):5259-5266
    [65]Meng L. H., Yang R., Abbott R. J. et al. Mitochondrial and chloroplast phylogeography of Picea crassifolia Kom. (Pinaceae) in the Qinghai-Tibetan Plateau and adjacent highlands [J]. Molecular Ecology,2007,16(19):4128-4137
    [66]Molnar P., England P. Late Cenozoic uplift of mountain ranges and global climate change: chicken or egg? [J]. Nature,1990,346(6279):29-34
    [67]Myers N., Mittermeier R. A., Mittermeier C. G. et al. Biodiversity hotspots for conservation priorities [J]. Nature,2000,403(6772):853-858
    [68]Newton A. C., Allnutt T. R., Gillies A. C. M. et al. Molecular phylogeography, intraspecific variation and the conservation of tree species [J]. Trends in Ecology and Evolution (TREE),1999, 14(4):140-145
    [69]Ni J. A simulation of biomes on the Tibetan Plateau and their responses to global climate change [J]. Mountain Research and Development,2000,20(1):80-89
    [70]Opgenoorth L., Vendramin G. G., Mao K. S. et al. Tree endurance on the Tibetan Plateau marks the world's highest known tree line of the Last Glacial Maximum [J]. New Phytologist, 2010,185(1):332-342
    [71]Owen L. A., Robinson R., Benn D. I. et al. Quaternary glaciation of Mount Everest [J]. Quaternary Science Reviews,2009,28(15-16):1412-1433
    [72]Parmesan C. Ecological and evolutionary responses to recent climate change [J]. Annual Review of Ecology Evolution and Systematics,2006,37:637-669
    [73]Parmesan C., Yohe G. A globally coherent fingerprint of climate change impacts across natural systems [J]. Nature,2003,421(6918):37-42
    [74]Pearson Richard G. Climate change and the migration capacity of species [J]. Trends in Ecology & Evolution,2006,21(3):111-113
    [75]Petit R. J., Kremer A., Wagner D. B. Finite island model for organelle and nuclear genes in plants[J]. Heredity,1993,71(6):630-641
    [76]Petit R. J., Csaikl U. M., Bordacs S. et al. Chloroplast DNA variation in European white oaks:Phylogeography and patterns of diversity based on data from over 2600 populations [J]. Forest Ecology and Management,2002,156(1.-3):5-26
    [77]Petit R. J., Duminil J., Fineschi S. et al. INVITED REVIEW: Comparative organization of chloroplast, mitochondrial and nuclear diversity in plant populations [J]. Molecular Ecology,2005, 14(3):689-701
    [78]Petit R. J., Pineau E., Demesure B. et al. Chloroplast DNA footprints of postglacial recolonization by oaks [J]. Proceedings of the National Academy of Sciences,1997,94(18): 9996-10001
    [79]Polzin T., Daneshmand S. V. On Steiner trees and minimum spanning trees in hypergraphs [J]. Operations Research Letters,2003,31(1):12-20
    [80]Pons O., Petit R. J. Measuring and Testing Genetic Differentiation With Ordered Versus Unordered Alleles [J]. Genetics,1996,144(3):1237-1245
    [81]Posada D., Crandall K. A. MODELTEST: testing the model of DNA substitution [J]. Bioinformatics,1998,14(9):817-818
    [82]Pritchard J. K., Stephens M., Donnelly P. Inference of Population Structure Using Multilocus Genotype Data [J]. Genetics,2000,155(2):945-959
    [83]Rannala B. Yang Z. Probability distribution of molecular evolutionary trees:A new method of phylogenetic inference [J]. Journal of Molecular Evolution,1996,43(3):304-311
    [84]Rasanen K., Hendry A. P. Disentangling interactions between adaptive divergence and gene flow when ecology drives diversification [J]. Ecology Letters,2008,11(6):624-636
    [85]Raymo M. E., Ruddiman W. F. Tectonic Forcing of Late Cenozoic Climate [J]. Nature, 1992,359(6391):117-122
    [86]Richardson J. E., Fay M. F., Cronk Q. C. B. et al. A phyiogenetic analysis of Rhamnaceae using rbcL and tmL-F plastid DNA sequences [J]. American Journal of Botany,2000,87(9): 1309-1324
    [87]Richardson J. E., Pennington R. T., Pennington T. D. et al. Rapid diversification of a species-rich genus of neotropical rain forest trees [J]. Science,2001,293(5538):2242-2245
    [88]Rogers A. R., Harpending H. Population growth makes waves in the distribution of pairwise genetic differences [J]. Molecular Biology and Evolution,1992,9(3):552-569
    [89]Ronquist F., Huelsenbeck J. P. MrBayes 3:Bayesian phylogenetic inference under mixed models [J]. Bioinformatics,2003,19(12):1572-1574
    [90]Rousi A. The genus Hippophae Linn. A taxonomy study [J]. Annales Botanici Fennici,1971, 8(3):177-277
    [91]Rowley D. B., Currie B. S. Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibe t[J]. Nature,2006,439(7077):677-681
    [92]Royden L. H., Burchfiel B. C., van der Hilst R. D. The geological evolution of the Tibetan plateau [J]. Science,2008,321(5892):1054-1058
    [93]Rozas J., Sanchez-DelBarrio J. C., Messeguer X. et al. DnaSP, DNA polymorphism analyses by the coalescent and other methods [J]. Bioinformatics,2003,19(18):2496-2497
    [94]Rull V. Microrefugia [J]. Journal of Biogeography,2009,36(3):481-484
    [95]Rull V. On microrefugia and cryptic refugia [J]. Journal of Biogeography,2010,37(8): 1623-1625
    [96]Savolainen V., Chase M. W., Hoot S. B. et al. Phylogenetics of flowering plants based on combined analysis of plastid atpB and rbcL gene sequences [J]. Systematic Biology,2000,49(2): 306-362
    [97]Schneider S., Excoffier L. Estimation of Past Demographic Parameters From the Distribution of Pairwise Differences When the Mutation Rates Vary Among Sites:Application to Human Mitochondrial DNA [J]. Genetics,1999,152(3):1079-1089
    [98]Searle M. Plate-Tectonics-the Rise and Fall of Tibet[J]. Nature,1995,374(6517):17-18
    [99]Shafer A. B. A., Cullingham C. I., Cote S. D. et al. Of glaciers and refugia: a decade of study sheds new light on the phylogeography of northwestern North America [J]. Molecular Ecology,2010,19(21):4589-4621
    [100]Shi Y. F., Li J. J., Li B. Y. Uplift of the Qinghai-Xizang (Tibetan) Plateau and East Asia environmental change during late Cenozoic [J]. Acta Geographica Sinica,1999,54:10-20
    [101]Slatkin M., Hudson R. R. Pairwise Comparisons of Mitochondrial DNA Sequences in Stable and Exponentially Growing Populations [J]. Genetics,1991,129(2):555-562
    [102]Smith S. A., Donoghue M. J. Rates of Molecular Evolution Are Linked to Life History in Flowering Plants [J]. Science October,2008,322(5898):86-89
    [103]Soltis D. E., Soltis P. S., Morgan D. R. et al. Chloroplast gene sequence data suggest a single origin of the predisposition for symbiotic nitrogen fixation in angiosperms [J]. Proceedings of the National Academy of Sciences of the United States of America,1995,92(7):2647-2651
    [104]Soltis Douglas E., Soltis Pamela S., Nickrent Daniel L. et al. Angiosperm Phylogeny Inferred from 18S Ribosomal DNA Sequences[J]. Annals of the Missouri Botanical Garden,1997, 84(1):1-49
    [105]Song B-H., Wang X-Q., Wang X-R. et al. Cytoplasmic composition in Pinus densata and population establishment of the diploid hybrid pine [J]. Molecular Ecology,2003,12(11): 2995-3001
    [106]Spicer R. A., Harris N. B., Widdowson M. et al. Constant elevation of southern Tibet over the past 15 million years [J]. Nature,2003,421(6923):622-624
    [107]Stewart J. R., Lister A. M., Barnes I. et al. Refugia revisited:individualistic responses of species in space and time [J]. Proceedings of the Royal Society B:Biological Sciences,2010, 277(1682):661-671
    [108]Sun J. M. Stratigraphic evidence for the uplift of the Tibetan Plateau between similar to 1.1 and similar to 0.9 myr ago [J]. Quaternary Research,2000,54(3):309-320
    [109]Sun K., Chen X., Ma R. et al. Molecular phylogenetics of Hippophae L. (Elaeagnaceae) based on the internal transcribed spacer (ITS) sequences of nrDNA [J]. Plant Systematics and Evolution,2002,235(1-4):121-134
    [110]Sun Y-B., An Z-S. History and variability of Asian interior aridity recorded by eolian flux in the Chinese Loess Plateau during the past 7 Ma [J]. Science in China Series D:Earth Sciences, 2002,45(5):420-429
    [111]Swensen S. M. The evolution of actinorhizal symbioses:Evidence for multiple origins of the symbiotic association [J]. American Journal of Botany,1996,83(11):1503-1512
    [112]Swofford D. L. PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4.0. [M]. Sunderland, MA.:Sinauer Associates,2002
    [113]Taberlet P., Fumagalli L., Wust-Saucy A. et al. Comparative phylogeography and postglacial colonization routes in Europe [J]. Molecular Ecology,1998,7(4):453-464
    [114]Taberlet P., Gielly L., Pautou G. et al. Universal primers for amplification of three non-coding regions of chloroplast DNA [J]. Plant Molecular Biology,1991,17(5):1105-1109
    [115]Tajima F. Statistical Method for Testing the Neutral Mutation Hypothesis by DNA Polymorphism [J]. Genetics,1989,123(3):585-595
    [116]Tamura K., Dudley J., Nei M. et al. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0 [J]. Molecular Biology and Evolution,2007,24(8):1596-1599
    [117]Thomas C. D., Cameron A., Green R. E.et al. Extinction risk from climate change [J]. Nature,2004,427(6970):145-148
    [118]Thompson J. D., Gibson T. J., Plewniak F. et al. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools [J]. Nucl. Acids Res.,1997,25(24):4876-4882
    [119]Thompson L. G., Mosely-Thompson E., Davis M. E. et al. Holocene-Late Pleistocene Climatic Ice Core Records from Qinghai-Tibetan Plateau [J]. Science,1989,246(4929):474-477
    [120]Thompson L. G., Yao T., Davis M. E. et al. Tropical climate instability: The last glacial cycle from a Qinghai-Tibetan ice core [J]. Science,1997,276(5320):1821-1825
    [121]Thorne R. Classification and geography of the flowering plants [J]. The Botanical Review, 1992,58(3):225-327
    [122]Toumi L., Lumaret R. Allozyme variation in cork oak (Quercus suber L.):the role of phylogeography and genetic introgression by other Mediterranean oak species and human activities [J]. Theoretical and Applied Genetics,1998,97(4):647-656
    [123]Tremblay N. O., Schoen D. J. Molecular phylogeography of Dryas integrifolia: glacial refugia and postglacial recolonization [J]. Molecular Ecology,1999,8(7):1187-1198
    [124]Turner S., Hawkesworth C., Liu J. Q.et al. Timing of Tibetan Uplift Constrained by Analysis of Volcanic-Rocks [J]. Nature,1993,364(6432):50-54
    [125]Walther G. R., Post E., Convey P. et al. Ecological responses to recent climate change [J]. Nature,2002,416(6879):389-395
    [126]Wang C. S., Zhao X. X., Liu Z. F. et al. Constraints on the early uplift history of the Tibetan Plateau [J]. Proceedings of the National Academy of Sciences of the United States of America, 2008,105(13):4987-4992
    [127]Wang L. Y., Abbott R. J., Zheng W. et al. History and evolution of alpine plants endemic to the Qinghai-Tibetan Plateau: Aconitum gymnandrum (Ranunculaceae) [J]. Molecular Ecology, 2009,18(4):709-721
    [128]Yang F. S., Li Y. F., Ding X. et al. Extensive population expansion of Pedicularis longiflora (Orobanchaceae) on the Qinghai-Tibetan Plateau and its correlation with the Quaternary climate change [J]. Molecular Ecology,2008,17(23):5135-5145
    [129]Yang S. J., Dong H. L., Lei F. M. Phylogeography of regional fauna on the Tibetan Plateau: A review [J]. Progress in Natural Science,2009,19(7):789-799
    [130]Yang S. J., Yin Z. H., Ma X. M. et al. Phylogeography of ground tit (Pseudopodoces humilis) based on mtDNA:Evidence of past fragmentation on the Tibetan Plateau [J]. Molecular Phylogenetics and Evolution,2006,41(2):257-265
    [131]Yang X. G., Zhang T. J., Qin D. H. et al. Characteristics and Changes in Air Temperature and Glacier's Response on the North Slope of Mt. Qomolangma (Mt. Everest) [J]. Arctic, Antarctic, and Alpine Research,2011,43(1):147-160
    [132]Yao T. D., Thompson L. G., Mosley-Thompson E. et al. Climatological significance of δ18O in north Tibetan ice cores [J]. Journal of Geophysical Research,1996,101(D23):29531-29537
    [133]Zhang F. F., Jiang Z. G. Mitochondrial phylogeography and genetic diversity of Tibetan gazelle (Procapra picticaudata): Implications for conservation [J]. Molecular Phylogenetics and Evolution,2006,41(2):313-321
    [134]Zhang Q., Chiang T. Y., George M. et al. Phylogeography of the Qinghai-Tibetan Plateau endemic Juniperus przewalskii (Cupressaceae) inferred from chloroplast DNA sequence variation [J]. Molecular Ecology,2005,14(11):3513-3524
    [135]Zheng B. X. Quaternary glaciation of Mt. Qomolangma-Xixabangma region [J]. GeoJournal, 1988,17(4):525-543
    [136]Zheng Benxing, Rutter Nat. On the problem of Quaternary glaciations, and the extent and patterns of Pleistocene ice cover in the Qinghai-Xizang (Tibet) Plateau [J]. Quaternary International,1998,45-46:109-122
    [137]Zheng D. The system of physico-geographical regions of the Qinghai-Xizang (Tibet) plateau [J]. Science in China Series D-Earth Sciences,1996,39(4):410-417
    [138]Zhou Y., Wang H., Yang M. et al Development of microsatellites for Scirpus mariqueter Wang et Tang (Cyperaceae) and cross-species amplification in Scirpus planiculmis F. Schmidt [J]. Molecular Ecology Resources,2009,9(1):370-372
    [139]Zurawski G., Clegg M. T., Brown A. H. D. The nature of nucleotide sequence divergence between barley and maize chloroplast DNA [J]. Genetics,1984,106(4):735-749
    [140]晁无疾,杨立阁.中国沙棘染色体核型研究[J].沙棘,1989,1(1):14-16[141]陈隆勋,刘骥平,周秀骥等.青藏高原隆起及海陆分布变化对亚洲大陆气候的影响[J].第四纪研究,1999,19(4):314-329
    [142]陈学林,廉永善.沙棘属植物的分布格局及其成因[J].西北植物学报,1994,14(6):105-110
    [143]杜玉娟,王云瑾,杨洁等.中国沙棘×肋果沙棘自然杂交带的形态学分析[J].西北师范大学学报(自然科学版),2008,44(3):73-77
    [144]胡恩,易朝路,李艳军.珠穆朗玛峰绒布河谷冰碛地貌测量与演化研究[J].冰川冻土,2010,32(2):316-324
    [145]黄万波,计宏样.西藏三趾马动物群的首次发现及其对高原隆起的意义[J].科学通报,1979,24(19):885-888
    [146]康世吕,秦大河,Mayewski Paul A等.近200 a来珠穆朗玛峰北坡远东绒布冰芯气候记录[J].冰川冻土,2000,22(3):211-217
    [147]李炳元,李吉均.青藏高原第四纪冰川遗迹分布图[M].北京:科学出版社,]991
    [148]李炳元,王富葆,张青松等.西藏第四纪地质[M].北京:科学出版社,1983
    [149]李吉均,舒强,周尚哲等.中国第四纪冰川研究的回顾与展望[J].26,2004,3(235-243)
    [150]李吉均,文世宣,张青松等.青藏高原隆起的时代、幅度和形式的探讨[J].中国科学,1979,22(6):608-616
    [151]李吉均,郑本兴,徐叔鹰等.西藏冰川[M].北京:科学出版社,1986
    [152]李吉均,周尚哲,潘保田.青藏高原东部第四纪冰川问题[J].第四纪研究,1991,11(3):193-203
    [153]李鹏,李爱国,贾京京等.珠峰绒布河谷温度垂直分布观测研究[J].高原气象,2007,26(6):1254-1262
    [154]李生辰,徐亮,郭英香等.近34a青藏高原年降水变化及其分区[J].中国沙漠,2007,27(2):307-314
    [155]李艳军,易朝路,胡恩.珠穆朗玛峰绒布河谷微地貌研究[J].冰川冻土,2010,32(4):696-705
    [156]李寅生,尤代强,史玲芳.沙棘的形态学特征[A].见:黄铨于倬德.沙棘研究[M].北京:科学出版社,2006:49-55
    [157]廉永善,陈学林.沙棘属植物生物学和化学[M].兰州:甘肃科学技术出版社,2000
    [158]刘东生.黄土与环境[M]:科学出版社,1985
    [159]刘东生,张新时,熊尚发等.青藏高原冰期环境与冰期全球降温[J].第四纪研究,1999,19(5):385-396
    [160]刘东生,郑绵平,郭正堂.亚洲季风系统的起源和发展及其与两极冰盖和区域构造运动的时代耦合性[J].第四纪研究,1998,18(3):194-204
    [161]马舒坡,周立波,王维.珠穆朗玛峰北坡绒布河谷地面风特征的初步分析[J].气候与环境研究,2008,13(2):189-198
    [162]聂勇,张镱锂,刘林山等.近30年珠穆朗玛峰国家自然保护区冰川变化的遥感监测[J].地理学报,2010,65(1):13-28
    [163]任贾文,秦大河,井哲帆.气候变暖使珠穆朗玛峰地区冰川处于退缩状态[J].冰川冻土,1998,20(2):17-18
    [164]施雅风.对青藏高原末次冰盛期降温值、平衡线下降值与模拟结果的讨论[J].第四纪研究,2002,22(4):312-322
    [165]施雅风,崔之久,郑本兴.希夏邦马峰地区冰期探讨[A].希夏邦马峰地区科学考察报告[M].北京:科学出版社,1982:155-176
    [166]施雅风,李吉均,李炳元.青藏高原晚新生代隆升与环境变化[M].广州:广东科技出版社,1998
    [167]施雅风,郑本兴,姚檀栋.青藏高原末次冰期最盛时的冰川与环境[J].冰川冻土,1997,19(2):97-113
    [168]孙航,李志敏.古地中海植物区系在青藏高原隆起后的演变和发展[J].地球科学进展,2003,18(6):11
    [169]唐领余,沈才明.青藏高原晚新生代植被史及其气候特征[J].微体古生物学报,1996,13(4):321.-337
    [170]吴征镒.西藏植物区系的起源及其演化[A].见:吴征镒.西藏植物志[M].北京:科学出版社,1988
    [171]吴征镒,王荷生.中国自然地理——植物地理(上册)[M].科学出版社:北京,1983
    [172]武素功,杨永平,费勇.青藏高原高寒地区种子植物区系的研究[J].云南植物研究,1995,17(3):233-250
    [173]徐仁,陶君容,孙湘君.希夏邦马峰高山栎化石层的发现及其在植物学和地质学上的意义[J].植物学报,1973,15(1):103-119
    [174]杨兴国,秦大河,张廷军等.珠穆朗玛峰北坡绒布冰川表而辐射特征观测研究[J].气象学报,2010,68(1):19-31
    [175]杨续超,张镱锂,张玮等.珠穆朗玛峰地区近34年来气候变化[J].地理学报,2006,61(7):687-696
    [176]姚檀栋,Thompson L. G.,施雅风等.古里雅冰芯中末次间冰期以来气候变化记录研究
    [J].中国科学(D辑),1997,27(5):447-452
    [177]姚檀栋,王宁练.冰芯研究的过去、现在和未来[J].科学通报,1997,42(3):225-230
    [178]郑本兴,施雅风.珠穆朗玛峰地区第四纪冰期探讨[A].见:中国科学院西藏科学考察
    队.珠穆朗玛峰地区科学考察报告(1966~1968):第四纪地质[M].北京:科学出版社,1976:218-226
    [179]中国珠朗玛峰登山队科学考察队.珠穆朗玛峰地区科学考察报告[M].北京:科学出版社,1962
    [180]周浙昆,杨青松,夏珂.栎属高山栎组植物化石推测青藏高原的隆起[J].科学通报,2007,52(3):249-257
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.