盐胁迫对白滨藜和疣苞滨藜种子萌发及早期幼苗生长的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白滨藜(Atriplex cana C. A. Mey.)和疣苞滨藜(Atriplex verrucifera Bieb)是生长在中国西北盐生荒漠的盐生小灌木。本文对这两种盐生植物种子的萌发生态学进行了研究。研究内容包括:(1)温度、苞片和不同的贮藏条件对种子萌发的影响;(2)不同的NaCl浓度对种子萌发和恢复的影响;(3)NaCl浓度对这两种盐生植物幼苗生长和恢复的影响。
     新成熟的白滨藜和疣苞滨藜种子具有非深度生理休眠,它们分别经过2W和8W的低温层积处理打破休眠。打破休眠的种子萌发的最适温度为昼夜=15/5℃(白滨藜)和25/15℃(疣苞滨藜)。苞片对新采收的白滨藜种子存在机械抑制,层积后苞片的抑制作用减弱;苞片延长新采收的疣苞滨藜种子的萌发时间,但对最终萌发率无显著影响。层积条件下,2W后白滨藜的种子萌发率达到最大,层积8W后活力完全丧失;疣苞滨藜的种子随着层积时间的延长萌发率逐渐上升,8W时达到最大。室温条件下,随着贮藏时间的延长,白滨藜和疣苞滨藜的种子萌发率都逐渐升高,萌发速率逐渐加快。
     这两种盐生植物种子的萌发对NaCl胁迫响应不同。白滨藜种子在蒸馏水中萌发最好,随着盐溶液浓度的升高萌发率逐渐降低。疣苞滨藜的种子在0.2MNaCl溶液中萌发率最高,之后随着盐浓度的升高萌发率逐渐下降。它们分别在1.2M(白滨藜)和0.8M(疣苞滨藜)NaCl溶液中萌发完全被抑制。将未萌发的种子转入蒸馏水中继续萌发,两种滨藜的种子均能恢复萌发。白滨藜的种子经1.0MNaCl处理后的种子恢复率最高为57.7%,在蒸馏水中的最终萌发率高于各盐度条件下。疣苞滨藜经≥0.6M NaCl处理后,种子的恢复率高于75%,各盐度条件下的最终萌发率都高于对照。
     疣苞滨藜萌发出的幼苗,其幼芽和幼根的生长受0.2MNaCl溶液促进,根冠比最大,当≥0.4M时伸长逐渐受抑制,且幼根比幼芽受抑制程度大,根冠比下降,≥1.0M时生长完全被抑制。白滨藜萌发出的幼芽和幼根在小于0.2M时不受影响,随着盐度的升高生长逐渐受抑制,根冠比也逐渐下降,当≥0.8MNaCl时,幼苗的生长完全停止。转入蒸馏水中后,两种植物的幼苗都可以继续伸长,伸长能力随预处理盐溶液浓度的升高而降低,幼根的伸长能力比幼芽强。经过≥1.0M和≥0.8MNaCl预处理的疣苞滨藜和白滨藜的幼苗无法继续伸长。
     实验结果表明:这两种盐生植物在种子萌发和早期幼苗生长阶段对盐渍环境具有适应性。种子和幼苗早期在高盐分胁迫下保持萌发恢复能力和幼根的恢复生长能力是对盐生环境的适应对策。这些适应对策确保这两种盐生植物在新疆的盐渍荒漠中成功定居和繁殖。
The small shrubs Atriplex cana C. A. Mey and Atriplex verrucifera Bieb grow in saline deserts in northwest China. The seed germination ecology of the two species was studied in the paper.The research aspects include: (1) Effect of temperature, bracts and store condition on seed germination. (2) Effect of NaCl concentration on seed germination and germination recovery. (3) Effect of NaCl on seedling elongation and elongation recovery after seedings were transferred to distilled water.
     The freshly matured seeds of A.cana and A.verrucifera have non-deep physiological dormancy. They need 2 and 8 weeks of cold stratification to break the dormancy respectively. After the dormancy had been broken, the optimal condition for seed germination of A.cana is at day/night =15/5℃, A.verrucifera is at day/night = 25/15℃. The bracts inhibited germination of freshly matured seeds of A.cana by mechanical effect,the effect of mechanical effect decreased after cold stratification; the germination time of freshly matured seeds of A. verrucifera was enlonged by bracts, but the final germination didn’t changed significantly. After 2 weeks cold stratification, the germination of A.cana seeds reached the top, but after 8 weeks, seeds lost vitality; the germination of A.verrucifera was increased with the cold stratification, and reached maximum after 8 weeks cold stratification. The seeds germination and the germination speed of A.cana and A.verrucifera increased gradually with the store time under normal condition.
     The responses of the seeds of the two species to NaCl concentration were different. The germination of A.cana decreased with the increase of salinity and was hightest at distilled water. The germination of A.verrucifera was hightest at 0.2M NaCl and decreased when the concentration of NaCl>0.2M. In the end, the salinities to completely inhibit germination were 1.2 and 0.8MNaCl respectively. When the ungerminated seeds were transferred into distilled water, they can continue to germinate. The recovery percentage of A.cana was highest in 1.0MNaCl, but final germination was highest in non-saline control. While the recovery percentages of A.verrucifera from 3.0MNaCl were all above 75%, and the finale germination percentage was higher than percentage in control. The result indicated that NaCl inhibited germination by osmotic stress.
     The growth of buds and boots of early seedlings of A. cana were promoted in low concentration(0.2M NaCl), the ratio of root to shoot reached the top.The prolonging of seedlings were inhibited as the concentration≥0.4M, the salt concentrations had more influence on the radicle, and ratio of root to shoot gradually decreased and with the increase of salinity seedling growth was inhibted finally(1.0M NaCl). However NaCl (<0.2M) didn’t effect the growth of scions and radicles of early seedlings of A.verrucifera. The growth was inhibited gradually and ratio of root to shoot decreaded with the increase of the salt. In the end, seedling elongation was completely inhibited by≥0.8MNaCl. Elongation of radicles and scions resumed after seedlings were transferred to distilled water, and their ability to continue elongating decreased with increase in pretreatment concentration of NaCl. The growing ability of radicles was biger than scions. A.verrucifera pretreated by NaCl≥0.8M and that of A.cana pretreated byNaCl concentrations≥1.0M could not grow any more.
     The results showed that the seed germination and the early growth stages of seedlings of the two species can be adaptable to saline environment. The ability of seeds and seedlings that maintain regerminating and regrowing under high salt stress is one of the special adaptive strategies for them to inhabit the salt desert environment. Those can help them survive and reproduce successfully in the salt desert of Xinjiang.
引文
[1] 陈惠哲, Natalia Ladatko, 朱德峰等. 盐胁迫下水稻苗期Na+和K+吸收与分配规律的初步研究[J]. 植物生态学报. 2007, 31(5):937-945.
    [2] 蔡伦, 张富春, 马纪等. 新疆 3 种藜科盐生植物 NHX 基因的克隆与序列分析比较[J]. 植物生理学通讯.2005, 41(3):383-387.
    [3] 段德玉, 刘小京, 冯凤莲等. 盐分和水分胁迫对盐生植物灰绿藜种子萌发的影响[J]. 植物资源与环境学报. 2004, 13(1):7-11.
    [4] 朱格麟. 中国高等植物(第四卷)[M]. 青岛:青岛出版社, 2000:321–327.
    [5] 谷瑞升, 蒋湘宁, 郭仲琛. 胡杨细胞和组织结构与其耐盐性关系的研究[J]. 植物学报. 1999, 41(6):576-579.
    [6] 何长芳, 杨国柱, 吕峰. 盐分浓度对星星草种子萌发的影响[J]. 青海草业. 1995, 4(4):33-36.
    [7] 何晓兰, 刘桂华, 倪万潮等. 三角叶滨藜甜菜碱醛脱氢酶基因 5′侧翼序列的克隆与分析[J]. 江苏农业科学. 2004, 20(2):65-69.
    [8] 何晓兰, 吴纪中, 刘桂华等. 三角叶滨藜甜菜碱醛脱氢酶基因克隆及植物表达载体的构建[J]. 江苏农业学报. 2003, 19(4):237-241.
    [9] 黄振英, 张新时, Yitzchak Gutterman 等. 光照、温度和盐分对梭梭种子萌发的影响[J]. 植物生理学报. 2001, 27(3):275~280.
    [10] 黄振英, Yitzchak Gutterman, 胡正海等. 白沙蒿种子萌发特性的研究Ⅱ.环境因素的影响[J]. 植物生态学报. 2001, 25(2):240-246.
    [11] 蓝登明, 李春红, 杨学文. 美国五种灌木种实形态特征及其萌发特性的初步研究[J]. 内蒙古林业科技. 2006, 32(3):39-42.
    [12] 李海燕, 丁雪梅, 周婵等. 盐胁迫对三种盐生禾草种子萌发及其胚生长的影响[J]. 草地学报.2004, 12(1):45-50.
    [13] 李海云, 赵可夫, 王秀峰. 盐对盐生植物种子萌发的抑制[J]. 山东农业大学学报(自然科学版). 2002, 33(2):170-173.
    [14] 李金耀, 张富春, 马纪等. 采用 RT-PCR 扩增方法从犁苞滨藜中扩增 NHX 基因[J]. 植物生理学通讯. 2003, 39(6):585-588.
    [15] 李伟强, 刘小京, 毛任钊等. 植物种子二形性(多形性)研究进展[J].生态学报. 2006, 26(4):1254-1242.
    [16] 梁云媚, 李燕. 不同盐分胁迫对苜蓿种子萌发的影响[J]. 草业科学. 1998, 15(6):21-25.
    [17] 刘惠云, 王晓梅, 肖书君等. 乌鲁木齐市近 40 多年降水演变特征[J]. 干旱区研究. 2007, 24 (6):785-789.
    [18] 陆静梅, 李建东, 张洪芹等. 吉林西部草原区 7 种耐盐碱双子叶植物结构研究[J]. 应用生态学报. 1996, 7(3):283-286.
    [19] 陆时万, 徐祥生, 沈敏健. 植物学[M]. 北京:高等教育出版社. 1982:91-94.
    [20] 毛祖美, 刘建国, 潘晓玲. 新疆植物志第二卷第一分册[M]. 乌鲁木齐:新疆科技卫生出版社. 1994:18-27.
    [21] 渠晓霞, 黄振英. 盐生植物种子萌发对环境的适应对策[J]. 生态学报, 2005, 25 (9):2389-2398.
    [22] 渠晓霞. 新疆三种盐生植物种子萌发和幼苗早期生长对环境的适应对策:[硕士论文]. 北京:中国科学院, 2006.
    [23] 汪晓峰, 景新明, 郑光华. 含水量对种子贮藏寿命的影响[J]. 植物学报. 2001, 43(6):551-557.
    [24] 王雷, 田长彦, 张道远等. 光照、温度和盐分对囊果碱蓬种子萌发的影响[J]. 干旱区地理.2005, 28(5):670-674.
    [25] 王丽丽. 盐地碱蓬种子萌发及幼苗生长时期对盐胁迫的响应:[硕士论文]. 哈尔滨:东北师范大学, 2006.
    [26] 王素平, 李娟, 郭世荣等. NaCl 胁迫对黄瓜幼苗植物生长和光合特性的影响[J]. 西北植物学报. 2006, 26(3): 0455-0416.
    [27] 王艳华, 王爱云, 柏新富. 盐胁迫对三角滨藜种子萌发和幼苗生长的影响[J]. 烟台师范学院学报(自然科学版). 2005, 24(4):290-292.
    [28] 王玉珍, 侯相山. 盐生植物—中亚滨藜的研究及用途[J]. 中国野生植物资源. 2005, 24(1):36-38.
    [29] 魏岩, 王喜勇. 果翅对梭梭属种子萌发行为的调控[J]. 生态学报. 2006, 26(12):4014-4018.
    [30] 魏岩, 严成, 尹林克. 野榆钱菠菜(Atriplex aucheri)的种子多型性及生态型[J]. 西北植物学报. 2003, 23(3):485-487.
    [31] 文振旺, 石玉麟, 黄荣金等. 新疆土壤地理[J]. 北京:科学技术出版社. 1965:126-145.
    [32] 吴征镒, 路安民, 汤彦承等. 中国被子植物科属综论[M]. 北京:科学技术出版社. 2003:151-152.
    [33] 郗金标, 张锁福, 田长彦. 新疆盐生植物[M]. 北京: 科学出版社. 2006:1-56.
    [34] 弋良朋, 马健, 李彦. 3 种荒漠盐生植物根系及根毛形态特征的比较研究[J]. 植物研究. 2007, 27(2):204-211.
    [35] 于顺利, 蒋高明. 土壤种子库的研究进展及若干研究热点[J]. 植物生态学报. 2003, 27 (4):552-560.
    [36] 曾幼玲, 蔡忠贞, 马纪等. 盐分和水分胁迫对两种盐生植物盐爪爪和盐穗木种子萌发的影响[J]. 生态学杂志. 2006, 25(9):1014-1018
    [37] 张国平, 周伟军译. 植物生理生态学[M]. 浙江:浙江出版社. 2003:264-265.
    [38] 张海波, 刘彭, 刘立鸿等. 新疆短命植物小拟南芥耐盐性的初步研究[J]. 西北植物学报. 2007, 27(2):0286-0290.
    [39] 张海燕. NaCl 胁迫对滨藜生长及其根和叶中无机离子含量的影响[J]. 武汉植物学研究.2001,19(5):409-415.
    [40] 张世挺, 杜国祯, 陈家宽. 种子大小变异的进化生态学研究现状与展望[J]. 生态学报. 2003, 23(2):353-364.
    [41] 张新华, 郭胜安, 周全良. 四翅滨藜耐盐性试验[J]. 宁夏农林科技. 2003,5:3-4.
    [42] 张学杰, 李法曾, 宋葆华等. 山东省常见藜科植物叶蛋白研究及其营养价值评估[J]. 草业学报. 2000, 9(4):59-62.
    [43] 张学杰, 李法曾. 中国盐生植物区系研究[J]. 西北植物学报.2001, 21(2):360-367.
    [44] 张勇, 薛林贵, 高天鹏等. 荒漠植物种子萌发研究进展[J]. 中国沙漠.2005, 25(1):106-112.
    [45] 赵可夫, 范海, 江行玉等. 盐生植物在盐渍土壤改良中的作用[J]. 应用与环境生物学报.2002, 8(10:31-35.
    [46] 赵可夫, 范海. 盐生植物及其对盐渍生境的适应生理[M]. 北京:科学出版社.2005:7-59.
    [47] 赵可夫, 冯立田, 范海. 盐生植物种子的休眠、休眠解除及萌发的特点[J]. 植物学通报. 1999, 16(6):677-685.
    [48] 赵可夫, 李法曾, 樊守金等. 中国的盐生植物[J]. 植物学通报. 1999, 16(3):201-207.
    [49] 周桂玲, 迪利夏提, 安争夕等. 新疆滨藜属植物叶表皮微形态学及叶的比较解剖学研究[J].干旱区研究. 1995, 12(3):34-37.
    [50] 周玲玲, 冯元忠, 吴玲等. 新疆六种盐生植物的解剖学研究[J]. 石河子大学学报(自然科学版). 2002, 6(3):217-220.
    [51] 周玲玲, 刘萍, 陈芳. 温度、盐分和干旱胁迫对蔟枝补血草种子萌发影响[J]. 种子. 2006, 25(10):48-51.
    [52] 朱建雯, 杨文英, 陈巧云等.鞑靼滨藜对Na2SO4和NaCl的耐性研究[J]. 中国草地. 1997, 3:36-38.
    [53] 朱俊义, 杨光宇, 赵凤娟等. 野生大豆抗盐解剖结构研究[J]. 东北师大学报自然科学版. 2003, 35(4):105-108.
    [54] Aiazzi M T and Argu?llo J A. Dormancy and germination studies on dispersal units of Atriplex cordobensis(Gandoger and Stucker)(Chenopodiaceae)[J]. Seed Science and Technology. 1992, 20: 401-407.
    [55] Barrett G and Egan T P. Ecophysiology of high salinity tolerant plant[M]. America: Springer. 2006:1-9.
    [56] Baskin C C and Baskin J M. Dormancy types and dormancy-breaking and germination requirements in seeds of halophytes. In “Biology of Salt-Tolerant Plants". Chelsea. Michigan. USA, 1995:23-30.
    [57] Baskin C C and Baskin J M. Seeds ecology, biogeography, and evolution of dormancy and germination[M]. San Diego: Academic Press, 1998.
    [58] Baskin C C and Baskin J M. Germination ecophysiology of herbaceous plant species in a temperate region[J]. American journal of botany. 1988, 75:286-305.
    [59] Beadle N C W. Studies in halophytes I: The germination of the seed and establishment of the seedling of five species of Atriplex in Australia[J]. Ecology. 1952, 33:49-62.
    [60] Bilquees G and Darrell J W. Effect of dormancy relieving compounds on the seed germination of non-dormant Allenrolfea occidentalis under salinity stress[J]. Annals of Botany. 1998, 82: 555-560.
    [61] Campbell E E and Matthewson W J. Optimizing germination in Atriplex nummularia (Lind.)for commerical cultivation[J]. South. African. Journal of Botany. 1992, 58: 478-481.
    [62] Carter C T and Ungar I A. Relationship between seed germination of Spergularia marina (Caryophyllaceae) and the formation of zonal communities in an inlang salt marsh [J]. Annals of Botany. 2004, 93:119-125.
    [63] Cluff G J, Evans R. A and Young J A. Desert saltgrass seed germination and seedbed ecology[J]. Range Manage. 1983, 36: 419-422.
    [64] Cresswell E G and Grime J P. Induction of a light requirement during seed development and its ecological consequences[J]. Nature. 1981, 291:583-585.
    [65] Dodd G L and Donovan L A. Water potential and effects on germination seedling growth of two cold desert shrubs[J]. American journal of botany. 1999, 86:1146-1153.
    [66] Edward P G and Brown J J. Effect of soil salt levels on the growth and water use efficiency of Atriplex canescens varieties in drying soil[J]. American journal of botany. 1998, 85(1):10-16.
    [67] Egan T P, Ungar I A and Meekins J F. The effect of different salts of sodium and potassium on the germination of Atriplex prostrata (Chenopodiaceae)[J]. Journal of Plant Nutrition. 1997, 20: 1723-1730.
    [68] Ellis R H, Hong T D and Roberts E H. Logarithmic relationship between moisturecontent and longevity in sesame seeds[J]. Annals of Botany. 1986, 57:499-503.
    [69] Filho E G, Prisco J T, Campos D P et al.. Effects of NaCl salinity in vivo and in vitro on ribonuclease activity of vigna unguiculata cotyledons during germination[J]. Physiol Plant. 1983, 59: 183-188.
    [70] Flowers T J, Trke P F and Yeo A R.The mechanism of salt tolerance in halophytes[J]. Annals Rew plant Physiol. 1977, 23:89-121.
    [71] Gaylord B and Egan T P. How salts of sodium, potassium, and sulfate affect the germination and early growth of Atriplex acanthocarpa[M]. Ecophysiology of High Salinity Tolerant Plant. Netherlands: Springer, 2006:1-9.
    [72] Giusti L and Grau A. Inhibidores de la germination en Atriplex cordobensis Gand et Stucker (Chenopodiaceae)[J]. Lilloa. 1983, 36:143-149.
    [73] Godoi S and Takaki M. Effect of light and temperature on seed germination Cecropia hololeuca Miq.(Cecropiaceae)[J]. Brazillian Archives of Biology and Technology. 2004, 47:85-191.
    [74] Gul B and Weber D J. Effect of salinity, light and temperature on germination in Allenrolfea occidentalis[J]. Canadian Journal of Botany. 1999, 77:240-246.
    [75] Gustafsson M. Evolutionary trends in the Atriplex triangularis group of Scandinavia.I.Hybrid sterility and chromosomal differentiation [J]. Botaniska Notiser. 1973, 126:345-392.
    [76] Gutterman Y. Seed germination in desert plants[M]. Berlin: Springer-Verlag, 1993.
    [77] Hendrix B S, Nielsen E, Nielsen T and Schutt M. Are seedlings from small seeds always inferior toseedlings from large seeds? Effects of seed biomass on seedling growth in Pastinaca Sativa L[J]. New Phytol. 1991, 119:299-305.
    [78] Houle G, Morel L, Reyholds C E et al.. The effect of salinity on different developmental stages of an endemic annual plant, Aster Laurentianus (Asteraceae)[J]. American Journal of Botany. 2001, 88(1):62-67.
    [79] Hyder S Z and Yasmin S. Salt tolerance and cation interaction in alkali sacaton at germination. Journal Range Manage. 1972, 25: 390-392.
    [80] Imbert E. Ecological consequences and ontogeny of seed heteromophism.Perspectives in Plant Ecology[J]. Evolution and Systematics. 2002, 5:13-36.
    [81] Jeannette S B J, Richard C and Jonathan P L. Salinity tolerance of phaseolus species during germination and early seedling growth[J]. Crop Science. 2002, 42:1584-1594.
    [82] Katembe W J, Ungar I A and John P M. Effect of salinity on germination and seedling growth of two Atriplex species[J]. Annals of Applied Biology. 1998, 82:167-175.
    [83] Kaul A and Shankar V. Ecology of seed germination of the chenopod shrub Haloxylon salicornicum[J]. Trop Ecology. 1988, 29:110-115.
    [84] Keiffer C H and Ungar I A. Germination responses of halophyte seed exposed to prolonged hypersaline conditions[J]. Biology of Salt Tolerant Plants. 1995, 45-50.
    [85] Khan M A and Gulzar S. Light, salinity, and temperature effect on the seed germination of perennial grasses[J]. American Journal of Botany. 2003, 90(1):131-134.
    [86] Khan M A and Ungar I A. Effect of thermoperiod on recovery of seed germination of Halophytes from saline conditions[J]. American Journal of Botany. 1997, 84(2):279-283.
    [87] Khan M A and Ungar I A. Life history and population dynamics of Atriplex triangularis[J]. Vegetation. 1986, 66:17-25.
    [88] Khan M A and Ungar I A. The role of hormones in regulating the germination of polymorphic seds and early seedling growth of Atriplex triangularis under saline conditions[J]. Physiologia Plantarum. 1985, 63:109-113.
    [89] Khan M A and Ungar I A. Seed polymorphism and germination responses to salinity stress in Atriplex triangularis Willd[J]. Botanical.Gazette. 1984, 145(4):487-494.
    [90] Khan M A, Gul B and Weber D J. Germination of dimorphic seeds of suaeda moquinii under high salinity stress[J]. Australian Journal of Botany. 2001, 49:185-192.
    [91] Koller D. Germination regulating mechanisms in some desert seeds[J]. Ecology.1957, 38:1-13.
    [92] Maela L B, Hess R B, Paul M H. Intracellular compartmentation of ions in salt adapted tobacco cells[J]. Plant Physiology. 1988, 86:607-614.
    [93] Malcolm C V, Lindley V A, O’Leary J W et al.. Halophyte and glycophyte salt tolerance at germination and the establishment of halophyte shrubs in saline environment[J]. Plant and Soil. 2003, 253:171-185.
    [94] Mandak B and Pysek P. Fruit dispersal and seed banks in Atriplex sagittata the role of heterocarpy[J]. Journal of Ecology. 2001, 89:159-165.
    [95] Mcdonald M B. Seed deterioration: physiology, repair and assessment[J]. Seed Science and Technology. 1999, 27:177-237.
    [96] Muns R. Physiological processes limiting plant Growth in saline soils:Some dogmas and hypotheses[J]. Plant, Cell and Environment. 1993, 16:15-24.
    [97] Myers B A and Morgan W C. Germination of the salt-tolerant guass Diplachne fusca. Ⅱ. Salinity responses[J]. Australian Journal of Botany. 1989, 37:239-251.
    [98] Okusanya O T and Ungar I A. The effect of time of seed production on the germination response of Spergularia marina[J]. Physiol Plant. 1983, 59:335-342.
    [99] Osmond C B, Bj?rkman O, Anderson D J. Physiological processes in plant ecology–towards a synthesis with Atriplex[M]. Berlin: Springer Verlag, 1980.
    [100] Qu X X and Huang Z H et al. Effect of temperature, light and salinity on seed germination and radicle growth of the geographically widespread halophyte shrub Halocnemum Strobilaceum[J]. Annals of Botany. 2007, 154-160.
    [101] Rivers W G and Weber D J. The influence of salinity and temperature on seed germination in Salicornia bigelovii[J]. Physiol Plant. 1971, 24:73-75.
    [102] Simcha L. Why are underground flowering and friiting more common in Israel than anywhere else in the world [J]? Current Science. 2000, 79:289.
    [103] Uchiyama Y. Salt tolernace of Atriplex nummularia. Technical Bull Trop Agricultural Research Center Japan. 1987, 22:1-69.
    [104] Ungar I A. Halophyte seed germination[J]. The Botanical Review, 1978, 44: 233-264.
    [105] Ungar I A and Khan M. Effect of bracteoles on seed germination and dispersal of two species of Atriplex[J]. Annals of Botany. 2001, 87:233-239.
    [106] Weber E and D’Antonio C M. Germination and growth responses of Hybridizing Carpobrotus Species (Aizoaceae) from coastal California to soil salinity[J]. 1999, 86(9):1257-1263.
    [107] Yin X J, Zhao Y X, Luo D et al.. Expression of the Betaine Aldehyde Dehydrogenase (AcBADH)gene and isolation of its promoter from the halophyte Atriplex centralasiatica[J]. Journal of Plant Physiology and Molecular Biology. 2002, 28(6):479-484.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.