紧凑重频Tesla变压器型吉瓦脉冲发生器
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
国防和工业应用的需要推动脉冲功率技术向高平均功率和紧凑化的方向发展。紧凑重频Tesla变压器型脉冲发生器是该方向发展的重要内容之一,在国内外受到了广泛关注。本文通过对紧凑Tesla变压器、吹气式火花隙开关和初级能源三个关键子系统进行理论分析、工程设计和实验研究,完整地提出了该类型脉冲发生器设计的方法和步骤,并研制出一台紧凑重频GW级脉冲发生器。本文的研究成果为紧凑重频脉冲发生器的应用研究奠定了坚实的基础,对于紧凑重频脉冲发生器的研制具有重要的指导意义。
     论文的研究内容主要包括以下几个方面:
     1.提出了紧凑重频Tesla变压器设计的完整的方法和步骤。
     对Tesla变压器的三种解析理论进行分析,结果发现大耦合系数近似理论最为适合设计使用。运用此近似理论,系统提出了紧凑重频Tesla变压器的设计方法和流程图,根据输出需求设计出内嵌于同轴脉冲形成线(pulse forming line, PFL)的紧凑Tesla变压器,耦合系数达0.9。运用电磁场理论和电网络模型对次级线圈电压分布进行了分析,结果表明,锥形次级线圈电压随线圈所在处的半径近似成线性分布,此分布与同轴PFL内电压分布基本一致。
     对研制出的Tesla变压器进行了测试,结果表明实测值与设计值吻合。Tesla变压器对PFL的充电实验表明,在单脉冲和重频50 pps两种情形下,PFL峰值充电电压分别为380 kV和300 kV。特别地,对PFL充电极限进行了探讨,发现PFL在偶发单次击穿后可恢复,出现的PFL偶发脉冲击穿现象不影响后续脉冲的运行。
     另外,对油介质同轴PFL加压耐击穿效应进行了实验研究,油介质PFL击穿场强随着油静压近似以1/8次幂的关系而增加,加压提高液体介质耐击穿能力的重要原因是抑制气泡的形成。
     2.对施加气压和风速提高火花隙开关重频运行性能进行了系统的实验研究。运用设计的火花隙开关,在加压条件下对火花隙开关重频运行性能进行实验研究,得到结论如下:在2.0 MPa的气压范围内,脉冲数目增加时,击穿电压及其不稳定度(RMS)减小,在脉冲数达到50个以上时趋于稳定;重复频率增加时,不稳定度增加。特别地,当重复频率小于50 pps时,不稳定度小于5%,不需要吹气,从而减轻了系统的体积和重量;当重复频率大于100 pps时,不稳定度超过10%,需要吹气来提高重频运行性能。
     对吹气提高火花隙开关重频运行性能进行了实验研究,得到结论如下:火花隙开关重频运行存在最佳吹气速度,且最佳吹气速度与重复频率之间满足线性关系,其关系可由实验确定;在优化吹气速度条件下,当气压处于0.7~1.5 MPa范围时,火花隙开关击穿电压的不稳定度小于3%;在2.0 MPa的压强范围内,该火花隙开关可稳定工作至重复频率300 pps、击穿电压400 kV。
     3.对初级能源重频运行的电压稳定性进行了系统的理论分析并经实验证实。
     在重频运行模式下,推导了相邻脉冲间初级电容上初始电压的递推关系,得到了稳定运行状态下初级电容上初始电压满足的方程,给出了由非稳定状态向稳定状态过渡时间的计算方法,讨论了充电晶闸管导通时间不依赖于火花隙主开关击穿电压的条件。根据以上理论,研制出可1000 pps稳定运行的初级能源,实验结果得到:在选择适当充电晶闸管导通时间的条件下,脉冲发生器可以重频稳定运行,且可以从第一个脉冲开始就可达到稳定状态。
     4.研制出紧凑重频脉冲发生器。
     将三个子系统联合,研制出了直径0.2 m、长度1.0 m、重量90 kg的紧凑重频脉冲发生器。在100Ω负载下进行了实验研究,结果表明:该脉冲发生器单脉冲运行最高输出电压为330 kV,同时脉宽(FWHM)7 ns、上升沿2 ns;在重复频率40 pps和100 pps下连续运行300个脉冲,输出电压分别为310 kV和300 kV,不稳定度分别为5%和10%,以上均未采取风机吹气系统。该脉冲发生器峰值功率约1 GW,平均功率0.7 kW,平均功率密度22 kW/m3。此种类型和性能的发生器在国内尚未见报道。
Defense and industrial applications have stimulated intense interest in pulsed power technology towards high average power and compact structure. A repetitive pulsed power generator with a compact Tesla transformer, as an important pulsed power source, has attracted extensive attention nowadays. In this dissertation, a repetitive gigawatt pulse generator is developed based on the theoretical analyses, engineering designs and experimental investigations of the three key subsystems, a compact Tesla transformer, a spark gap with a gas blowing system and a primary energy source. These efforts set a good foundation for the development of a compact rep-rate pulse generator and show a promising application for the future. The detailed contents and innovative work include the followings.
     1. A systematic method and workflow to design a compact, repetitive Tesla transformer is presented.
     Three theories of the Tesla transformer are analyzed, indicating that high-couple-coefficient approximation theory is suitable for design. Based on the approximation, the effective method and workflow is presented to design parameters of electrical and geometrical for the compact Tesla transformer from output requirement. The designed Tesla transformer has a couple coefficient of about 0.9. Then the voltage distribution across the conic secondary winding is analyzed with electromagnetic field theory and electric network model. Results show that it is approximately linear with the turn radius of the secondary winding and almost the same as that for a coaxial pulse forming line (PFL).
     Then the electrical parameters of the developed Tesla transformer are experimentally measured, with the results in good agreement with design. The PFL charging experiments of the Tesla transformer are investigated in single shot and rep-rate (50 pps) modes. The maximum PFL charging voltages for the two cases are 380 kV and 300 kV, respectively. Particularly, the charging limitations are explored, allowing a conclusion that the PFL breakdown is recoverable under occasional breakdown for individual pulse, without the effects on the operations of subsequent pulses.
     In addition, the pressure effect of the oil PFL is experimentally investigated. It is found that the breakdown strength of oil-dielectric increases with hydrostatic pressure approximately to the one eighth power. Inhibitting the formation of the bubbles by pressurization is a probably explanation for increasing breakdown strength for pressurized liquid.
     2. The effects of gas pressure and gas flow velocity on the operation performance of the spark gap switch in the rep-rate mode are experimentally investigated.
     Using the designed spark gap switch with a gas blowing system, the rep-rate operation of spark gap switch is experimentally investigated in the case of pressurization. The results indicate for gas pressure in the range of 2.0 MPa, both the breakdown voltage and its pulse-to-pulse instability (RMS) decrease with the pulse number, and reach the steady operation when the pulses exceed 50. At the same time, the instability increases with the pulse rep-rate. Particularly, the instability is less than 5% in the range of less than 50 pps, so it is possible to avoid a gas blowing system, reducing the volume and weight of the system. Once the pulse repetition rate exceeds 100 pps, the instability will exceed 10%, resulting that it is necessary to adopt a gas blowing system.
     The effect of the gas flow velocity in the rep-rate operation for the spark gap switch is investigated. The conclusions on the gas flow velocity are shown as follows. There exists an optimal gas flow velocity with given rep-rate, which is linear with the rep-rate and can be experimentally determined. At the optimal gas flow velocity, the instability is less than 3% for gas pressures ranging from 0.7 to 1.5 MPa. The spark gap switch with the gas blowing system can steadily operate at the breakdown voltages up to 400 kV with a maximum rep-rate of 300 pps for gas pressure less than 2.0 MPa.
     3. The voltage stability for the repetitive primary energy source is theoretically analyzed and experimentally verified.
     In rep-rate mode, the recurrence relations between the adjacent pulses on the initial voltages across the primary capacitor are derived. Then the equation for the initial voltage across the primary capacitor in stable state is obtained. The method of calculating the transition time or the number of transition pulses from the unstable state to the stable state is presented. The condition of the charging thyristor switch’s turn-on time independent of the spark gap switch’s breakdown voltage is theoretically discussed. Base on the theory analyses, the primary energy source with a rep-rate up to 1000 pps is developed and experimentally investigated. Results show that the primary energy source can operate stably from the first pulse by choosing appropriate thyristor switch’s turn-on time.
     4. The compact rep-rate pulse generator is developed.
     Based on the three subsystems, the pulse generator is developed with a 0.2 m diameter, a 1.0 m length, and a 90 kg mass. Across a 100Ωresistive load, it can generate the output pulses with voltage amplitude up to 330 kV, duration (FWHM) of 7 ns and risetime down to 2 ns in the single shot mode. In the rep-rate mode, it can steadily operate at a 310 kV output voltage with the instability of 5% for 300 pulses in 40 pps rep-rate and 300 kV with 10% in 100 pps. Moreover, the gas blowing system can be unadopted for rep-rate less than 100 pps. For the pulse generator, the output peaking power is ~1 GW, the average power ~0.7 kW, and the average power density ~22 kW/m3. By far, this type of pulse generators with such performance has not been reported at home country.
引文
[1] Mesyats G. A., Pulsed power, New York: Kluwer Academic/Plenum Publishers, 2005
    [2] Martin J. C., The prehistory of pulsed power, IEE, 1995: 1–3
    [3] Martin J. C., Nanosecond pulse techniques, Proceedings of the IEEE, 1992, 80(6): 934–945
    [4] Shamiloglu E., Barker R. J., Gundersen M., and Neuber A. A., Modern Pulsed Power: Charlie Martin and Beyond, Proceedings of the IEEE, 2004, 92(7): 1014–1020
    [5]王淦昌,高功率粒子束及其应用,强激光与粒子束, 1989, 1(1): 1–21
    [6]刘锡三,高功率脉冲技术,北京:国防工业出版社, 2005
    [7] Pai S. T. and Zhang Q., Introduction to high power pulse technology, Singapore: World Scientific Publishing Co. Pre. Ltd., 1995
    [8]李传胪,脉冲功率技术及其应用,国防科技大学学报增刊, 1995, 17: 1–8
    [9]曾正中,实用脉冲功率技术引论,西安:陕西科学技术出版社, 2003
    [10] Joler M., Christodoulou C., Gaudet J., et al., Study of high energy storage Blumlein transmission lines as high power microwave drivers, 14th International Conference on High Power Particle Beams, Albuquerque, New Mexico, USA, 2002, 25–28
    [11]张军,钟辉煌,杨汉武,髙功率微波脉冲功率驱动源研究进展,髙电压技术, 2004, 30(6): 45–48
    [12]王莹,高功率脉冲电源,北京:原子能出版社, 1991
    [13]БакулинЮ.Ы.,ИгурI, II,П.Т.Э. 1979, (2): 34
    [14]蒯斌,等,强光-I长脉冲γ射线二极管,第八届全国高功率粒子束会议文集, 2001
    [15] Meger R. A., et al., Application of PEOS to high power accelerator for pulse compression and power multiplication, 4th IEEE Pulsed Power Conf., 1983: 335
    [16] Shannon J., Maxwell labs report, MLR-3073, April, 1998
    [17] Sincerny P., et al., DMI of DECADE, 10th IEEE Pulsed Power Conf., 1995: 405
    [18] Mesyats G. A., et al., 1MV, 500Hz, all-solid-state nanosecond driver, Beams2000, 2000: 192
    [19]许日,等, RS-20重复频率脉冲功率X射线源,第六届全国高功率粒子束会议文集, 1996
    [20] Martin T H, et al., Summary of the Hermes flash X-ray program, SC-RR-69-421, 1969
    [21] Bemstien B., and Smith I., Aurora, an electron accelerator, IEEE Trans. Nucl. Sci., 1973, 20: 294
    [22] Martin T. H., et al., Particle beam fusion accelerator(PBFA-I), IEEE Trans. Nucl. Sci., 1981, 28(3): 3365
    [23] Martin T. H., et al., PBFA II, A 100TW pulsed power driver for ICF, Proc. 5th IEEE Pulesed Power Conference, 1985: 155
    [24] Martin T. H., et al.,PBFA II, The Pulesd Power Characteriation Phase, Porc. 6th IEEE Pulsed Power Conference, 1987: 255
    [25] Hesterr R. E., The experimental test accelertor (ETA), IEEE Trans. Nucl. Sci., 1979, 26(3): 4180
    [26] Reginate L. L., et al., ATA pulse power technology development, IEEE Trans. Nucl. Sci., 1981, 28(3): 2758
    [27] Kristiansen M., Dickens J. C., Shkuratov S. I., Compact pulsed power and high power microwave devices, 2003, AFRL-SR-AR-TR-03-0463
    [28] Gundersen M. A., Compact, high power, repetitive pulsed power instrumentation, 2004, AFRL-SR-AR- TR-04-0084
    [29] Wilson C. R., Erickson G. A and Smith P. W., Compact, repetitive, pulsed power generators based on transmission line transformers, 7th IEEE International Pulsed Power Conference, 1989, 108–112
    [30] Joler M., Christodoulou C. G., Schamiloglu E., et al., Modeling of a compact, portable transmission linefor pulsed power applications, 14th IEEE International Pulsed Power Conference, Dallas, Texas, USA: 2003, Vol. 1, 253–256
    [31] Buttram M., Some future directions for repetitive pulsed power, Pulsed Power Plasma Science, 2001, Vol.1, 3–8
    [32] Gaudet J. A., Barker R. J., Buchenauer C. J., et al., Research issues in developing compact pulsed power for high peak power applications on mobile platforms, Proceedings of the IEEE, 2004, 92(7): 1144–1165
    [33] Schamiloglu E., Compact pulsed power requirements for high power microwaves, IEE Pulsed Power Symposium, 2001, 311–314
    [34] Fazzo M. V., Kirbie H. C., Ultracompact pulsed power, Proceedings of IEEE, 2004, 92(7): 1197–1204
    [35] Deng J., Stark R. H., Schoenbach K. H., A compact, nanosecond pulse generator with water as dielectric and as switch medium., Pulsed Power Plasma Science, 2001, Vol.2, 1587–1590
    [36] Goerz D., Ferriera T., Nelson D., An ultra-compact marx-type high-voltage generator, 13th IEEE International Pulsed Power Conference, Las Vegas, NV, 2001: 628–631
    [37] Schamiloglu E., Basic research leading to compact, portable pulsed power, First Annual Review of FY’01 AFOSR/DoD MURI Program, http://www.eece.unm.edu/cp3
    [38]樊亚军,高功率亚纳秒电磁脉冲产生,西安:西安交通大学博士学位论文, 2004
    [39] Tesla N., System of electric lighting: USA Patens, 454622, 1891-07-23
    [40] O'Loughlin J. P., Sidler J. D., and Rohwein G. J., Air core pulse transformer design, Power Modulator Symposium, IEEE Conference Record of the 1988 Eighteenth: 325–330
    [41] Sarjeant W. G., and Rohwein G. J., A review of repetitive pulse power component technology, 4th IEEE International Pulsed Power Conf., 1983: 303–308
    [42] Mesyats G. A., Korovin S. D., Gunin A. V., et al., Repetitively pulsed high-current accelerators with transformer charging of forming lines, Laser and Particle Beams, 2003, 21: 197–209.
    [43] Andreev Yu. A., Gubanov V. P., Efremov A. M., Koshelev V. I., Korovin S. D., Kovalchuk B. M., Kremnev V. V., Plisko V. V., Stepchenko A. S. and Sukhushin K. N., High-power ultrawideband radiation source, Laser Part. Beams, 2003, 21: 211–217
    [44] Gunin A. V., Klimov A. I., Korovin S. D., Pegel I. V., Polevin S. D., Roitman, A. M., Rostov V. V., Stepchenko A. S., and Totmeninov E. M., Relativistic X-band BWO with 3 GW output power, IEEE Trans. Plasma Sci., 1998, 26(3): 326–331
    [45] Batrakov A. V., Karlik K. V., Kitsanov S. A., Klimov A. I., Konovalov I. N., Korovin S. D., Mesyats G. A., Ozur G. E., Pegel I. V., Polevin S. D., Proskurovskii D. I., and Sukhov M. Yu., Increasing of pulse duration of the relativistic microwave BWO with output power 3 GW, Tech. Phys. Lett., 2001, 27: 150–152
    [46] Korovin S. D., Kurkan I. K., Loginov S. V., Pegel I. V., Polevin S. D., Volkov S. N., and Zherlitsyn A.A., Decimeter-band frequency-tunable sources of high-power microwave pulses, Laser Part. Beams, 2003, 21: 175–185
    [47] Zagulov F. Ya., et al., Instr. Exp. Tech., 1976, (5): 18
    [48] Eltchaninov A. S., Zagulov F. Ya., Korovin S. D., et al., Electron beam accelerator with high pulse recurrence frequency, Proc. of the 3rd Int. Conf. on High Power Electron and Ion Beams, Novosibirsk, Russia, 1979, Vol. 1: 191–197
    [49] Eltchaninov A. S., Zagulov F. Ya., Korovin S. D., et al., High-current repetitively-pulsed electron accelerators for microwave production, Relativistic High-Frequency Electronics (Gaponov–Grekhov A V, Ed.), 1981: 5–21. Gorky: IAP AS USSR. (in Russian)
    [50] Eltchaninov A. S., Zagulov F. Ya., Korovin S. D., et al., Accelerators of high-current electron beams with high pulse repetition rate, High-Current Electron Beams in Technology, 1983: 5–21. Novosibirsk: Nauka. (in Russian)
    [51] Korovin S. D., Tesla transformer in a high-current repetitive accelerator, Tomsk: Institute of High Current Electronics (IHCE), Siberian Division (SD), Russian Academy of Sciences (RAS), Preprint Technical Report 47, 1988 (in Russia)
    [52] Bykov N. M., et al., Sinus-5, Instr. Exp. Tech., 1989, (1): 37
    [53] Bykov N. M., et al., Sinus, Instr. Exp. Tech., 1991, (2): 38
    [54] Korovin S. D., Rostov V. V., Polevin S. D., Pegel I. V., Schamiloglu E., Fuks M. I., and Barker R. J., Pulsed power-driven high-power microwave sources, Proceedings of the IEEE, 2004, 92(7): 1082–1095
    [55] Korovin S. D., Rostov V. V., High-current nanosecond pulse-periodic electron accelerators utilizing a Tesla transformer, Russian Physics Journal, 2006, 39(12): 1177–1185 [Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, 1996, No. 12: 21–30]
    [56] Gubanov V. P., Korovin S. D., Pegel I. V., et al., Compact 1000 pps high-voltage nanosecond pulse generator, IEEE Transactions on Plasma Science, 1997, 25(2): 258–265
    [57] Gubanov V. P., Gunin A. V., Korovin S. D., et al., Periodically pulsed high voltage generator based on Tesla transformer and spiral forming line, IEEE Conference Pulsed Power Plasma Science, 2001: 336
    [58] Korovin S. D., Gubanov V. P., Gunin A. V., et al., Repetitive nanosecond high-voltage generator based on spiral forming line, The 28th IEEE International Conference on Plasma Science and the 13th IEEE International Pulsed Power Conference, 2001: 1249–1251
    [59] Gubanov V. P., Gunin A. V., Korovin S. D., et al., A nanosecond high-voltage periodically pulsed generator based on a helix forming line, Instruments and Experimental Techniques, 2002, 45(1): 64–66 [Translated from Pribory i Tekhnika Eksperimenta, 2002, (1): 73–75]
    [60] Eltchaninov A. S., Korovin S. D., Mesyats G. A., Rostov V. V., Shpak V. G., and Yalandin M. I., Generation and amplification of microwave radiation with the use of high-current small-size accelerators, Proc. 6th Int. Conf. High-Power Particle Beams (BEAMS-86), 1986: 552–555
    [61] Mesyats G. A., Korovin S. D., Rostov V. V., Shpak V. G., and Yalandin M. I., The RADAN series of compact pulsed power generators and their applications, Proceedings of the IEEE, 2004, 92(7): 1166–1178
    [62] Eltchaninov A. S., Shpak V. G., Urike Y. Y., and Yalandin M. I., RADAN-150 and RADAN-220—A compact pulsed X-ray apparatus, Defectoscopy, 1984, (12): 68–70
    [63] Eltchaninov A. S., Kotov A. S., Shpak V. G., Urike Y. Y., and Yalandin M. I., RADAN—A compact pulsed repetitive X-ray apparatus and electron accelerators, Electron. Tech. 4, 1987, (2): 33–37
    [64] Mesyats G. A., Shpak V. G., Yalandin M. I., and Shunailov S. A., Compact high-current repetitive pulsed accelerators, Proc. 8th IEEE Int. Pulsed Power Conf., 1991: 73–77
    [65] Mesyats G. A., Shpak V. G., Yalandin M. I., and Shunailov S. A., Compact high-current accelerators based on the RADAN SEF-303 pulsed power source, Proc. 9th IEEE Int. Pulsed Power Conf., 9th IEEE International Pulsed Power Conference, Albuquerque, New Mexico, 1993: 835–838
    [66] Mesyats G. A., Shpak V. G., Yalandin M. I., RADAN-EXPERT portable high-current accelerator, Proc. 10th IEEE Int. Pulsed Power Conf., 1995, 539–543
    [67] Mesyats G. A., Shpak V. G., Shunailov S. A., and Yalandin M. I., Desk-top subnanosecond pulser research, development and applications, Proc. SPIE Int. Symp.: Intense Microwave Pulses, vol. 2154, 1994: 262–268
    [68] Gubanov V. P., Korovin S. D., and Stepchenko A. S., High voltage nanosecond generator with repetition frequency of up to 1 kHz, Prib. Tekh. Eksp., 1997, (1): 95–98
    [69] Shpak V. G., Shunailov S. A., Yalandin M. I., and Dyad’kov A. N., The RADAN SEF-303A, a small high-current pulsed power supply, IET, 1993, 36: 106–111
    [70] Yalandin M. I., and Shpak V. G., Compact high-power subnanosecond repetitive-pulse generators, IET, 2001, 44(3): 285–310
    [71] Shpak V. G., Shunailov S. A., Oulmascoulov M. R., and Yalandin M. I., Synchronously operated nano- and subnanosecond pulsed power modulators, Dig. Tech. Papers of 12th IEEE Int. Pulsed Power Conf., 1999, vol. 2: 1472–1475
    [72] Shpak V. G., Shunailov S. A., and Yalandin M. I., Investigations of compact high-current accelerators RADAN 303 synchronization with nanosecond accuracy, Proc. 10th IEEE Int. Pulsed Power Conf., 1995: 666–671
    [73]徐益志,等,闪光-I强流脉冲电子束加速器,原子核与核物理, 1987, 9(2): 169
    [74]邱爱慈,等,闪光-II强流脉冲电子束加速器,强激光与粒子束, 1991, 3(3): 340
    [75]李传胪,沈龙根,刘存华,刘春阳,张庆兰,李享生,谭启美,郭伶秀,刘金亮, 81-7M-01强流电子束加速器,国防科技大学学报增刊, 1993, 15: 1–10
    [76]沈龙根,李传胪,谭启美,刘金亮,刘存华,刘永贵,王勇,张建德,钱宝良, 81-7M-01-A双电子束加速器,国防科技大学学报增刊, 1998, 20: 6–10
    [77]钟辉煌,李传胪,刘正云, Tesla变压器的理论分析与工程设计,国防科技大学学报增刊, 1993, 15: 52–57
    [78]钟辉煌, Tesla变压器的理论分析与工程设计,中国高功率粒子束十年文集, 1995: 317
    [79]钟辉煌,沈龙根,李传胪,刘永贵,张建德,张亚洲,彭光顺,刘车波,重复运行加速器技术的初步研究,国防科技大学学报增刊, 1998, 20:1–5
    [80]张嘉生,一种重复频率的高功率发生器,强激光与粒子束, 1999, 11(4): 470–472
    [81]丁剑,韩旻,重复Tesla变压器型相对论电子束加速器的初步试验,强激光与粒子束, 2000, 12(5): 631–634
    [82]刘金亮,钟辉煌,谭启美,李传胪,张建德, Tesla变压器型电子束加速器初步实验,强激光与粒子束, 2002, 14(6): 802–804
    [83]常安碧,康强,罗敏,张永辉,李名加,龚胜刚,苏友斌,冯弟超,赵殿林,甘延青,向飞,刘忠,变压器型重复脉冲强流电子加速器CHP01研制, 1–6
    [84]张永辉,常安碧,康强,罗敏,龚胜刚,李名加,李正红,马乔生,向飞,赵殿林,甘延青,刘忠,重复脉冲强流电子束源长时间稳定运行实验研究,强激光与粒子束, 2005, 17(5): 751–754
    [85]康强,常安碧,李名加,孟凡宝,苏友斌,带脉冲形成线的1.0 MV 1 00 Hz紧凑型Tesla变压器的研制,强激光与粒子束, 2006, 18(3): 451–454
    [86]康强,常安碧,李名加,苏友斌,重复高压脉冲产生与成形一体化装置研制,强激光与粒子束, 2008, 20(4): 701–704
    [87] Song X. X. , Liu G. Z. , Peng J. C., et al., TPG400: a compact short pulse electron beam accelerator, The 1st Euro-Asian Pulsed Power Conference (EAPPC'06), Mianyang, 2006: 316–320
    [88]彭建昌,宋晓欣,刘国治,等, Tesla型重频脉冲电子束加速器及其应用,第十届高功率粒子束学术交流会议,长沙, 2006
    [89]宋晓欣,刘国治,彭建昌,苏建仓,王利民,潘亚峰,张喜波,国文辉,朱晓欣,秋实,丁臻捷,黄文华,浩庆松,重复频率脉冲电子束加速器—TPG700,全国第七届高功率微波学术研讨会,四川峨眉, 2008: 238–244
    [90]彭建昌,苏建仓,宋晓欣,国文辉,王利民,潘亚峰,张喜波,房金鹏,丁臻捷,赵亮,浩庆松,王颖, 30 GW高功率重频脉冲驱动源,全国第七届高功率微波学术研讨会,四川峨眉, 2008: 245–250
    [91]欧阳佳,折叠型平板Blumlein线及其应用研究,长沙:国防科技大学博士学位论文, 2007
    [92]樊亚军,刘国治,石磊,刘锋,周金山,朱四桃,朱郁丰,李庆山,易超龙,刘胜,“黄羊-CKP-5000”双路5GW超宽谱HPM产生装置研制,全国第六届高功率微波学术研讨会,太原, 2004: 1–8
    [93] Hoffman C. R. J., Tesla transformer high-voltage generator, Rev. Sci. Instrum., 1975, 46(1), 1–4
    [94] Abramyan E. A., Transformer type accelerators for intense electron beams, IEEE Trans. Nucl. Sci., 1971, 18: 447–455
    [95] Boscolo I., Leo M., Luckes A. and Provenzano L., Electon beam production by a Tesla transformer accelerator, Rev. Sci. Instrum., 1977, 48(7): 747–751
    [96] Boscolo I., Brautti G., Coisson R., Leo M., and Luckes A., Tesla transformer accelerator for the production of intense relativilstic electron beams, Rev. Sci. Instrum., 1975, 46(11): 1535–1539
    [97] Suzki T., Murakami H., Saito Y., Yamagishi A., and Inaba H., Rev. Sci. Instrum., Design and operational characteristics of a compact relativistic electron beam generator for the excitation of short wavelength lasers, 1980, 51(11): 1485-1487
    [98] Denicolai M., Optimal performance for Tesla transformers, Rev. Sci. Instrum., 2002, 73(9), 3332–3336
    [99] Reed J. L., Greater voltage gain for Tesla-transformer accelerators, Rev. Sci. Instrum., 1988, 59(10): 2300–2301
    [100] Matsuzawa H., and Suganomata S., Design charts for Tesla-transformer-type relativistic electron beam generator, Rev. Sci. Instrum., 1982, 53(5): 694–696
    [101]刘正云,一种新型的高功率微波源的设计及加工,长沙:国防科技大学硕士学位论文, 1993
    [102]柯罗文(Korovin S. D.),用在强脉冲重复频率加速器中的特斯拉变压器,国外核试验技术, 1996, 19(1): 1–23
    [103] Adler R. J., Pulse power formulary, Albuquerque, New Mexico: North Star Research Corporation, 2001
    [104]肖明珠,小型Tesla变压器,高压电器, 1998, (3): 21–23
    [105]肖明珠,高压脉冲发生器与计算机仿真,绵阳:中国工程物理研究院硕士学位论文, 1997
    [106] Zhang J., et al., The design of a compact pulse transformer, 12th IEEE Pulsed Power Conf., 1999
    [107]李名加,阮江军,康强,等,脉冲变压器锥形绕组电压分布数值分析,高电压技术, 2004, 30(6): 51–53
    [108]李名加,常安碧,康强,等,基于多导体传输线理论的脉冲变压器锥形绕组电压分布数值分析,强激光与粒子束, 2005, 17(l): 1730–1734
    [109]李名加,康强,辛佳琪,脉冲变压器锥形绕组感应系数矩阵简化计算方法,强激光与粒子束, 2008, 20(5): 839–843
    [110] Peng Y., Ruan J., Investigation of very fast transient overvoltage distribution in taper winding of Tesla transformer, IEEE Transactions on Magnetics, 2006, 42(3): 434–441
    [111]辛佳祺,常安碧,李名加,康强,脉冲形成线放电过程中Tesla变压器锥形绕组电压分布特性,强激光与粒子束, 2007, 19(6): 987–991
    [112]赵凯华,陈熙谋,电磁学,北京:高等教育出版社, 2000
    [113]黄延军,沈跃,魏淑贤,大位移测量中均匀梯度磁场的构建,传感器技术, 2005, 24(2): 55–56, 59
    [114]任兰亭,贾瑞皋,大学物理教程(下册)(修订版),东营:石油大学出版社, 1999
    [115] Suthar J. L., and Laghari J. R., Simulation of air core pulse transformer, 237–240
    [116] Dixon L. H., Magnetics Design for Switching Power Supplies, Section 2, Magnetic core characteristics, Texas Instruments Incorporated
    [117]冯建武,潘自立,薄导体板中的涡流及涡流损耗,洛阳师范学院学报, 2001, (2): 43–45
    [118]詹天文,给水介质PFL充电的Tesla变压器的研究,长沙:国防科技大学硕士学位论文, 2007
    [119]梁曦东,关志成,陈昌渔,高电压工程,北京:清华大学出版社, 2000
    [120]王瑞华,脉冲变压器设计,北京:科学出版社, 1987
    [121]李名加,常安碧,康强,张永辉,甘延青,刘忠, 20 GW装置中脉冲变压器锥形高压绕组研制,全国第七届高功率微波学术研讨会,四川峨眉, 2008: 262–265
    [122]刘金亮,张建德,李永忠,等,一种给脉冲形成线充电的带绕式高压脉冲变压器,强激光与粒子束, 2003, 15(4): 394–396
    [123] Hewlett Packard, HP4282A Precision LCR Meter Data Sheet, 2004
    [124]杨汉武,脉冲功率及其诊断技术讲义[M],长沙:国防科技大学, 2003
    [125]张自成,杨建华,张建德,等,加压水介质耐μs级高电压击穿实验研究,强激光与粒子束, 2005, 17(5): 761–764
    [126] Kristiansen M., Hatfield L. L., High voltage water breakdown studies, Lubbock, TX: Defense Special Weapons Agency, 1998
    [127] Miller A. R., High energy density, low impedence capacitors using pressured water as a dielectric, Fifth Symposium on Engineering Problems of Fusion Research, 1973: 471–474
    [128] Fenneman D. B. and Gripshover R. J., Experiments on electrical breakdown in water in the microsecond regime, IEEE Transactions on Plasma Science, 1980, 8(3): 209–213
    [129]张自成,张建德,杨建华,等,电极表面光滑程度对水介质高电压击穿的影响,强激光与粒子束, 2005, 17(3): 463–465
    [130]张自成,杨建华,张建德,等,抛光电极表面对加压水介质耐压的影响,高电压技术, 2005, 31(10): 52–54
    [131] Mankowski J. J., High voltage subnanosecond dielectric breakdown, Lubbock: Texas Tech University Dissertation, 1998
    [132] Espinosa J. C., Dielectric Breakdown of Water, Austin: Doctoral Dissertation of the University of Texas, 2000
    [133] Ushakov V. Y., et al., Impulse breakdown of liquids, New York: Springer–Verlag Berlin Heidelberg, 2007
    [134] Jones H. M., Kunhardt E. E., The Influence of pressure and conductivity on the pulsed breakdown of water, IEEE Trans. on Dielectrics and Electrical Insulation, 1994, 1(6): 1016–1025
    [135] Jones H. M., Kunhardt E. E., Development of pulsed dielectric breakdown in liquid, Journal of Physics, 1995, 28(1): 178–188
    [136] Schnitker J., Rossky P. J., Excess Electron Migration in Liquid Water, J. Phys. Chem, 1989, 93: 6965–6969
    [137] Raizer Y. P., Gas Discharge Physics, New York: Springer–Verlag, 1991
    [138] Albright N. W., Tidman D. A., Ionizing Potential Waves and High Voltage Breakdown Streamers, Phys. Fluids, 1972, 15(1): 86–90
    [139] Hemley R., et al., Static Compression of H2O-Ice to 128 Gpa (1.28Mbar), Nature, 1991, 330(24/31): 737–740
    [140] Kolb J., Kono S., Xiao S., et al, Water and propylene carbonate as storage and switching media inpulsed power system, 14th IEEE International Pulsed Power Conference, Dallas Texas, USA, 2003, Vol. 1, 715–718
    [141] Bolund B. F., Berglund M., and Bernhoff H., Dielectric study of water/methanol mixtures for use in pulsed-power water capacitors, Jorunal of Applied Physics, 2003, 93(5): 2895–2899
    [142] Shpak V. G.,Yalandin M. I., Oulmascoulov M. R., Shunailov S. A., 1000 pps subnanosecond high-voltage generator, 11th IEEE International Pulsed Power Conference, Baltimore, Maryland USA, 1997, Digest of Technical Papers, 1575–1580
    [143]焦洪杰,特斯拉变压器一次接线柱绝缘与密封结构的研究,变压器, 2004, 41(5): 27–28
    [144] Mirza J. S., Smith C. W., Calderwood J. H., Bubbles, pressure and pre-breakdown in insulating liquid, Proceedings of the 4th Internatioal Conference on Conduction and Breakdown in Dielectric Liquids, 1972: 198-201
    [145] Eilbert R. A., Lupton R. A., Extrapolation of AWRE water breakdown data, NRL Internal Report
    [146] Fenneman D. B., Pulsed high-voltage dielectric properties of ethylene glycol/water mixtures, Journal of Applied Physics, 1982, 53(12): 8961–8968
    [147]张自成,张建德,杨建华,等,加压乙二醇/水混合液耐μs级高电压击穿实验研究,强激光与粒子束, 2005, 17(8): 1201–1204
    [148] Zhang Zicheng, Zhang Jiande, Yang Jianhua, Experimental study on high electrical breakdown of water dielectric, Plasma Science and Technology, 2005, 7(6): 3161–3165
    [149]彭建昌,王利民,朱晓欣,潘亚峰,张喜波,李鹏辉,宋晓欣, Tesla型加速器重频主开关的设计与分析,全国第六届高功率微波学术研讨会,太原, 2004: 103–106
    [150] Pitot tube, From Wikipedia, the free encyclopedia, http://en.wikipedia.org/wiki/pitot_tube
    [151]伍悦滨,朱蒙生,工程流体力学泵与风机,北京:化学工业出版社, 2006
    [152]孔珑,工程流体力学(第三版),北京:中国电力出版社, 2007
    [153] Pitot-static tube prandtl tube, Glenn Research center, National Aeronautics and Space Administration (NASA), http://www.grc.nasa.gov/www/k-12/airplane/pitot.html
    [154]朱仁庆,杨松林,杨大明,实验流体力学,北京:国防工业出版社, 2005
    [155] Kuhlman J. M. and Moran G. M., Performance of high-power gas-flow spark gaps, AIAA Journal, 1986, 24(7): 1112–1119
    [156] Moran S. L. and Hardesty L. W., High-repetition-rate hydrogen spark gap, IEEE Transactions on Electron Devices, 1991, 38(4): 726–730
    [157] MacGregor S. J., Turnbull S. M., Tuema F. A., et al., Enhanced spark gap switch recovery using nonlinear V/p curves, IEEE Transactions on Plasma Science, 1995, 23(4): 798–804
    [158] MacGregor S. J., Turnbull S. M., Tuema F. A., et al., Factors affecting and methods of improving the pulse repetition frequency of pulse-charged and dc-charged high-pressure gas switches, IEEE Transactions on Plasma Science, 1997, 25(2): 110–117
    [159] Lehr J. M., Abdafa M. D., Burger J. W., Elizondo J. M., Fockler J., Gruner F., Skipper M. C., Smith I. D., and Prather W. D., Design and development of a 1 MV, compact, self break switch for high repetition rate operation, P roceedings of the 12th IEEE Pulsed Power Conference, 1999: 1199–1202
    [160]许日,宁辉,邱爱慈,莫凡,邱毓昌,重复率气体火花开关绝缘恢复特性的实验研究,强激光与粒子束, 1996, 8 (4): 518–522
    [161]莫凡,重复频率气体火花开关研究,西安:西安交通大学硕士学位论文, 1996
    [162]沈龙根,刘车波,钟辉煌,等.紧凑型高功率高电荷转换量重复脉冲火花隙开关的研制,国防科技大学学报增刊, 1998, 20: 16–20
    [163]沈龙根,刘车波,钟辉煌,等.长寿型高功率重复脉冲火花隙开关的设计与研究,国防科技大学学报增刊, 1998, 20: 21–24
    [164]沈龙根,常安碧,刘车波,等,高功率、高电荷转换量重复频率气体火花开关的研制报告, 1997年度国防科技大学高功率微波研究中心科研成果汇编, 1997
    [165]沈龙根,刘车波,钟辉煌,等,高功率重复脉冲开关实验装置,国防科技大学学报增刊, 1998, 20:11–15
    [166]沈龙根,李传胪,谭启美,等,重复脉冲功率开关触发源,国防科技大学学报增刊, 1995, 17: 60–65
    [167]刘车波,沈龙根,彭光顺,等,重复频率开关气流熄弧实验研究,国防科技大学学报增刊, 1998, 20: 58–60
    [168]刘金亮,周少平,钟辉煌,大功率火花隙开关重复频率的理论分析,国防科技大学学报增刊, 2000, 22: 7–9
    [169]罗敏,高功率重复频率气体火花开关理论与实验研究,绵阳:中国工程物理研究院硕士学位论文, 2003
    [170]罗敏,常安碧,曹绍云,等,高功率大电荷量重复频率火花隙开关实验研究,强激光与粒子束, 2003, 15(4): 413–417
    [171]贺臣,重复频率长寿命气体火花开关的研究,武汉:华中科技大学硕士学位论文, 2004
    [172]罗敏,赵殿林,龚胜刚,等, MV级重复频率三电极火花隙开关系统的研制,高电压技术, 2005, 31(3): 61–64
    [173]吕治辉,高功率自击穿气体火花开关多脉冲运行特性研究,长沙:国防科技大学硕士学位论文, 2005
    [174]殷毅,高功率氢气开关的初步研究,长沙:国防科技大学硕士学位论文, 2006
    [175]陈俊,杨建华,舒挺,等,储能电容方式驱动强流脉冲加速器重频运行的研究,强激光与粒子束, 2008, 20(8): 1405–1408
    [176] Humphries, S. Jr., Principles of charged particle acceleration, New York: John Wiley & Sons, 1986
    [177]杨汉武,爆炸磁压缩发生器及其脉冲功率调制研究,长沙:国防科技大学博士学位论文, 2002
    [178]张晋琪,快脉冲下液体介质击穿实验装置及击穿特性研究,重庆:重庆大学硕士学位论文, 2006
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.