DNA聚合酶β在食管癌中的表达及其生物学效应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:肿瘤发生是一个有遗传和环境因素共同参与的多基因多步骤的发展过程,可分为启动、发展和演进三个阶段,涉及增变基因、癌基因及抑癌基因等的突变积累和恶性变细胞克隆的选择性扩增。实验表明一个增变基因的突变可导致细胞突变率的显著增高,早于癌基因及抑癌基因等的突变,其在癌变中的作用越来越受到重视。碱基切除修复是维护基因组稳定的重要机制之一,主要负责人体细胞经常发生的内源性的大量DNA小损伤,如氧化的碱基、烷化的碱基和单链DNA断裂等单个核苷酸的切除修复。而DNA聚合酶β(POLB)是碱基切除修复机制的关键分子。正常细胞DNA聚合酶β是低水平表达的。有报道多数肿瘤组织或细胞系,包括胶质瘤、淋巴瘤、乳腺癌、结肠癌、前列腺癌、卵巢癌和肝癌的DNA聚合酶β皆是高表达的。高表达的DNA聚合酶β修复保真性差,对错配碱基敏感性降低而耐受性增高,可导致基因组不稳定性、跨损伤修复和增变基因表型增加。在小鼠LN12细胞系内突变的DNA聚合酶β的表达可明显
    
    抑制野生型DNA聚合酶p的功能使细胞突变频率成倍增加。本课题组曾对
    人食管癌的DNA聚合酶p基因的突变情况进行的研究显示癌旁组织突变
    检出率(1/40)远低于癌组织(16/40)。但人食管癌组织、癌旁及正常组
    织的DNA聚合酶多基因表达情况如何?人食管癌Eca一109细胞系的DNA
    聚合酶p是否高表达?当应用分化诱导剂诱导Eca一109细胞分化时DNA
    聚合酶p表达水平是否可能向正常低水平调节?同时BER中必需参与的
    wP53和polp密切相关的耐药性如何?如将含野生型DNA聚合酶p基因
     (wPolp)的表达质粒转染于Eca一109细胞而使细胞的帅olp表达进一
    步提高,是否会导致细胞进一步恶性化?还是通过功能调整是细胞呈现一、
    定恶性逆转化?这些问题对研究DNA聚合酶p与食管癌乃至与肿瘤的发
    生发展的关系具有重要意义,国内外尚未见报道。本文应用原位杂交、免
    疫组织化学、DNA转染等分子生物学技术对人食管癌组织、癌旁组织及正
    常粘膜的DNA聚合酶p进行了相对定量及定位研究,并对分化诱导剂及野
    生型DNA聚合酶p的表达质粒转染对人食管癌Eca一109细胞的生物学效应
    进行了探讨。
     研究方法:1.组织标本制备及总RNA的提取:17例未经治疗食管癌
    患者的手术标本包括癌灶、癌旁及相邻正常的共51块组织,等分为2份,
    1份组织经4%多聚甲醛固定制备石蜡包埋切片;另1份组织按重量用
    Tri 201试剂提取总刚A,进行51个刚A斑点印迹。2.建立分化诱导剂
    理的Eca一109细胞系和含wPolp的表达质粒(pcDNA3一wPolp)稳定转染
    Eca一109细胞系及相应各对照组细胞系.3.自p。DNA3一wPolp重组质粒经
    扩增、双酶切和电泳分离及提纯wPol p DNA.应用随机引物法制备生物素
    
    郑州大学博士学位论文摘要
    及地高辛标记的wPolp和Bi。一呻53及Bio--mP53的cDNA探针。应用体
    外转录法将wPol日DNA单酶切为线型模板,加SP6 RNA聚合酶、NTP及
    Bi。一1住,叮P进行体外转录制备反义RNA探针;并以DNA斑点印迹检测
    各标记探针的灵敏度。4.定位观察和表达信号相对定量:油镜下观察组织
    /细胞的各原位杂交信号或免疫反应性(POLB一1R、PCNA一IR及MRP一工R)的
    定位及其强弱级别。细胞信号/IR积分值结合RNA斑点印迹的TLC扫描数
    值相对定量。‘同时以不加标记探针和不加特异性抗体的标本分别作为原位
    杂交和免疫组化的阴性对照。5.应用DNA酸变性一甲绿一派郎宁GS染色计
    数增殖细胞比率。6.统计学处理应用t检验、XZ检验和相关分析等。
     研究结果:1.人食管癌组织中polp基因表达信号定位于细胞质,
    相临正常组织内弱信号位于复鳞上皮的基层细胞,癌旁组织信号增强,癌
    灶组织内弱信号见于分化较高的癌巢,浸润的癌细胞信号较强,异型性巨
    癌细胞信号更强。DNApolp基因表达随着细胞恶性程度增加而增强。癌灶
    DNA po lp基因表达水平高于癌旁,p<0 .05;两者比正常组织表达显著增
    高,p<0 .001。结果表明人食管癌中DNA polp基因是高表达的。癌旁组
    织Polp基因较高水平的表达提示可能为癌变的早期事件。2.人食管癌组
    织中参与DNA早期损伤SSB修复的POLB和XRCCI的异二聚体表达定位于
    细胞核。在癌灶组织、癌旁组织和正常组织中POLB和XRCCI的表达水平
    及定位与polp基因表达水平及定位相似,其表达水平也随着细胞恶性程
    度增加而增强。两者在癌组织内的表达水平呈显著正相关r=0.9971,
    p<0.01。结果表明人食管癌中POLB和xRCCI的表达是高水平的。癌旁组
    织中参与DNA早期损伤SSB修复的POLB和XRCCI的较高水平的表达可
    
    郑州大学博士学位论文
    摘要
    进一步提示为癌变的早期事件。3.应用分化诱导剂诱导Eoa一109细胞趋
    向正常水平分化时,DNA polp基因表达向正常低水平下调,P    时BER中必需的wp53基因表达上调,药物耐受性减低,P    E。a一109细胞的DNA polp基因是高表达的。反之,顺铂处理的Eca一109细
     {
    胞的polp基因表达上调,p<0 .001;wP53基因表达下调,药物耐受性增
    高,p<0 .001。这提示分化诱导剂比基因毒性药物可能具有较好的远期疗
    效。4.稳定
Aim: Tumorigenesis occurs through multiple-steps of mutation accumulation of oncogenes and antioncogenes and through selection amplification of malignant cell clones. Recently the research works in the field of oncogenes and antioncogenes were expanded into the field about genes involved damaged DNA repair. The large amount of small DNA lesions, such as oxidized and alkylated bases and single strand break (SSB), were
    mainly repaired by DNA polymerase β in vivo through one single nucleotide
    base excision repair (BER) pathway. The DNA polymerase β expression
    level was very low in the normal tissues and cells; and possessed cell protection against apoptosis. Most of tumors, including glioma, lymphoma, breast cancer, colorectal cancer, prostate cancer, ovarian tumor and hepatic cancer and etc., exhibited overexpression of polbeta. The overexpressed polbeta with low fidelity repair could decrease sensitivity to the mismatched bases and increase tolerance to them, which could result in genomic instability, translesion repair and mutator phenotype. The polbeta with heterozygous of wild type (w) and mutant type (m) in which the mpolfl displayed dominant
    
    
    
    negative effect over the wpolfi showed almost no BER activity. In our previous study there was a mutant frequency of 1/40 in the cancer-adjacent tissue, much lower than that of 16/40 in the cancer foci tissue in human esophageal cancer. Whether human esophageal cancer tissue could exhibit overexpression of polbeta and alteration of polbeta expression could occur earlier than that of sequence mutation? Especially the POLB and XRCC1, a heterodimer of POLB, involved in SSB repair of early damaged DNA could show altered expression in the cancer- adjacent tissue as an early event? Whether human esophageal cancer Eca-109 cell line could show overexpression of polbeta which could be down regulated during cell differentiation? How about the alteration of wp53 required in BER activity and anti-cancer drug resistance, when the cisplatin-treated cells were used as a
    positive control? If the pcDNA3-wpol β plasmid was transfected into
    Eca-109 cell line, the overexpressed polbeta could result in further mutator phenotype or normal tendency through functional regulation in the cell itself? As to the above-mentioned problems, especially associated with the localization of signals in human esophageal cancer, so far, no reports have been found.
    Methods: 1. 51 pieces of tissues, including cancer foci, cancer-adjacent and corresponding normal tissues were removed from 17 untreated patients with esophageal cancer. Each tissue was divided into 2 aliquots, one of them was fixed with 4% formaldehyde and paraffin-embedded specimens were prepared. The total RNA was isolated from another aliquot tissues by 'Trizol' reagent, and 51 RNA dot blots were performed. 2. The Eca-109 cell line treated with
    differentiation drugs and stably transfected with pcDNA-wpol β Eca-109 cell
    line and their corresponding control cell lines were established respectively. 3. The wpol β DNA was isolated from pcDNA3-wpol6 recombinant plasmid after digesting with BamH1 and Hind III enzymes and electrophoresis. The
    
    
    
    Biotin or Digoxgenin labeled wpolbeta cDNA probe, Bio-wp53 and Bio-mp53 cDNA probes were prepared by random primer method. The Bio-labeled wpolbeta antisense RNA probe was prepared by transcription in vitro. The recombinant pcDNA3-wpolβ plasmid was digested only by Hind III enzyme as the linerized DNA template. The transcription in vitro was carried out by addition of SP6 RNA polymerase, rNTPs and Bio-11-dUTP. The sensitivity of each labeled probe was detected by DNA dot blot. 4. Observation on the signal localization and relative quantitation of expression level: the signal/IR localization in the specimens prepared by in situ hybridization or by immunohistochemistry (POLB-IR, PCNA-IR and MRP-IR) were observed under oil-emersion microscope and the integrated value for demonstration of signal /IR intensity was combined with the TLC scanning value in the RNA dot blot or
引文
1. Thompson LH, West MG, et al. XRCC1 keeps DNA from getting stranded. Mutat Res, 2000, 459:1-18
    2. Fortini P, Pascucci B, et al. Different DNA polymerases are involved in the short-and long-patch base excision repair in mammalian cells. Biochemistry, 1998, 37:3575-3580
    3. Dianov GL, Prasad R, Wilson SH, et al. Role of DNA polymerase beta in the excision step of long patch mammalian base excision repair. J Biol Chem, 1999, 274(20) : 13741-3
    4. Singhal RK, Wilson SH. Short gap-filling synthesis by DNA polymerase beta is processive. J Biol Chem, 1993, 268:16906-11
    5. Mutsuda T, Bebeneck K, Masutani C, et al. Low fidelity DNA synthesis by human DNA polymerase beta. Nature, 2000, 404:1011-1013
    6. Osheroff WP, Jang HK, Beard WA, et al. The fidelity of DNA polymerase beta during distributive and processive DNA synthesis. J Biol Chem, 1998, 24822-24831.
    7. Bergolio V, Pillaire MJ, Lacroix-Trikim M, et al. Deregulated DNA polymerase beta induces chromosome instability and tumorigenesis. Cancer Res, 2002, 62 (12) :3511-3514.
    8. Canitrot Y, Frechet M, Servant L, et al. Overexpression of DNA
    
    polymerase beta: a genomic instability enhancer process. FASEB J, 1999, 13(9) : 1107-11.
    9. Dong Z, Zhao G, Zhao Q. A study of DNA polymerase beta mutation in human esophageal cancer. Zhonghua Yi Xue Za Zhi, 2002, 82 (13) : 899-902.
    10. Trizol Reagent, Invatrogen 2003
    11. Bench Guide: Protocol, hints and tips for molecular biology labs. QIAGEN, 2003
    12. Protocols And Applications Guide Promega, 2000
    13. 吴景兰,丁一 主编,实用非放射性分子生物学实验技术 1997,河南医科大学出版
    14. Sambrook J, Rusell DW. Molecular Cloning A Laboratory Manual 3rd Ed 2001 by Cold Spring Harbor Laboratory Press.
    15. Zmudzka B, Formace A, Colins J et al. Characterization of DNA polymerase beta mRNA: cell-cycle and growth response in cultured human cells. Nucl Acids Res, 1998, 16:9589-9596
    16. Iwanaga A, Ouchida M, Miyazaki K, et al. Functional mutation of DNA polymere beta found in human gastric cancer-inability of the base excision repair in vitro. Mutat Res, 1999, 435 (2) : 121-8
    17. Srivastava DK, Husain I, Artega CL, et al. DNA polymerase beta expression differences in selected human tumors and cell lines.
    
    Carcinogenesis, 1999, 20(6) :1049-1054
    18. Servant L, Bieth A, Hayakawa H et al. Involvement of DNA polymerase beta in DNA replication and mutagenic consequences. J Mol Biol, 2002, 315:1039-1047
    19. 郑秀龙,蔡建明,DNA聚合β在DNA修复作用中的分子机制 J Radiat Res Radiat Process, 1997, 15(3) :168-174
    20. Canitrot Y, Cazaux C, Frechet M, et al. Overpression of DNA polymerase beta in cell results in a mutator phenotype and a decreased sensitivity to anticancer drugs. Proc Natl Acad Sci USA, 1998, 95(21) :12586-90
    21. Canitrot Y, Hoffmann JS, Callsau P. Nuleotide excision repair DNA synthesis by excess DNA polymerase beta: a potential source of genetic instability in cancer cells. FASEB, 2000, 14:1765-74
    22. Bhattacharyya N, Barier IS, et al. A variant of DNA polymerase beta act as a dominant negative mutant. Proc Natl Acad Sci USA, 1997, 94 (19) : 10324-9
    23. Thompson TE, Rogan PK, Risinger JI, et al. Splice variants but not mutations of DNA polymerase beta are common in bladder cancer. Cancer Res, 2002, 62(11) : 3251-6
    24. Bennett RA, Wilson DM, Wong D, et al. Interaction of human apurinic endonuclease and DNA polymerase beta in the base
    
    excision repair pathway. Proc Natl Acad Sci USA, 1997, 94 (14) :7166-9
    25. Wood RD, Shivji MK. Which DNA polymerases are used for DNA-repair in eukaryotes? Carcinogenesis, 1997, 18(4) :605-10
    26. Lindahl T, Wood RD. Quality control by DNA repaire. Science 2000 286(5446) : 1897-1905
    27. Hoeijmakers JHJ. Genome maintenance mechanisms for preventing cancer. Nature, 2001, 411:366-74
    28. 6. Harlow E, Lane D. 搞体技术实验指南 2002,北京科学出版社
    29. Wilson DM, Bianchi C. Improved immunodetection of nuclear antigens after sodium dodecyl sulfate treatment of formaldehyde-fixed cell. J Histochem Cytochem, 1999, 47 (48) :1095-1100
    30. Mol CD, Parikh SS, Putman CD, et al. DNA repair mechanism for the recognition and removal of damaged DNA basis. Annu Rev Biophys Biomol Struct, 1999, 28:101-128
    31. Bruner SD, Norman DP, Verdine GL. Structure basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA. Nature, 2000, 403:859-866
    32. Ward JF. DNA damage produced by ionizacg radiation in mammalian cells: identities, mechanisms of formation, and repairability. Prog Natl Acids Res Mol Biol , 1998, 35:95~125
    
    
    33. Wilson DM, Thompson LH. Life without DNA repair. Proc Natl Acad Sci USA, 1997, 94:12754~7
    34. Caldecott KW, Aoufouchi S, Johson P, et al. XRCCI Dolypeptide interacts with DNA polymerase beta and possibly poly (ADP-ribose) polymerase, and DNA ligase Ⅲ is a novel molecular 'nick sensor' in vitro. Nucl Acid Res, 1996, 24:4387-94
    35. Kubota Y, Nash RA, Klungland A, et al. Reconstitution of DNA base xcision repair with purified human proteins: interaction between DNA polymerase beta and XRCC1 protein. EMBO, 2000,403:451-6
    36. Fujimura M, Morita-Fujimura Y, Sugawara T, et al. Early decrease of XRCC1, a DNA base excision repair protein, may contribute to DNA fragmentation after transient focal cerebral ischemia in mice. Stroke, 1999 30(11):2456-62; discussion 2463
    37. 宫璀璀,王文丽,吴景兰等,凋亡诱导剂联合应用对 Eca-109 细胞的凋亡和 Bcl-2,Bax,XRCC1 等凋亡相关蛋白的作用 郑州大学学报医学版 2003 38(5)刊登中
    38. 宫璀璀,王文丽,吴景兰等,凋亡诱导剂联合应用对 Eca-109 细胞耐药性的影响 郑州大学学报医学版 2003 38(5)刊登中
    39. Park SY, Lam W, Cheng YC. X-ray repair cross-complementing gene protein plays an important role in camptothecin resistance. Cancer Res, 2002, 62(2):456-65
    
    
    40. Prasad R, Singhal RK, Srivastava DK, et al. Specific interaction of DNA polymerase beta and DNA ligase I in a multiprotein base excision repair complex from bovine testis. J Biol Chem, 1996, 271:16000-7
    41. Caldecott KW, McKeown CK, Tucker JD, et al. Chaterization of the XRCC1-DNA ligase Ⅲ complex in vitro and its absence from mutant hamster cells. Nucleic Acids Res, 1995, 23:4836-4843
    42. Taylor RM, Moore DJ, Whitehouse P, et al. A cell cycle-specific requirement for the XRCC1 BRCT Ⅱ domain during mammalian DNA strand break repair. Mol Cell Biol, 2000, 20 (2) :735-40
    43. Wilson DM. Mammalian base excision repair and DNA polymerase beta. Mutat Res, 1998, 407:203-215
    44. Bhattacharyya N, Banerjee S. A novel role of XRCC1 in the functions of a DNA polymerase beta variant. Biochemistry, 2001, 40: 9005-9013
    45. 王红梅,宫璀璀,吴景兰 8-Br-cAMP对Eca-109细胞诱导逆转化/分化效应 郑州大学学报医学版 2003 38 (5) 刊登中
    46. Cho-Chung YS. Role of cyclic AMP receptor protein in growth, differentiation and suppression of malignancy: New approaches to therapy. Cancer Res 1990 51:7093-7100
    47. 任伟宏,宫璀璀,吴景兰等 8-Br-cAMP 及槲皮素诱导 Eca-109细胞凋亡的效应 郑州大学学报医学版 2003 38 (5) 刊登中
    
    
    48. 江明性主编,《药理学》,人民卫生出版社 , 2000
    49. Valentinis B, Zaffaroni N, Sturani E, et al. Detection of DNA polymerase beta gene expression by competive polymerase chain reaction in human ovarian carcinoma cells. Anticancer Res 1993, 13(1) : 125-128
    50. 郑乃刚,王峰,吴景兰等 同一细胞内双原位杂交信号的检测 郑州大学学报医学版 2003 38 (5) 刊登中
    51. Hill BT, Scanlon KJ, Hanson J, et al. Deficient repair of cisplatin-DNA adducts identified in human testicular teratoma cell lines established from tumors from untreated patients. Eur J Cancer 1994, 30A(6) :832-837
    52. Funato T, Tone T, Miyachi H, et al. Detection of drug resistant-gene in cisplatin-resistant colon carcinoma cells. Rinsho Byori 1993, 41(0:95-100
    53. Raaphorst GP, Cybulski SE, Sobol R, et al. The response of human breast tumour cell lines with altered polymerase beta levels to cisplatin and radiation. Anticancer Res 2001, 21(3B): 2079-83
    54. Cai J, Gros P. Overexpression, purification and functional characterization of ATP-binding cassette transporters in the yeast. Pichia Pastoris . Biochem Biophys Acta 2003 1610(1) :63-76
    
    
    55. 李士坤,郑乃刚,吴景兰,董子明. 分化诱导剂对Eca-109细胞的 DNA pol β基因及相关基因的表达影响 郑州大学学报医学版 2003 38(4) 刊登中
    56. Dazard JE, Piette J, Basset-Seguim N, et al. Switch from p53 to MDM2 as differentiating human keratinocytes lose their proliferative potential and increase in cellular size. Oncogene, 2000, 19(33) : 3693-3705
    57. Shadan FF, Villarreal LP. Potential role of DNA polymerase beta in gene therapy against cancer: a case for colonrectal cancer. Med. Hypotheses, 1996, 47 (1) : 1-9
    58. Lawrence A. Loeb, Keith R. Loeb, and Jon P. Anderson Multiple mutations and cancer PNAS, 2003, 100 (3) : 776-781
    59. Canitrot Y, Lautier M, Servant L, et al. Mutator phenotype of BCR-ABL transfected cell lines and its association with enhanced expression of DNA polymerase beta. Oncogene, 1999, 18 (17) :2676-2680
    60. Boccagadi K, Hoffmann JS, Fons P, et al. Overexpression of DNA polymerase beta sensitizes mammalian cells to 2' ,3'-deeeoxytidine andd 3'-azido-deoxythymidine. Cancer Res, 1997, 57(1) : 1110-6
    61. Pollen M, Schottenfeld D, Surrogate endpoint biomarkers and their modulation in cervical chemopreveentation trials.
    
    American Cancer Society, 2001, 991:17558-76
    62. Kina B, Ochs R, Grosh S, et al. BER, MGMT and MMR in defense against alkylation-induced genotoxity and apoptosis. Prog Nucleic Acid Rres Mol Biol, 2001, 68:41-54
    63. Lacki S, Mori T. Methylgreen-pyronin stain distinguishes proliferating from differentiated nonproliferating cell nuclei after acid denaturation of DNA. J Histochem Cytochem, 1986. 34: 683
    64. The QIAGEN Transfection Resourse Book. 2nd Ed. QIAGEN Company 2003
    65. Ausubel FM, Brent R, Kingston RE, et al. Short Protocols in Molecular Biology, 3rd Ed, 1995
    66. 陈奎生、张林庆、王红梅等 8-Br-cAMP 对人食管癌 Eca-109 细胞增殖与分化的效应 河南医科大学学报 1998 33 (3) : 99-101
    67. Idrias HT, AL-Assar 0, Wilson SH. DNA polymerase 6. Int J Biochem & Cell Biol, 2002, 34:321-4
    68. Bhagwat AS, Anderson RJ, Lindahl T. Delayed DNA joining at 3' mismatches by human DNA ligases. Nucl Acids Res, 1997, 27:4028-4033
    69. Ochs K, Lips J, Profittlich S, et al. Deficiency in DNA polymerase beta provokes replication-dependent apoptosis via DNA breakage, Bcl-2 decline and caspase-3/9 activation.
    
    Cancer Res, 2002, 62 (5) :1524-30
    70. Ymada NA, Farber RA. Induction of a low level of microsatelite instability by overexpression of DNA polyraerase beta. Cancer Res, 62 (21) : 6061-4
    71. Yens C, Dahmen-Mooren E, Vernijs-Janssen M, et al. The role of DNA polyraerase beta in determining to ionizing radiation in human tumor cells. Nucleic Acids Res, 2002, 30(13) :2995-3004
    72. Seo YR, Fishel ML, Amundson S, et al. Implication of p53 in base excision DNA repair: in vitro evidence. Oncogene, 2002, 21 (5) : 731-7
    73. Cai, Zheng X, Luo C. The radiologic characteristics of DNA polymerase beta in hepatomas. Chung Hua ChungLiu Tsa Chih, 1996, 18(1) : 20-22
    74. D. L. Spector, R.D.Goldman, L. A. Leinwand. Cell: A Laboratory Manual. Cold Spring Harbor Lab (CSHL) Press, 1998
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.