三维有限元分析在成人髋臼发育不良和全髋置换研究中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分成人髋臼发育不良三维有限元模型构建及其力学分析
     目的研究正常成人髋关节和髋臼发育不良成人髋关节三维有限元模型的构建,并通过有限元分析探讨其关节应力分布的变化。
     方法根据成人正常髋关节和不同类型髋臼发育不良髋关节薄层CT扫描数据,运用Mimics10.0软件进行三维重建,利用有限元分析软件ANSYS10.0构建成人正常髋关节和不同类型髋臼发育不良髋关节三维有限元模型。模拟并加载关节负荷,分析计算缓慢行走单足着地状态下关节软骨和软骨下骨的Von Mises应力分布及传递。
     结果所构建髋关节三维有限元模型能逼真反映成人正常髋关节和不同类型髋臼发育不良患者髋关节的真实几何形态及其生物力学特点。在正常髋关节、发育不良型、低位脱位型髋关节中,接触应力均发生在股骨头软骨最上部及与其相对应的髋臼软骨顶穹部。在髋臼发育不良型和低位脱位型髋关节中,在髋臼软骨的后上缘区域存在较高的接触应力区。在正常髋关节中,股骨头软骨的上方负重区及髋臼软骨的顶穹部峰值Von Mises应力分别为2.02MPa和2.37MPa。在发育不良型髋关节中,股骨头软骨及髋臼软骨峰值Von Mises应力分别为4.23MPa和5.43MPa;在低位脱位型髋关节中,股骨头软骨及髋臼软骨峰值Von Mises应力分别为8.45MPa和10.32MPa。高位脱位型髋关节中,股骨头软骨峰值Von Mises应力为8.67MPa,而由于真臼软骨失去股骨头的接触,故峰值Von Mises应力则反而下降为0.59MPa。在正常髋关节、发育不良型、低位脱位型髋关节中髋臼软骨下骨的应力分布与关节表面的接触应力分布相似。即应力主要集中在髋臼软骨下骨的顶穹部,并以放射状分布向周边逐渐减弱。4种髋关节模型股骨侧应力传递是从股骨头经股骨颈到近段股骨的内上侧,股骨颈内侧小转子上方股骨距区存在较高的压应力分布区。正常髋关节、发育不良型、低位脱位型髋关节中,股骨头软骨下骨应力集中区均发生在股骨头最上四分之一象限,接近于矢状轴的尖部;高位脱位型髋关节中,股骨头软骨下骨应力集中区则位于股骨头前内四分之一象限。在正常髋关节中,股骨头和髋臼软骨下骨峰值Von Mises应力分别为8.65MPa和2.52MPa;在发育不良型髋关节中,股骨头和髋臼软骨下骨峰值Von Mises应力分别为8.92MPa和2.73MPa;在低位脱位型髋关节中,股骨头和髋臼软骨下骨峰值Von Mises应力分别为10.65MPa和4.02MPa;高位脱位型髋关节中,股骨头软骨下骨和假臼峰值Von Mises应力分别为8.17MPa和8.59 MPa。
     结论通过薄层CT数据构建的成人正常髋关节和不同类型髋臼发育不良髋关节三维有限元模型具有较高的仿真度,该模型能够模拟分析髋关节应力分布,为研究成人髋臼发育不良的生物力学行为和进行相关力学基础研究提供了精确模型。
     第二部分髋中心内移全髋置换的三维有限元分析
     目的建立以不同髋中心内移全髋置换术后三维有限元模型,分析研究髋中心内移对假体Von Mises应力分布的影响,为临床应用髋中心内移技术提供理论依据。
     方法根据正常成人薄层CT扫描数据重建髋臼模型,按假体的各项参数建立髋臼假体模型,运用布尔运算模拟临床手术要求进行打磨髋臼,植入假体。建立不同髋中心植入髋臼假体的全髋关节置换术后三维有限元模型,模拟并加载关节负荷,分析研究聚乙烯内衬和股骨假体头颈结合部的Von Mises应力分布。
     结果在缓慢行走单足着地状态载荷下,髋臼中心内移影响聚乙烯内衬和假体头颈结合部的应力分布,在聚乙烯应力主要集中在内衬的内面,而背面无明显应力集中。正常髋臼中心放置时,聚乙烯内衬峰值Von Mises应力为4.24MPa,假体头颈结合部峰值Von Mises应力为17.02MPa;当髋中心内移后假体内壁距离K?hler线3mm时,聚乙烯内衬峰值Von Mises应力为4.35MPa,假体头颈结合部峰值Von Mises应力为17.78 MPa,分别较正常髋中心时增大2.59%和4.47%;髋中心内移后假体内壁接触K?hler线时,聚乙烯内衬峰值Von Mises应力为4.70MPa,假体头颈结合部峰值Von Mises应力为18.93MPa,分别较正常髋中心时增大10.85%和11.22%;髋中心内移后假体内壁超过K?hler线3mm时,聚乙烯内衬峰值Von Mises应力为4.97MPa,假体头颈结合部峰值Von Mises应力为20.50MPa,分别较正常髋中心时增大17.22%和20.45%;髋中心内移后假体内壁超过K?hler线6mm时,聚乙烯内衬峰值Von Mises应力为5.67MPa,假体头颈结合部峰值Von Mises应力为25.36 MPa,分别较正常髋中心时增大33.73%和49.00%。
     结论聚己烯内衬和假体头颈结合部峰值Von Mises应力随髋中心内移距离的增加而增大,当假体内壁超过K?hler线后,峰值Von Mises应力明显增大。
     第三部分不同前倾角股骨假体植入的三维有限元分析
     目的建立以不同前倾角植入股骨假体的全髋关节置换术后三维有限元模型,分析研究不同前倾角植入股骨假体后,股骨和假体应力分布以及假体初始微动,为临床提供理论依据。
     方法根据正常成人薄层CT扫描数据重建股骨模型,按股骨假体的各项参数建立股骨假体模型,模拟临床手术要求进行截骨,以0°、15°和30°前倾角植入股骨假体,建立全髋关节置换术后股骨侧三维有限元模型,模拟并加载关节负荷,分析不同前倾角假体植入后股骨及假体Von Mises应力分布,假体界面主应力、剪切力分布和假体初始微动的改变。
     结果(1)假体植入后,股骨所承受的负荷主要通过假体传向股骨远段,股骨近段大粗隆区域和股骨距区域应力减少,在假体柄端区的骨质表现出高应力,股骨干中远段出现应力集中现象。股骨假体以0°和30°前倾角植入较15°前倾角植入,股骨近段所承受的负荷减小,而在假体柄端远侧区域出现应力集中现象明显。15°前倾角植入时高应力的位置为股骨的内外侧,而0°和30°前倾角植入时高应力的位置逐渐向前后侧转移,改变了正常股骨在承受假体载荷后所表现的内侧的压应变和外侧的张应变的受力模式。(2)股骨假体以0°和30°前倾角植入较15°前倾角植入,股骨假体各部分的Von Mises应力增大,在假体颈部出现应力集中现象严重。不同前倾角股骨假体植入后,股骨假体界面应力发生变化,0°和30°前倾角植入时股骨假体界面主应力和剪切力分别比15°前倾角植入时增大。(3)在股骨近段,假体周围的骨质应力维持于低水平,而假体承受了绝大部分的应力,形成了应力遮挡。股骨假体以0°和30°前倾角植入时,在截骨平面的股骨大粗隆和股骨距区域承受的载荷较15°前倾角植入时承受的载荷减小;在截骨平面的假体承受的载荷较15°前倾角植入时假体承受的载荷增加。在股骨外侧大粗隆区域和股骨距区域应力减少,产生严重的应力遮挡,以15°前倾角植入时应力遮挡最小。(4)股骨假体以0°和30°前倾角植入时,股骨假体各部分的初始微动较15°前倾角植入时增大。
     结论全髋置换术后股骨近段产生应力遮挡,在假体柄端远侧区域出现应力集中现象。股骨假体以15°前倾角植入假体将获得最佳的近段匹配,使股骨近段获得更多的载荷,有效降低股骨及假体应力集中、应力遮挡、假体界面应力和假体初始微动,有利于骨长入及远期稳定。
Part 1 Three-dimensional Finite Element Model of the Adults Developmental Dysplasia of the Hip:construction and stress analysis
     Objective To construct three-dimensional (3D) finite element models of the normal hip and adults developmental dysplasia of the hip and analyze stress distributions in the hips of different types.
     Methods 3D models of the normal human hip and different type adults developmental dysplasia of the hips were constructed from lamellar CT images with Mimics software, and then converted to 3D finite element units by Ansys10.0 software. Mechanical parameters were used to construct 3D finite element hip models. With the application of hip joint loading, stress changes of hips were measured. The models were tested and their stress distributions were compared.
     Results The constructed 3D finite element hip models clearly reflected the rea1 hip anatomy and biomechanica1 behavior of patients.The magnitudes of peak contact pressure differed between apposed articular surfaces of different type hips. It was found that the pressure concentrated at the superior dome cartilage of femoral head and acetabulum in normal、dysplasia and low dislocation models. There were some redundant high pressure occurred at the area near posterior-superior rim only in the dysplastic and hip low dislocation models. In high dislocation model, there were high pressure occurred at the area near front-superior dome cartilage of femoral head, and there is no contact ressure occurred at the area of cartilage of real acetabulum. In the normal hip the hightest Von Mises stress of cartilage of femoral head and acetabulum were 2.02 MPa and 2.37 MPa; In the dysplasia hip the hightest Von Mises stress of cartilage of femoral head and acetabulum were 4.23 MPa and 5.43 MPa; In the low dislocation hip the hightest Von Mises stress of cartilage of femoral head and acetabulum were 8.45 MPa and 10.32 MPa; In the high dislocation hip the hightest Von Mises stress of cartilage of femoral head and acetabulum were 8.67 MPa and 0.59 MPa. The distribution of bone below cartilage in femoral head and acetabulum were like it of cartilage of femoral head and acetabulum, There were some redundant high pressure occurred at the area near posterior-superior rim only in the dysplastic hip and low dislocation models. In the normal hip the hightest Von Mises stress of femoral head and acetabulum below cartilage were 8.65 MPa and 2.52 MPa; In the dysplasia hip the hightest Von Mises stress of femoral head and acetabulum below cartilage were 8.92 MPa and 2.73 MPa; In the low dislocation hip the hightest Von Mises stress of femoral head and acetabulum below cartilage were 10.65 MPa and 4.02 MPa; In the high dislocation hip the hightest Von Mises stress of femoral head below cartilage and fake acetabulum were 8.17 MPa and 8.59 MPa.
     Conclusion An more precise 3D finite element model of nomal and adults developmental dysplasia of the hip acetabulum can be constructed with lamellar CT images and Mimics software.and also provides a reasonably and efective model for biomechanical analysis of adults developmental dysplasia of the hip.
     Part 2 Finite Element Analysis of Acetabular Ingression Insert in Total Hip Replacement
     Objective To construct three-dimensional(3D) finite element models of acetabular ingression insert in total hip replacement , and analyze the stress distributions in the prothesis and to provide a theoretical basis for clinical work.
    
     Methods 3D models of the normal human acetabulum was constructed from lamellar CT images and acetabular prosthesis was developed through AUTOCAD by actual parameter. 3D finite element models of different center acetabular prothesis which were impacted according clinic operate were developed. With the application of hip joint loading, stress changes of prothesis were measured. The models were tested and their stress distributions were compared.
     Results The center of acetabular prothesis affected the resulting contact stress markedly.The peak contact stress values were found in the inner surface of polyethylene. The more distance ingression insert, the higher contact stress occure in polyethylene and linked part of prothesis neck and head. When acetabular in normal center, the hightest Von Mises stress in inner surface of polyethylene was 4.24 MPa and linked part of prothesis’neck and head was 17.02 MPa; When there is 3 mm between acetabular and iliopectineal line, the hightest Von Mises stress in inner surface of polyethylene was 4.35 MPa and linked part of prothesis’neck and head was 17.78 MPa , increased 2.59% and 4.47%; When acetabular prothesis attach iliopectineal line, the hightest Von Mises stress in inner surface of polyethylene was 4.70 MPa and linked part of prothesis’neck and head was 18.93 MPa, increased 10.85% and 11.22%; When acetabular prothesis overtopping iliopectineal line 3mm, the hightest Von Mises stress in inner surface of polyethylene was 4.97 MPa and linked part of prothesis’neck and head was 20.50 MPa, increased 17.22% and 20.45%; When acetabular prothesis overtopping iliopectineal line 6mm, the hightest Von Mises stress in inner surface of polyethylene was 5.67 MPa and linked part of prothesis’neck and head was 25.36 MPa, increased 33.73% and 49.00%.
     Conclusion When acetabular ingression insert in total hip replacement, higher contact stress values were occured in the inner surface of polyethylene and linked part of prothesis’neck and head . When prothesis exceed iliopectineal line, contact stress values were increased obviously.
     Part 3 Finite Element Analysis of Different Anteversion Insert Femoral Prothesis in Total Hip Replacement
     Objective To construct three-dimensional(3D) finite element models of the different anteversion insert femoral prothesis in total hip replacement and analyze the stress distributions in femur and prothesis, and to provide a theoretical basis for clinical work.
     Methods 3D models of the normal human femur was developed through lamellar CT images and femoral prosthesis was developed through AUTOCAD according actual parameter. 3D finite element models of different anteversion insert femoral prothesis which were impacted according clinical operation. With the application of hip joint loading, quantitatively measure stress changes of femur and femoral prothesis were measured.
     Results (1) Compared with intact femur, insertion of femoral prothesis into the femoral canal decreased the proximal femoral stresses level, especially in calcar femorale and femoral tuberositas. However, the stress in the bone near the prosthisis distal end augmented. The stress of 0°and 30°anteversion angle insert femoral prothesis were smaller in calcar femorale, femoral tuberositas, higher in the bone near the prosthisis distal than that of 15°. (2)There were higher stress in femoral prothesis of 0°and 30°anteversion angle insert femoral prothesis than that of 15°. There were higher stress in interface-load of 0°and 30°anteversion angle insert femoral prothesis than that of 15°. (3) In the plane of osteotomy, insertion of femoral prothesis into the femoral canal decreased the proximal femoral stresses level, especially in calcar femorale and femoral tuberositas, the prothesis bear more stress. This phenomenon were obvious in the model of 0°and 30°anteversion angle insert. (4) The micromotion of prothesis were higher in the prothesis of 0°and 30°anteversion angle insert, compared with 15°anteversion angle insert.
     Conclusion Insertion of implants induced significant stress shielding in the proximal femur, especially at calcar femorale and femoral tuberositas, concentrated in the prosthesis distal end. In the 15°anteversion angle insert femoral prothesis model, the load distribution is even, micromotion is low, stability is high, so it has excellent biomechanics characteristics.
引文
1.裴国献,张元智.数字骨科学:一门骨科学新分支的萌生.中华创伤骨科杂志,2007;9(7):601-604.
    2.裴国献.数字骨科学概念与临床初步应用.中华创伤骨科杂志,2008;10(2):101- 102.
    3.王成焘.中国力学虚拟人.医用生物力学,2006;21(3):172-178.
    4.王成焘,白雪岭.骨相关外科中的数字技术.中华创伤骨科杂志,2008;10(2):103-108.
    5. Trousdale RT, Ekkernkamp A, Ganz R, et al. Periacetabular and intertrochanteric osteotomy for the treatment of osteoarthrosis in dysplastic hips. J Bone Joint Surg (Am), 1995;77(1):73-85.
    6. Eisenhart V R, Eckstein F, Muller G M, et al. Direct comparison of contact areas, contact stress and subchondral mineralization in human hip joint specimens.Anat Embryol (Berl) ,1997; 195(3):279-288.
    7. Brand RA, Pedersen DR, Davy DT, et al.Comparison of hip force calculations and measurements in the same patient. J Arthroplasty, 1994; 9(1):45-51.
    8. Michaeli DA, Murphy SB, Hipp JA, et al. Comparison of predicted and measured contact pressures in normal and dysplastic hips. Med Eng Phys, 1997; 19(2):180-186.
    9. Pedersen DR, Brand RA, Davy DT, et al. Pelvic muscle and acetabular contact forces during gait. J Biomech, 1997; 30(9):959-965.
    10. Hadley NA, Brown TD, Weinstein SL, et al. The effects of contact pressure elevations and aseptic necrosis on the long-term outcome of congenital hip dislocation. J Orthop Res, 1990; 8(4):504-513.
    11. Konrath GA, Hamel AJ, Guerin J, et al. Biomechanical evaluation of impaction fractures of the femoral head.J Orthop Trauma, 1999;13(6):407-413.
    12. Maxian TA, Brown TD, Weinstein SL, et al. Chronic stress tolerance levels for humanarticular cartilage: two nonuniform contact models applied to long-term follow-up of CDH. J Biomech, 1995; 28(2):159-166.
    13.刘广建. UHMWPE髋臼的厚度对摩擦磨损的影响研究.中国生物医学工程学报,2005;24(5):611-613.
    14.严世贵,吴浩渡,陈维善,等.全髋关节置换后聚乙烯内衬应力的弹塑性有限元分析.中华骨科杂志,2004;24(4):211-215.
    15. Massin P, Astoin E, Lavaste F. Influence of proximal stem geometry and stem.cement interface characteristics on bone and cement stresses in femoral hip arthroplasty:finite element analysis.Rev Chir Orthop Reparatrice Appar Mot,2003;89(2):134-143.
    16. Mak MM, Besong AA, Jin ZM, et al. Effect of microseparation on contact mechanics in ceramic-on-ceramic hip joint replacements. Proc Inst Mech Eng, 2002;216(6): 403- 408.
    17. Peter B, Ramaniraka N, Rakotomanana LR, et al. Peri-implant bone remodeling after total hip replacement combined with systemic alendronate treatment: a finite element analysis.Comput Methods Biomech Biomed Eng, 2004;7(2):73-78.
    18. Bergmann G, Graichen F, Rohlmann A, et al. Frictional heating of total hip implants. Part 2:finite element study. J Biomech, 2001;34(4): 429-435.
    19.戴雪松,严世贵,何荣新,等.全髋关节置换术中的髋臼外展角和磨损的关系.中华骨科杂志,2002;22(5):257-260.
    1. Trousdale RT, Ekkernkamp A, Ganz R, et al. Periacetabular and intertrochanteric osteotomy for the treatment of osteoarthrosis in dysplastic hips. J Bone Joint Surg (Am), 1995;77(1):73-85.
    2.胡罢生,张雪林,周锋,等.多层螺旋CT扫描三维重建后逐层显示解剖结构及临床意义.中国临床解剖学杂志,2006;24(1):47-49.
    3.王志杰,丁自海,钟世镇.有限元法在骨应力分析及骨科内外固定系统研究中的应用.中国临床解剖学杂志,2006;24(1):107-110.
    4. Shim VB,Pitto RP,Streicher RM,et a1.The use of sparse CT datasets for auto-generating accurate FE models of the femur and pelvis. J Biomech ,2007;40(1):26-35.
    5. Shivanna KH: Automating patient-specific diarthrodial joint contact model development. In Department of Biomedical Engineering Volume Ph.D. Iowa City, University of Iowa; 2006.
    6. Russell ME, Shivanna KH, Grosland NM, et al. Cartilage contact pressure elevations in dysplastic hips: a chronic overload model. J Orthop Surg, 2006; 1: 6.
    7. Wei HW, Sun SS, Jao SH,et al. The influence of mechanical properties of subchondral plate, femoral head and neck on dynamic stress distribution of the articular cartilage. Med Eng Phys, 2005;27(4):295-304.
    8. Herman S, Jakli A, Herman S, et a1. Hip stress reduction after chiari osteotomy. Med Biol Eng Comput, 2002;40(4):369-75.
    9. Hipp JA,Sugano N,Millis MB,et a1. Planning acetabular redirection osteotomies based on joint contact pressures. Clin Orthop Relat Res, 1999;364(7):134-143.
    10. Taylor ME, Tanner KE, Freemen MA. Stress and strain distribution within the intact femur: compression or bending? Med Eng Phys, 1996; 18(2): 122-131.
    11. Mann KA, Bartel DL, Wright TM,et a1. Coulomb frictional interfaces in modeling cemented total hip replacements: a more realistic mode1.J Biomech, 1995;28(9): 1067-1078.
    12.裴国献,张元智.数字骨科学:一门骨科学新分支的萌生.中华创伤骨科杂志,2007;9(7):601-604.
    13. Yoshida H, Faust A, Wilckens J, et al. Three-dimensional dynamic hip contact area and pressure distribution during activities of daily living. J Biomech. 2006;39(11): 1996-2004.
    14. Brown TD, Hild GL. Pre-collapse stress redistributions in femoral head osteonecrosis--a three-dimensional finite element analysis. J Biomech Eng, 1983; 105 (2):171-176.
    15.陈奕芩,许瑞廷,赖国安,等.不同负荷形态对股骨头缺血性坏死影响的有限元素分析.中华创伤骨科杂志,2007;9(6):515-518.
    16.安梅岩,马爱军,李莹辉,等.有限元法计算大鼠胫骨骨密度变化.航天医学与医学工程,2005;18(1):55-57.
    17. Bockman RS, Weineman SA. Steroid-induced osteoporosis. Orthop Clin North Am, 1990; 21(1):97-107.
    18. D'Lima DD, Urquhart AG, Buehler KO, et a1. The effect of the orientation of the acetabular and femoral components on the range of motion of the hip at different head-neck ratios. J Bone Joint Surg(Am), 2000;82(3):3l5-321.
    19.严世贵,吴浩波,陈维善,等.全髋关节置换后聚乙烯内衬应力的弹塑性有限元分析.中华骨科杂志,2004,24(4):211-215.
    20.郑晓雯,孟惠荣.人工髋关节置换后股骨柄应力的有限元分析.西安科技大学学报,2004;24(4):459-462.
    21. Trousdale RT, Ekkernkamp A, Ganz R, et al. Periacetabular and intertrochanteric osteotomy for the treatment of osteoarthrosis in dysplastic hips. J Bone Joint Surg (Am), 1995;77(1):73-85.
    22. Maxian TA, Brown TD, Weinstein SL. Chronic stress tolerance levels for human articular cartilage: two nonuniform contact models applied to long-term follow-up of CDH. J Biomech. 1995;28(2):159-166.
    23. Brand RA, Pedersen DR, Davy DT, et al. Comparison of hip force calculations and measurements in the same patient.J Arthroplasty, 1994;9(1):45-51.
    24. Michaeli DA, Murphy SB, Hipp JA. Comparison of predicted and measured contact pressures in normal and dysplastic hips.Med Eng Phys. 1997;19(2):180-186.
    25. Pedersen DR, Brand RA, Davy DT.Pelvic muscle and acetabular contact forces during gait. J Biomech, 1997;30(9):959-965.
    26. Hadley NA, Brown TD, Weinstein SL. The effects of contact pressure elevations and aseptic necrosis on the long-term outcome of congenital hip dislocation. J Orthop Res, 1990; 8(4):504-513.
    27. Konrath GA, Hamel AJ, Guerin J, et al. Biomechanical evaluation of impaction fractures of the femoral head. J Orthop Trauma,1999;13(6):407-413.
    28. Von Eisenhart-Rothe R, Eckstein F, Müller-Gerbl M, et al. Direct comparison of contact areas, contact stress and subchondral mineralization in human hip joint specimens.Anat Embryol (Berl), 1997;195(3):279-288.
    29. Escott EJ, Rubinstein D.Informatics in radiology (infoRAD): free DICOM image viewing and processing software for the Macintosh computer: what's available and what it can do for you. Radiographics, 2004;24(6):1763-1777.
    30. Jang SH, Kim WY. Defining a new annotation object for DICOM image:a practical approach. Comput Med Imaging Graph,2004;28(7):371-375.
    31. Anderson AE, Peters CL, Tuttle BD, et a1. Subject-specific finite element model of the pelvis: development, validation and sensitivity studies.J Biomech Eng, 2005; 127 (3):364-373.
    32.苏佳灿,张春才,陈学强,等.骨盆及髋臼三维有限元模型材料属性设定及其生物力学意义.中国临床康复,2005,9(2):71-73.
    33.杨安礼,蔡珉巍,洪水棕,等.站、坐位态骨盆应力分布的实验研究.生物医学工程与临床,2002;6(4):206-208.
    34. Konrath GA, Hamel AJ, Guerin J, et al. Biomechanical evaluation of impaction fractures of the femoral head. J Orthop Trauma, 1999;13(6):407-413.
    35. Olson SA, Bay BK, Pollak AN, et al. The effect of variable size posterior wall acetabular fractures on contact characteristics of the hip joint. J Orthop Trauma. 1996; 10(6):395-402.
    36. Mavcic B, Antolic V, Brand R, et al. Peak contact stress in human hip during gait. Pflugers Arch, 2000;440(5 Suppl):177-178.
    37. Bergmann G, Graichen F, Rohlmann A. Hip joint loading during walking and running: mesurmed in twopatients. J Biomech, 1993;26(8):969-990.
    38. Kim YJ, Bonassar LJ, Grodzinsky AJ.The role of cartilage streaming potential, fluid flow and pressure in the stimulation of chondrocyte biosynthesis during dynamic compression.J Biomech, 1995; 28(9): 1055-1066.
    39. Brown TD, Radin EL, Martin RB, et al. Finite element studies of some juxtarticular stress changes due to localized subchondral stiffening.J Biomech, 1984;17(1):11-24.
    1. Sanchez-Sotelo J, Trousdale RT, Berry DJ, et al. Surgical treatment of developmental dysplasia of the hip in adults: I. Nonarthroplasty options.J Am Acad Orthop Surg, 2002;10(5):321-333.
    2. Stans AA, Pagnano MW, Shaughnessy WJ, et al. Results of total hip arthroplasty for Crowe Type III developmental hip dysplasia.Clin Orthop Relat Res, 1998; (348): 149-157.
    3. Kerboull M, Hamadouche M, Kerboull L. Total hip arthroplasty for Crowe type IV developmental hip dysplasia: a long-term follow-up study.J Arthroplasty, 2001;16(8 Suppl 1):170-176.
    4. Dorr LD, Tawakkol S, Moorthy M, et al. Medial Protrusio Technique for Placement of a Porous-Coated, Hemispherical Acetabular Component without Cement in a TotalHip Arthroplasty in Patients Who Have Acetabular Dysplasia. J Bone Joint Surg(Am), 1999;81(1):83-92.
    5.严世贵,吴浩波,陈维善,等.全髋关节置换后聚乙烯内衬应力的弹塑性有限元分析.中华骨科杂志,2004;24(4):211-215.
    6. Stolk J, Verdonschot N, Cristofolini L, et al. Finite element and experimental models of cemented hip joint reconstructions can produce similar bone and cement strains in pre-clinical tests. J Biomech, 2002;35(4):499-510.
    7. Kurtz SM, Rimnac CM, Santner TJ, et al. Exponential model for the tensile true stress-strain behavior of as-irradiated and oxidatively degraded ultra high molecular weight polyethylene. J Orthop Res,1996;14(5):755-761.
    8. Taylor ME, Tanner KE, Freemen MA. Stress and strain distribution within the intact femur: compression or bending? Med Eng Phys, 1996; 18(2): 122-131.
    9. Phillips ATM. Numerical modelling of the pelvis and acetabular construct following hip arthroplasty. PhD thesis, The University of Edinburgh, 2005.
    10. Barrack RL, Burnett SJ.Preoperative planning for revision total hip arthroplasty.J Bone Joint Surg (Am), 2005;87(12):2800-2811.
    11. Silva M, Lee KH, Heisel C, et al. The biomechanical results of total hip resurfacing arthroplasty.J Bone Joint Surg (Am), 2004;86(1):40-46.
    12.郭艾,王志义,罗先正,等.先天性髋关节脱位的全髋置换术.中华骨科杂志,2002;22(9):517-520.
    13. Huo MH, Zurauskas A, Zatorska LE, et al. Cementless total hip replacement in patients with developmental dysplasia of the hip. J South Orthop Assoc, 1998; 7(3): 171-179.
    14. Hartofilakidis G, Karachalios T. Total hip arthroplasty for congenital hip disease.J Bone Joint Surg (Am),2004;86(2):242-250.
    15. Bolder SB, Melenhorst J, Gardeniers JW, et al. Cemented total hip arthroplasty with impacted morcellized bone-grafts to restore acetabular bone defects in congenital hip dysplasia.J Arthroplasty, 2001;16(8suppl 1): 164-169.
    16. Gross AE, Dust WN. Acute polyethylene fracture in an uncemented acetabular cup .Can J Surg, 1997;40(4):310-312.
    17. Maxian TA, Brown TD, Pedersen DR, et al. A sliding-distance-coupled finite element formulation for polyethylene wear in total hip arthroplasty.J Biomech, 1996;29(5): 687-692.
    18. McNie CM, Barton DC, Fisher J, et al. Modeling of damage to articulating surfaces by third body particles in total joint replacements. J Mater Sci Mater Med, 2000;11(9): 569-578.
    19. Johnston RC, Brand RA, Crowninshield RD.Reconstruction of the hip. A mathematical approach to determine optimum geometric relationships. J Bone Joint Surg (Am), 1979;61(5):639–652.
    20. Collier JP, Surprenant VA, Jensen RE, et al. Corrosion between the components of modular femoral hip prostheses.J Bone Joint Surg(Br), 1992 ;74(4):511-517.
    21. Goldberg JR, Gilbert JL, Jacobs JJ, et al. A multicenter retrieval study of the taper interfaces of modular hip prostheses. Clin Orthop Relat Res, 2002;(401):149-161.
    22. Hofmann AA, Bolognesi M, Lahav A, et al. Minimizing leg-length inequality in total hip arthroplasty: use of preoperative templating and an intraoperative x-ray.Am J Orthop, 2008 Jan;37(1):18-23.
    23. Maloney WJ, Keeney JA. Leg length discrepancy after total hip arthroplasty. J Arthroplasty, 2004;19(4 Suppl 1):108-110.
    24. Suh KT, Cheon SJ, Kim DW. Comparison of preoperative templating with postoperative assessment in cementless total hip arthroplasty. Acta Orthop Scand, 2004, 75(1): 40-44.
    1. Heller MO, Bergmann G, Deuretzbacher G, et al. Influence of femoral anteversion on proximal femoral loading: measurement and simulation in four patients. Clin Biomech (Bristol, Avon), 2001;16(8):644-649.
    2. Massin P, Astoin E, Lavaste F. Influence of proximal stem geometry and stem-cement interface characteristics on bone and cement stresses in femoral hip arthroplasty: finite element analysis. Rev Chir Orthop Reparatrice Appar Mot, 2003;89(2):134-143.
    3. Mak MM,Besong AA,Jin ZM,et al. Effect of microseparation on contact mechanics in ceramic-on-ceramic hip joint replacements.Proc Inst Mech Eng, 2002; 216(6): 403-408.
    4. Peter B, Ramaniraka N, Rakotomanana LR, et al. Peri-implant bone remodeling after total hip replacement combined with systemic alendronate treatment: a finite element analysis.Comput Methods Biomech Biomed Eng, 2004;7(2):73-78.
    5. Joshi MG, Advani SG, Miller F,et al. Analysis of a femoral hip prosthesis designed to reduce stress shielding. J Biomech, 2000;33(12):1655-1662.
    6. Taylor ME,Tanner KE, Freemen MA. Stress and strain distribution within the intact femur: compression or bending? Med Eng Phys, 1996; 18(2): 122-131.
    7. Pedersen DR, Brand RA, Davy DT, et al. Pelvic muscle and acetabular contact forces during gait. J Biomech., 1997;30(9):959-965.
    8.何荣新,罗银森,严世贵,等. Elite全髋置换前后股骨应力变化的三维有限元分析.中华医学杂志,2004;84(18):1549-1553.
    9. Tanino H, Ito H, Higa M, et al. Three-dimensional computer-aided design based design sensitivity analysis and shape optimization of the stem using adaptive p-method.J Biomech, 2006;39(10):1948-1953.
    10. Engh CA, Bobyn JD. The influence of stem size and extent of porous coating on femoral bone resorption after primary cementless hip arthroplasty. Clin Orthop Relat Res, 1988;(231):7-28.
    11. Huiskes R. The various stress patterns of press-fit, ingrown, and cemented femoral stems. Clin Orthop Relat Res, 1990;(261):27-38.
    12. Weinans H, Huiskes R, Grootenboer HJ. Effects of fit and bonding characteristics of femoral stems on adaptive bone remodeling. J Biomech Eng, 1994 ;116(4):393-400.
    13. Van Rietbergen B, Huiskes R, Weinans H,et al. The mechanism of bone remodeling and resorption around press-fitted THA stems. J Biomech, 1993;26(4-5):369-382.
    14. Capello WN. Fit the patient to the prosthesis. An argument against the routine use of custom hip implants.Clin Orthop Relat Res, 1989;(249):56-59.
    15. Dorr LD, Lewonowski K, Lucero M, et al. Failure mechanisms of anatomic porous replacement I cementless total hip replacement.Clin Orthop Relat Res, 1997; (334): 157-167.
    16. Radl R, Aigner C, Hungerford M, et al. Proximal femoral bone loss and increased rate of fracture with a proximally hydroxyapatite-coated femoral component. J Bone Joint Surg (Br), 2000;82(8):1151-1155.
    17. Goodman SB. The effects of micromotion and particulate materials on tissue differentiation. Bone chamber studies in rabbits. Acta Orthop Scand Suppl. 1994; 258 (1):1-43.
    18. Viceconti M, Muccini R, Bernakiewicz M,et al. Large-sliding contact elements accurately predict levels of bone-implant micromotion relevant to osseointegration.J Biomech, 2000;33(12):1611-1618.
    19.徐卿荣,朱振安.人工关节无菌松动与骨溶解.国外医学(骨科学分册),2002;23 (1):24-26.
    20. Bergmann G, Graichen F, Rohlmann A. Hip joint loading during walking and running, measured in two patients. J Biomech, 1993;26(8):969-990.
    21.Domb B, Hostin E, Mont MA, et a1. Cortical strut grafting for enigmatic thigh pain following total hip arthroplasty. Orthopedics, 2000;23(1):21-24.
    1.裴国献,张元智.数字骨科学:一门骨科学新分支的萌生.中华创伤骨科杂志,2007;9(7):601-604.
    2.裴国献.数字骨科学概念与临床初步应用.中华创伤骨科杂志,2008;10(2):101-102.
    3.王成焘.中国力学虚拟人.医用生物力学,2006;21(3):172-178
    4.王成焘,白雪岭.骨相关外科中的数字技术.中华创伤骨科杂志,2008;10(2):103-108.
    5. Goel VK, Valliappan S, Svensson NL.Stresses in the normal pelvis.Comput Biol Med, 1978;8(2):91-104.
    6. Puttlitz CM, Goel VK, Clark CR, et a1. Pathomechanisms of failures of the odontoid. Spine, 2000; 25(22):2868-2876.
    7. Graham RS, Oberlander EK, Stewart JE, et a1. Validation and use of a finite element model of C-2 for determination of stress and fracture patterns of anterior odontoid loads. J Neurosurg. 2000;93(1 Suppl):117-25.
    8. Van Rietbergen B, Weinans H, Huiskes R, et al. A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models. J Biomech, 1995;28(1):69-81.
    9. Van Rietbergen B, Odgaard A, Kabel J, et a1. Direct mechanics assessment of elastic symmetries and properties of trabecular bone architecture. J Biomech, 1996;29(12): 1653-1657.
    10. Vander Sloten J, Hobatho MC, Verdonck P.Applications of computer modelling for the design of orthopaedic, dental and cardiovascular biomaterials.Proc Inst Mech Eng, 1998;212(6):489-500.
    11. Cowin SC. Bone stress adaptation models. J Biomech Eng, 1993;115(4B):528-33.
    12. Yoshida H, Faust A, Wilckens J, et al. Three-dimensional dynamic hip contact area and pressure distribution during activities of daily living.J Biomech, 2006;39(11): 1996- 2004.
    13. Brown TD, Hild GL. Pre-collapse stress redistributions in femoral head osteonecrosis- a three-dimensional finite element analysis. J Biomech Eng, 1983; 105 (2):171-176.
    14.陈奕芩,许瑞廷,赖国安,等.不同负荷形态对股骨头缺血性坏死影响的有限元素分析.中华创伤骨科杂志,2007;9(6):515-518.
    15.张美超,史风雷,赵卫东,等.髋关节外展不同角度股骨颈应力分布的有限元分析.第一军医大学学报,2005;25(10):1244-1246.
    16.苏永松,许忠信,李浩宇.髋关节模拟手术中有限元分析方法的应用.计算机工程,2003;29(22):29-33.
    17.戴金龙,李炫升,梁兰丽,等.改良式股骨转子间外翻截骨术的生物力学研究:三维有限元素分析.中华创伤骨科杂志,2007;9(6):510-514.
    18.李长有,王禹祥,范广宇. Chiari骨盆截骨术中外展肌对股骨头软骨的三维有限元分析.医用生物力学,2007;22(3):79-83.
    19.封彦锋,党新安.人骨微孔结构三维有限元力学优化分析.制造业自动化2007;29 (9):86-87.
    20.安梅岩,马爱军,李莹辉,等.有限元法计算大鼠胫骨骨密度变化.航天医学与医学工程,2005;18(1):55-57.
    21. Culemann U, Pohlemann T, Hüfner T, et a1. 3-dimensional movement analysis after internal fixation of pelvic ring fractures.A computer simulation.Unfallchirurg, 2000; 103(11):965-971.
    22.王庆雷,侯树勋,李文锋,等.动力化髋关节外固定器对股骨头峰值压力影响的三维有限元分析.北京生物医学工程,2007;26(4):408-411.
    23.徐峰,苏佳灿,吴建国,等.髋臼三维记忆内固定系统全真三维有限元模型快速建立及其对力学仿真的意义.中国临床康复,2005;9(2):68-70.
    24.许瑞杰,李涤尘,孙明林.内收型股骨颈骨折不同固定方式的生物力学分析.北京生物医学工程,2005;24(3):220-223.
    25.马洪顺,周振平,王玉臣,等.模拟股骨颈骨折外固定器固定结构模型三维有限元计算与应力分布实验研究.中国生物医学工程学报,2005;24 (1):8-11.
    26. Bockman RS, Weineman SA. Steroid-induced osteoporosis. Orthop Clin North Am, 1990; 21(1):97-107.
    27. Valliappan S, Svensson NL, Wood RD.Three dimensional stress analysis of the human femur. Comput Biol Med, 1977;7(4):253-264.
    28. Stolk J, Verdonschot N, Huiskes R. Hip-joint and abductor-muscle forces adequately represent in vivo loading of a cemented total hip reconstruction.J Biomech, 2001;34(7): 917-926.
    29. Stewart KJ, Pedersen DR, Callaghan JJ, et a1.Implementing capsule representation in a total hip dislocation finite element model. Iowa Orthop J, 2004;24(1):1-8.
    30. Oki H, Ando M, Omori H, et a1. Relation between vertical orientation and stability of acetabular component in the dysplastic hip simulated by nonlinear three-dimensional finite element method. Artif Organs, 2004 ;28(11):1050-1054.
    31.李伟,陆皓,孙康,等.复合材料与金属材料髋关节假体应力分布的三维有限元分析.生物骨科材料与临床研究,2005;2(3):1-4.
    32.何荣新,罗银森,严世贵,等. Elite全髋置换前后股骨应力变化的三维有限元分析.中华医学杂志,2004;84(18):1549-1553.
    33. Harrigan TP, Harris WH. A finite element study of the effect of diametral interface gaps on the contact areas and pressures in uncemented cylindrical femoral total hip components. J Biomech, 1991;24(1):87-91.
    34. Gross S, Abel EW. A finite element analysis of hollow stemmed hip prostheses as a means of reducing stress shielding of the femur. J Biomech. 2001;34(8):995-1003.
    35. D'Lima DD, Urquhart AG, Buehler KO, et a1. The effect of the orientation of the acetabular and femoral components on the range of motion of the hip at different head- neck ratios. J Bone Joint Surg(Am), 2000 Mar;82(3):315-321.
    36.严世贵,吴浩波,陈维善,等.全髋关节置换后聚乙烯内衬应力的弹塑性有限元分析.中华骨科杂志,2004;24(4):211-215.
    37. Korhonen RK, Koistinen A, Konttinen YT, et al.The effect of geometry and abduction angle on the stresses in cemented UHMWPE acetabular cups-finite element simulations and experimental tests.Biomed Eng Online, 2005;4(1):32.
    38.郑晓雯,孟惠荣.人工髋关节置换后股骨柄应力的有限元分析.西安科技大学学报,2004;24(4):459-462.
    39.范清,张菁.有限元分析与髋关节研究进展.国际骨科学杂志,2007;28(1):47-51.
    1.朱振安.先天性髋关节发育不良的全髋关节置换术.国外医学:骨科学分册,2004;25(1):5-6.
    2. Kerboull M, Hamadouche M, Kerboull L.Total hip arthroplasty for Crowe type IV developmental hip dysplasia: a long-term follow-up study.J Arthroplasty, 2001;16(8 Suppl 1):170-176.
    3. Cameron HU, Botsford DJ, Park YS. Influence of the Crowe rating on the outcome of total hip arthroplasty in congenital hip dysplasia.J Arthroplasty, 1996;11(5):582-587.
    4. Kumar A , Shair AB. An extended iliofemoral approach for total arthroplasty in late congenital dislocation of the hip: a case report. Int Orthop,1997;21(4):265-266.
    5. Sanchez-Sotelo J, Berry DJ, Trousdale RT, et al. Surgical treatment of developmental dysplasia of the hip in adults: II. Arthroplasty options.J Am Acad Orthop Surg, 2002; 10(5): 334-344.
    6. Kerboull M, Hamadouche M, Kerboull L.Total hip arthroplasty for Crowe type IV developmental hip dysplasia: a long-term follow-up study.J Arthroplasty, 2001;16(8 Suppl 1):170-176.
    7.郭艾,王志义,罗先正,等.先天性髋关节脱位的全髋置换术.中华骨科杂志,2002;22(9):517-520.
    8. Huo MH, Zurauskas A, Zatorska LE, et al. Cementless total hip replacement in patients with developmental dysplasia of the hip.J South Orthop Assoc, 1998;7(3):171-179.
    9. Hartofilakidis G, Karachalios T. Total hip arthroplasty for congenital hip disease.J Bone Joint Surg (Am),2004;86(2):242-250.
    10. Bolder SB, Melenhorst J, Gardeniers JW, et al. Cemented total hip arthroplasty with impacted morcellized bone-grafts to restore acetabular bone defects in congenital hip dysplasia. J Arthroplasty, 2001;16(8 Suppl 1):164-169.
    11. Stans AA, Pagnano MW, Shaughnessy WJ, et al. Results of total hip arthroplasty for Crowe Type III developmental hip dysplasia. Clin Orthop Relat Res,1998;348 (3): 149-157.
    12. Harris WH, Crothers OD. Autogenous bone grafting using the femoral head to correct severe acetabular deficiency for total hip replacement. In: The hip. Proceedings of the fourth open scientific meeting of the Hip Socienty. St. Louis: CV Mosby, 1976; 161-185.
    13. Inao S, Matsuno T. Cemented total hip arthroplasty with autogenous acetabular bone grafting for hips with developmental dysplasia in adults: the results at a minimum of ten years. J Bone Joint Surg (Br), 2000;82(3):375-377.
    14. Paavilainen T, Hoikka V, Solonen KA.Cementless total replacement for severely dysplastic or dislocated hips.J Bone Joint Surg (Br), 1990;72(2):205-211.
    15. Shinar AA, Harris WH. Bulk structural autogenous grafts and allografts for reconstruction of the acetabulum in total hip arthroplasty. Sixteen-year-average follow-up. J Bone Joint Surg( Am), 1997, 79(2): 159-168.
    16. Dearborn JT, Harris WH. High placement of an acetabular component inserted without cement in a revision total hip arthroplasty. Results after a mean of ten years.J Bone Joint Surg (Am), 1999;81(4):469-480.
    17. Harris WH. Management of the deficient acetabulum using cementless fixation without bone grafting. Orthop Clin North Am,1993,24(4):663-665.
    18. Kobayashi S, Saito N, Nawata M, et al. Total hip arthroplasty with bulk femoral head autograft for acetabular reconstruction in developmental dysplasia of the hip.J Bone Joint Surg (Am), 2003;85(4):615-621.
    19. Stringa G, Pitto RP, Di Muria GV, et al. Total hip replacement with bone grafting using the removed femoral head in severe acetabular dysplasia.Int Orthop,1995;19(2):72-76.
    20. George H, Konstantiosn S, Theofilos K, et al. Congenital hip disease in adults. classification of acetabular deficiencies and operative treatment with acetabuloplasty combined with total hip arthroplasty. J Bone Joint Surg (Am), 1996;78(5): 683-692.
    21. Johnston RC, Brand RA, Crowninshield RD.Reconstruction of the hip. A mathematical approach to determine optimum geometric relationships. J Bone Joint Surg(Am), 1979; 61(5):639–652.
    22. Hartofilakidis G, Stamos K, Karachalios T, et al. Congenital hip disease in adults. Classification of acetabular deficiencies and operative treatment with acetabuloplasty combined with total hip arthroplasty. J Bone Joint Surg (Am),1996;78(5):683-692.
    23. Dorr LD, Tawakkol S, Moorthy M,et al. Medial protrusio technique for placement of a porous-coated, hemispherical acetabular component without cement in a total hip arthroplasty in patients who have acetabular dysplasia. J Bone Joint Surg (Am), 1999; 81(1): 83-92.
    24.史振才,李子荣,孙伟.髋关节发育不良患者全髋关节置换术的髋臼中心化.中华外科杂志,2004;42(23):1412-1415.
    25. Suh KT, Cheon SJ, Kim DW.Comparison of preoperative templating with postoperative assessment in cementless total hip arthroplasty.Acta Orthop Scand, 2004; 75(1):40-44.
    26. Anderson MJ, Harris WH.Total hip arthroplasty with insertion of the acetabular component without cement in hips with total congenital dislocation or marked congenital dysplasia.J Bone Joint Surg (Am),1999;81(3):347-354.
    27. Russotti GM, Harris WH. Proximal placement of the acetabular component in total hip arthroplasty. A long-term follow-up study. J Bone Joint Surg (Am),1991;73(4): 587- 592.
    28. Delp SL, Wixson RL, Komattu AV, et al. How superior placement of the joint center in hip arthroplasty affects the abductor muscles. Clin Orthop Relat Res,1996;(328): 137- 146.
    29. Kobayashi S, Saito N, Nawata M, et al. Total hip arthroplasty with bulk femoral head autograft for acetabular reconstruction in developmental dysplasia of the hip. J Bone Joint Surg (Am), 2003;85(4): 615-621.
    30. Russotti GM, Harris WH.Proximal placement of the acetabular component in total hip arthroplasty. A long-term follow-up study.J Bone Joint Surg (Am),1991;73(4):587-592.
    31. Sanchez-Sotelo J, Trousdale RT, Berry DJ,et al. Surgical treatment of developmental dysplasia of the hip in adults: I. Nonarthroplasty options.J Am Acad Orthop Surg, 2002; 10(5):321-33.
    32. Pagnano W, Hanssen AD, Lewallen DG, et al. The effect of superior placement of the acetabular component on the rate of loosening after total hip arthroplasty. J Bone Joint Surg(Am) , 1996; 78(7):1004-1014.
    33. Stans AA, Pagnano MW, Shaughnessy WJ, et al.Results of total hip arthroplasty for Crowe Type III developmental hip dysplasia.Clin Orthop Relat Res,1998;(348): 149-157.
    34. Sener N, T?zün IR, A?ik M. Femoral shortening and cementless arthroplasty in high congenital dislocation of the hip.J Arthroplasty, 2002 ;17(1):41-48.
    35. Masonis JL, Patel JV, Miu A, et a1.Subtrochanteric shortening and derotational osteotomy in primary total hip arthroplasty for patients with severe hip dysplasia: 5-year follow-up. J Arthroplasty, 2003 ;18(3 Suppl 1):68-73.
    36. Garvin KL, Bowen MK, Salvati EA, et al. Long-term results of total hip arthroplasty in congenital dislocation and dysplasia of the hip. A follow-up note.J Bone Joint Surg (Am), 1991;73(9):1348-1354.
    37. Lewallen DG. Neurovascular injury associated with hip arthroplasty.Instr Course Lect. 1998;47: 275-283.
    38. Nercessian OA, Macaulay W, Stinchfield FE. Peripheral neuropathies following total hip arthroplasty.J Arthroplasty, 1994 ;9(6):645-651.
    39.张国华,严世贵.髋关节发育不良全髋关节置换术研究进展.国外医学:骨科学分册,2005;26(3):173-176.
    40. Paavilainen T, Hoikka V, Solonen KA.Cementless total replacement for severely dysplastic or dislocated hips.J Bone Joint Surg (Br), 1990;72(2):205-211.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.