重组人骨形成蛋白-2治疗小鼠急性造血损伤的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:成年哺乳动物骨髓存在两类干细胞:造血干细胞和间充质干细胞(造血微环境的重要组分)。造血细胞的增殖和分化依赖于造血微环境,造血微环境中的造血细胞因子和细胞之间的相互作用,促进了造血细胞的增殖和分化。γ射线不仅可以导致急性骨髓抑制,而且还会引起长期的造血损伤后遗症。长期造血损伤后遗症的产生主要是因为γ射线损害了造血干细胞的自我更新。我们先前的研究已经表明:重组人骨形成蛋白-2(rhBMP-2)能修复γ射线引起的小鼠急性造血损伤,其作用与其促进造血干细胞的增殖有关。为了进一步证实rhBMP-2修复γ射线引起的小鼠急性造血损伤的机制,我们设计本实验以期证明rhBMP-2调控的间充质干细胞增殖和分化在治疗造血损伤时起重要的作用。
     方法:(1)用XTT的方法检测rhBMP-2对体外培养的间充质干细胞的增殖作用。(2)用real-timePCR的方法检测rhBMP-2对间充质干细胞分泌的造血细胞因子mRNA表达的作用。(3)用ELISA试剂盒检测rhBMP-2对间充质干细胞分泌造血细胞因子的蛋白含量的作用。(4)将绿色荧光蛋白转基因小鼠骨髓中分离纯化的间充质干细胞用Hoechst33342进行标记,然后移植给BALB/c小鼠,移植后6周,分别用免疫荧光染色和流式细胞分析检测间充质干细胞在体内的分化情况。
     结果:(1)rhBMP-2在浓度为10ng/ml-1×105ng/ml之间能显著促进MSCs的增殖,呈剂量依赖性。然而,这种增殖作用随着rhBMP-2浓度进一步增加到1×106 ng /ml而开始减弱。(2)rhBMP-2能够显著地促进造血细胞因子IL-7、IL-11、G-CSF、M-CSF、SCF的mRNA表达。(3)用rhBMP-2处理体外培养的MSCs后,培养上清中造血细胞因子IL-6、IL-7、IL-11以及M-CSF的蛋白含量明显高于对照组。(4)当小鼠受到γ射线照射后,MSCs能够归巢到辐射损伤的造血组织并分化为造血细胞,rhBMP-2能显著地增强MSCs的归巢与分化,从而促进造血重建进程。
     结论:正常的造血依赖于造血细胞和造血微环境的相互作用。造血微环境可以支持并调控造血细胞的定居、增殖、分化、发育及成熟。MSCs在造血重建过程中起着重要作用。rhBMP-2能够促进MSCs的增殖并分化为造血细胞,其作用不仅能促进造血微环境修复,而且还能加速受照射小鼠造血细胞的生成。这就是rhBMP-2修复造血损伤的重要机制。
Aim: Adult mammalian bone marrow contains two types of stem cells:haematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs) that arethe key composition in hematopoietic microenvironment. The proliferation anddifferentiation of hematopoiesis depend on hematopoietic microenvironment.Interaction of hematopoietic cytokines and cells in hematopoieticmicroenvironment generates various signals, which supports the proliferationanddifferentiationofhematopoieticcells.Itiswellknownthatexposureto?-raynot only causes acute bone marrow suppression but also leads to long-termresidual hematopoieticinjury.Thelatteris duetodamageofhematopoietic stemcells (HSCs) self-renewal. Our previous studies have shown that recombinationhuman bone morphogenetic protein-2 (rhBMP-2) can rescue acutehematopoietic damage of mice exposed to ?-ray, which is concerned withpromotion of rhBMP-2 in the proliferation of HSCs. In order to further confirmthe mechanism of rhBMP-2’s rescuing acute hematopoietic injury in mice exposed toγ-ray, we carried out this experiment to demonstrate that theproliferation and differentiation of MSCs regulated by rhBMP-2 plays a crucialroleinrescuinghematopoieticinjuryinmiceexposedto?-ray.
     Methods: (1) The XTT method was used to detect the effect of rhBMP-2on the proliferation of MSCs cultured in vitro. (2) The real-time quantitativePCR was used to detect the effect of rhBMP-2 on the hematopoietic cytokinesmRNAexpressionsofMSCsculturedinvitro.(3)TheELISAwasusedtodetectthe effect of rhBMP-2 on the hematopoietic cytokines protein level of MSCscultured in vitro. (4) MSCs from Green Fluorescent Protein (GFP) transgenicmice were marked with Hoechst33342 before transplanted into BALB/c mice.Immunofluorescent staining and flow cytometry were employed to detect thedifferentiationofMSCsinvivoaftertransplantationfor6weeks.
     Results: (1) rhBMP-2 significantly promoted MSCs proliferation in doseranging from 10 ng/ml - 1×105 ng/ml in a dose-dependent manner. However,this proliferation effect turned down with further increased dose of rhBMP-2 to1×106 ng /ml. (2) rhBMP-2 significantly promoted hematopoietic cytokinesmRNA expression such as IL-7, IL-11, G-CSF, M-CSF, and SCF. (3) Theprotein levels of hematopoietic cytokines such as IL-6, IL-7, IL-11, and M-CSFin the supernatant of cultured MSCs with rhBMP-2 were higher than those ofculturedMSCs without rhBMP-2.(4)MSCs couldhometotheradiation-injuredhematopoietic tissues and differentiate to hematopoietic cells when the micewere exposed toγ-ray. The effect of MSCs was enhanced byrhBMP-2, whichacceleratedthehematopoieticrestoration.
     Conclusion: Normal hematopoiesis depends on interaction ofhematopoietic cells and hematopoietic microenvironment. Hematopoieticmicroenvironment can support and regulate establishment, proliferation, differentiation, development and maturity of hematopoietic cells. In conclusion,MSCs play an important role in hematopoietic restoration. The effect ofrhBMP-2 promotes the proliferation and differentiation of mesenchymal stemcells, which not only improved the haematopoietic microenvironment, but alsoand accelerated the production of haematopoietic cells in mice exposed to ?-ray,which may be important mechanism of rhBMP-2 rescuing the hematopoieticinjuryofmice.
引文
1. 陈家佩,毛秉智. 辐射血液学-基础与临床. 军事医学科学出版社2002:5-29.
    2. 叶根耀. 核辐射事故的医学处理新进展. 国外医学·放射医学核医学分册2003;27:123-127.
    3. 陈如松. 辐射的低剂量生物效应及分子流行病学研究现状. 辐射防护通讯2003;23(1):13-19.
    4. 吴德昌. 辐射防护的生物学基础. 辐射防护(ICRP 成立70 周年纪念专刊) 1998;18:461.
    5. Bertelli A, Bertelli AA, Gozzini A, Giovannini L. Plasma and tissueresveratrol concentrations and pharmacological activity. Drugs Exp Clin Res1998;24(3):133-8.
    6. 吴德昌,陈家佩,毛秉智. 放射医学. 军事医学科学出版社2001:45.
    7. 王明科. 造血干细胞在辐射损伤中的应用. 疾病控制杂志2006;10(3):295-298.
    8. Singh VK, Srinivasan V, Seed TM, Jackson WE, Miner VE, Sree Kumar K.Radioprotection by N-palmitoylated nonapeptide of human interleukin-1beta.Peptides 2005;26(3):413-8.
    9. 陈伟, 沈先荣. 细胞因子抗辐射作用研究进展. 海军医学杂志2006;27(4):363-367.
    10. 王欣茹,郝静,罗庆良,等. IL-11 对造血的刺激作用及其在辐射损伤治疗中的应用. 国外医学·放射医学核医学分册2003;27(1):42-44.
    11. 杨军. 干细胞因子的辐射防护作用与机制. 医学综述1999;5(12):533-534.
    12. 张军权,张浩. 促进血小板生成素与辐射损伤. 国外医学·放射医学核医学分册2000;24(4):173.
    13. Van der Meeren A, Mouthon MA, Vandamme M, Squiban C, Aigueperse J.Combinations of cytokines promote survival of mice and limit acute radiationdamage in concert with amelioration of vascular damage. Radiat Res2004;161(5):549-59.
    14. Anne PR. Phase II trial of subcutaneous amifostine in patients undergoingradiation therapy for head and neck cancer. Semin Oncol 2002;29(6 Suppl19):80-3.
    15. Kim SH, Son CH, Nah SY, Jo SK, Jang JS, Shin DH. Modification ofradiation response in mice by Panax ginseng and diethyldithiocarbamate. InVivo 2001;15(5):407-11.
    16. 颜燕,徐建华,吕实波,等. 灵芝抗辐射功能的研究. 中国公共卫生2002;18(10):1221-1222.
    17. 史剑慧,许小平. 补肾泻肝方对辐射小鼠造血功能的保护作用. 中华国际医学杂志2002;2(2):100.
    18. 段伟,毕良文,秦继勇,李文辉. 辐射防护药物研究进展. 中国辐射卫生2006;15(1):114-116.
    19. 陈立, 董俊兴. 多糖抗辐射作用研究进展. 癌变. 畸变. 突变2004;16(6):380-382.
    20. 梅其炳,陶静仪,张惠迪,陈耀祖,段志兴. 当归多糖对小鼠急性放射病的防护作用. 中华放射医学与防护杂志1986;6(5):344-346.
    21. 梅其炳,陶静仪,张惠迪,段志兴,陈耀祖. 当归多糖对照射小鼠造血干细胞的影响. 中国药理学报1988;9(3):279-282.
    22. Huang K, Huang S, Pan J, Wu Y. [Protection of hematopoietic stem cells byMIP-1alpha and PF4 against the cytotoxicity of chemotherapeutic agents].Zhonghua Xue Ye Xue Za Zhi 2000;21(7):355-8.
    23. 田琼,张绍章,蒲勤,张发科,Hannah XH. 骨形成蛋白对小鼠造血急性放射损伤治疗作用的研究. 辐射研究与辐射工艺学报2001;19:199-203.
    24. 田琼,张绍章,张发科. rhBMP-2 cDNA 转染的NIH-3T3 细胞对小鼠急性放射损伤的基因治疗作用与机理. 第四军医大学学报1998;19:452-454.
    25. 刘斌,袁诚君,田琼,薛采芳. rhBMP-2m 对化疗损伤小鼠的修复治疗作用.细胞与分子免疫学杂志2003;19(2):150-152.
    26. 田琼,张绍章,蒲勤,张发科,任东青,陈苏民. 重组人骨形成蛋白-2 成熟肽对小鼠辐射损伤的治疗作用及其机理的探讨. 中华放射医学与防护杂志1998;18(4):253-255.
    27. Trotman W, Beckett T, Goncz KK, Beatty BG, Weiss DJ. Dual Ychromosome painting and in situ cell-specific immunofluorescence staining inlung tissue: an improved method of identifying donor marrow cells in lungfollowing bone marrow transplantation. Histochem Cell Biol 2004;121(1):73-9.
    28. Larsson J, Karlsson S. The role of Smad signaling in hematopoiesis.Oncogene 2005;24(37):5676-92.
    29. Fuchs O. [Role of cytokine signaling pathways of the transforming growthfactor-beta (TGF-beta) family in the regulation of hematopoiesis]. Cas Lek Cesk2002;141 Suppl:18-22.
    30. Snyder A, Fraser ST, Baron MH. Bone morphogenetic proteins invertebrate hematopoietic development. J Cell Biochem 2004;93(2):224-32.
    31. Chen D, Zhao M, Mundy GR. Bone morphogenetic proteins. GrowthFactors 2004;22(4):233-41.
    32. de Caestecker M. The transforming growth factor-beta superfamily ofreceptors. Cytokine Growth Factor Rev 2004;15(1):1-11.
    33. McReynolds LJ, Gupta S, Figueroa ME, Mullins MC, Evans T. Smad1 andSmad5 differentially regulate embryonic hematopoiesis. Blood2007;110(12):3881-90.
    34. Liu B, Sun Y, Jiang F, Zhang S, Wu Y, Lan Y, et al. Disruption of Smad5gene leads to enhanced proliferation of high-proliferative potential precursorsduring embryonic hematopoiesis. Blood 2003;101(1):124-33.
    35. Canalis E, Economides AN, Gazzerro E. Bone morphogenetic proteins,their antagonists, and the skeleton. Endocr Rev 2003;24(2):218-35.
    36. Cumano A, Dieterlen-Lievre F, Godin I. The splanchnopleura/AGM regionis the prime site for the generation of multipotent hemopoietic precursors, in themouse embryo. Vaccine 2000;18(16):1621-3.
    37. Gekas C, Dieterlen-Lievre F, Orkin SH, Mikkola HK. The placenta is aniche for hematopoietic stem cells. Dev Cell 2005;8(3):365-75.
    38. von Bubnoff A, Cho KW. Intracellular BMP signaling regulation invertebrates: pathway or network?. Dev Biol 2001;239(1):1-14.
    39. Chadwick K, Wang L, Li L, Menendez P, Murdoch B, Rouleau A, et al.Cytokines and BMP-4 promote hematopoietic differentiation of humanembryonic stem cells. Blood 2003;102(3):906-15.
    40. Walters MJ, Wayman GA, Notis JC, Goodman RH, Soderling TR, ChristianJL. Calmodulin-dependent protein kinase IV mediated antagonism of BMPsignaling regulates lineage and survival of hematopoietic progenitors.Development 2002;129(6):1455-66.
    41. Kennedy M, D'Souza SL, Lynch-Kattman M, Schwantz S, Keller G.Development of the hemangioblast defines the onset of hematopoiesis in humanES cell differentiation cultures. Blood 2007;109(7):2679-87.
    42. Wang L, Cerdan C, Menendez P, Bhatia M, Gupta S, Zhu H, et al.Derivation and characterization of hematopoietic cells from human embryonicstem cells;BMP signaling restricts hemato-vascular development from lateralmesoderm during somitogenesis. Methods Mol Biol;Development2006;331;133(11):179-200;2177-87.
    43. Nakayama N, Lee J, Chiu L. Vascular endothelial growth factorsynergistically enhances bone morphogenetic protein-4-dependentlymphohematopoietic cell generation from embryonic stem cells in vitro. Blood2000;95(7):2275-83.
    44. Adelman CA, Chattopadhyay S, Bieker JJ. The BMP/BMPR/Smad pathwaydirects expression of the erythroid-specific EKLF and GATA1 transcriptionfactors during embryoid body differentiation in serum-free media. Development2002;129(2):539-49.
    45. Verfaillie CM. Hematopoietic stem cells for transplantation. Nat Immunol2002;3(4):314-7.
    46. Sadlon TJ, Lewis ID, D'Andrea RJ. BMP4: its role in development of thehematopoietic system and potential as a hematopoietic growth factor. Stem Cells2004;22(4):457-74.
    47. Marshall CJ, Sinclair JC, Thrasher AJ, Kinnon C. Bone morphogeneticprotein 4 modulates c-Kit expression and differentiation potential in murineembryonic aorta-gonad-mesonephros haematopoiesis in vitro. Br J Haematol2007;139(2):321-30.
    48. Fuchs O, Simakova O, Klener P, Cmejlova J, Zivny J, Zavadil J, et al.Inhibition of Smad5 in human hematopoietic progenitors blocks erythroiddifferentiation induced by BMP4. Blood Cells Mol Dis 2002;28(2):221-33.
    49. Detmer K, Walker AN. Bone morphogenetic proteins act synergisticallywith haematopoietic cytokines in the differentiation of haematopoieticprogenitors. Cytokine 2002;17(1):36-42.
    50. Maguer-Satta V, Bartholin L, Jeanpierre S, Ffrench M, Martel S, MagaudJP, et al. Regulation of human erythropoiesis by activin A, BMP2, and BMP4,members of the TGFbeta family. Exp Cell Res 2003;282(2):110-20.
    51. Pick M, Azzola L, Mossman A, Stanley EG, Elefanty AG. Differentiationof human embryonic stem cells in serum-free medium reveals distinct roles forbone morphogenetic protein 4, vascular endothelial growth factor, stem cellfactor, and fibroblast growth factor 2 in hematopoiesis. Stem Cells2007;25(9):2206-14.
    52. Wang J, Luo CJ, Guo CH, Zhang Y. [Mesenchymal stem cells and relatedfactors]. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2002;10(5):468-71.
    53. Zhang C, Hu Y, Xu J. [The effect of bone-related growth factors on theproliferation and differentiation of marrow mesenchymal stem cells in vitro].Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 2005;19(11):906-9.
    54. Zhang J, Niu C, Ye L, Huang H, He X, Tong WG, et al. Identification of thehaematopoietic stem cell niche and control of the niche size. Nature2003;425(6960):836-41.
    55. Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC,et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature2003;425(6960):841-6.
    56. Kawamura C, Kizaki M, Yamato K, Uchida H, Fukuchi Y, Hattori Y, et al.Bone morphogenetic protein-2 induces apoptosis in human myeloma cells withmodulation of STAT3. Blood 2000;96(6):2005-11.
    57. Kawamura C, Kizaki M, Ikeda Y. Bone morphogenetic protein (BMP)-2induces apoptosis in human myeloma cells. Leuk Lymphoma 2002;43(3):635-9.
    58. Wang N, Kim HG, Cotta CV, Wan M, Tang Y, Klug CA, et al.TGFbeta/BMP inhibits the bone marrow transformation capability of Hoxa9 byrepressing its DNA-binding ability. EMBO J 2006;25(7):1469-80.
    59. 田琼,张绍章,张发科. rhBMP-2 cDNA 转染的NIH-3T3 细胞和rhBMP-2m 对小鼠急性放射损伤的治疗作用. 第四军医大学学报2000;21(1):57.
    60. 田琼,张绍章,张发科. GM-CSF 和rhBMP-2m 对小鼠急性放射损伤的治疗作用. 第四军医大学学报1999;20(7):596-599.
    61. 田琼,康杰芳,张发科,张绍章. 重组人骨形成蛋白-2 成熟肽对急性放射性病小鼠股骨造血间质功能的影响. 中华放射医学与防护杂志2002;22(2):99-100.
    62. Chu JX, Zhao JM, Ding SL, Xu SC, Liu AR, Wang SP. [Activation ofauto-mesenchymal stem cells of skeletal muscle by bone morphogenetic proteinfor rescuing bone marrow failure]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao2002;24(3):272-5.
    63. Dazzi F, Ramasamy R, Glennie S, Jones SP, Roberts I. The role ofmesenchymal stem cells in haemopoiesis. Blood Rev 2006;20(3):161-71.
    64. Kassem M, Abdallah BM. Human bone-marrow-derived mesenchymal stemcells: biological characteristics and potential role in therapy of degenerativediseases. Cell Tissue Res 2008;331(1):157-63.
    65. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, et al.Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell2002;13(12):4279-95.
    66. Lee RH, Kim B, Choi I, Kim H, Choi HS, Suh K, et al. Characterization andexpression analysis of mesenchymal stem cells from human bone marrow andadipose tissue. Cell Physiol Biochem 2004;14(4-6):311-24.
    67. Rodriguez AM, Elabd C, Amri EZ, Ailhaud G, Dani C. The human adiposetissue is a source of multipotent stem cells. Biochimie 2005;87(1):125-8.
    68. Shih DT, Lee DC, Chen SC, Tsai RY, Huang CT, Tsai CC, et al. Isolationand characterization of neurogenic mesenchymal stem cells in human scalptissue. Stem Cells 2005;23(7):1012-20.
    69. Erices A, Conget P, Minguell JJ. Mesenchymal progenitor cells in humanumbilical cord blood. Br J Haematol 2000;109(1):235-42.
    70. Scadden DT. The stem cell niche in health and leukemic disease. Best PractRes Clin Haematol 2007;20(1):19-27.
    71. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD,Ortiz-Gonzalez XR, et al. Pluripotency of mesenchymal stem cells derived fromadult marrow. Nature 2002;418(6893):41-9.
    72. Anjos-Afonso F, Bonnet D. Nonhematopoietic/endothelial SSEA-1+ cellsdefine the most primitive progenitors in the adult murine bone marrowmesenchymal compartment. Blood 2007;109(3):1298-306.
    73. Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, MatteucciP, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferationinduced by cellular or nonspecific mitogenic stimuli. Blood2002;99(10):3838-43.
    74. Bartholomew A, Sturgeon C, Siatskas M, Ferrer K, McIntosh K, Patil S, etal. Mesenchymal stem cells suppress lymphocyte proliferation in vitro andprolong skin graft survival in vivo. Exp Hematol 2002;30(1):42-8.
    75. Krampera M, Glennie S, Dyson J, Scott D, Laylor R, Simpson E, et al.Bone marrow mesenchymal stem cells inhibit the response of naive and memoryantigen-specific T cells to their cognate peptide. Blood 2003;101(9):3722-9.
    76. Spaggiari GM, Capobianco A, Becchetti S, Mingari MC, Moretta L.Mesenchymal stem cell-natural killer cell interactions: evidence that activatedNK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-inducedNK-cell proliferation. Blood 2006;107(4):1484-90.
    77. Groh ME, Maitra B, Szekely E, Koc ON. Human mesenchymal stem cellsrequire monocyte-mediated activation to suppress alloreactive T cells. ExpHematol 2005;33(8):928-34.
    78. Beyth S, Borovsky Z, Mevorach D, Liebergall M, Gazit Z, Aslan H, et al.Human mesenchymal stem cells alter antigen-presenting cell maturation andinduce T-cell unresponsiveness. Blood 2005;105(5):2214-9.
    79. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulateallogeneic immune cell responses. Blood 2005;105(4):1815-22.
    80. Sato K, Ozaki K, Oh I, Meguro A, Hatanaka K, Nagai T, et al. Nitric oxideplays a critical role in suppression of T-cell proliferation by mesenchymal stemcells. Blood 2007;109(1):228-34.
    81. Gieseke F, Schutt B, Viebahn S, Koscielniak E, Friedrich W, HandgretingerR, et al. Human multipotent mesenchymal stromal cells inhibit proliferation ofPBMCs independently of IFNgammaR1 signaling and IDO expression. Blood2007;110(6):2197-200.
    82. Djouad F, Fritz V, Apparailly F, Louis-Plence P, Bony C, Sany J, et al.Reversal of the immunosuppressive properties of mesenchymal stem cells bytumor necrosis factor alpha in collagen-induced arthritis. Arthritis Rheum2005;52(5):1595-603.
    83. Krampera M, Cosmi L, Angeli R, Pasini A, Liotta F, Andreini A, et al. Rolefor interferon-gamma in the immunomodulatory activity of human bone marrowmesenchymal stem cells. Stem Cells 2006;24(2):386-98.
    84. Oh I, Ozaki K, Sato K, Meguro A, Tatara R, Hatanaka K, et al.Interferon-gamma and NF-kappaB mediate nitric oxide production bymesenchymal stromal cells. Biochem Biophys Res Commun2007;355(4):956-62.
    85. Dazzi F, Horwood NJ. Potential of mesenchymal stem cell therapy. CurrOpin Oncol 2007;19(6):650-5.
    86. Picinich SC, Mishra PJ, Mishra PJ, Glod J, Banerjee D. The therapeuticpotential of mesenchymal stem cells. Cell- & tissue-based therapy. Expert OpinBiol Ther 2007;7(7):965-73.
    87. Deeg HJ, Blazar BR, Bolwell BJ, Long GD, Schuening F, Cunningham J, etal. Treatment of steroid-refractory acute graft-versus-host disease withanti-CD147 monoclonal antibody ABX-CBL. Blood 2001;98(7):2052-8.
    88. Augello A, Tasso R, Negrini SM, Cancedda R, Pennesi G. Cell therapyusing allogeneic bone marrow mesenchymal stem cells prevents tissue damagein collagen-induced arthritis. Arthritis Rheum 2007;56(4):1175-86.
    89. Gerdoni E, Gallo B, Casazza S, Musio S, Bonanni I, Pedemonte E, et al.Mesenchymal stem cells effectively modulate pathogenic immune response inexperimental autoimmune encephalomyelitis. Ann Neurol 2007;61(3):219-27.
    90. Fouillard L, Chapel A, Bories D, Bouchet S, Costa JM, Rouard H, et al.Infusion of allogeneic-related HLA mismatched mesenchymal stem cells for thetreatment of incomplete engraftment following autologous haematopoietic stemcell transplantation. Leukemia 2007;21(3):568-70.
    91. Ringden O, Uzunel M, Rasmusson I, Remberger M, Sundberg B, Lonnies H,et al. Mesenchymal stem cells for treatment of therapy-resistantgraft-versus-host disease. Transplantation 2006;81(10):1390-7.
    92. Lazarus HM, Koc ON, Devine SM, Curtin P, Maziarz RT, Holland HK, etal. Cotransplantation of HLA-identical sibling culture-expanded mesenchymalstem cells and hematopoietic stem cells in hematologic malignancy patients.Biol Blood Marrow Transplant 2005;11(5):389-98.
    93. Le Blanc K, Rasmusson I, Sundberg B, Gotherstrom C, Hassan M, UzunelM, et al. Treatment of severe acute graft-versus-host disease with third partyhaploidentical mesenchymal stem cells. Lancet 2004;363(9419):1439-41.
    94. Ramasamy R, Lam EW, Soeiro I, Tisato V, Bonnet D, Dazzi F.Mesenchymal stem cells inhibit proliferation and apoptosis of tumor cells:impact on in vivo tumor growth. Leukemia 2007;21(2):304-10.
    95. Studeny M, Marini FC, Dembinski JL, Zompetta C, Cabreira-Hansen M,Bekele BN, et al. Mesenchymal stem cells: potential precursors for tumorstroma and targeted-delivery vehicles for anticancer agents. J Natl Cancer Inst2004;96(21):1593-603.
    96. Berry MF, Engler AJ, Woo YJ, Pirolli TJ, Bish LT, Jayasankar V, et al.Mesenchymal stem cell injection after myocardial infarction improvesmyocardial compliance. Am J Physiol Heart Circ Physiol2006;290(6):H2196-203.
    97. Gnecchi M, He H, Noiseux N, Liang OD, Zhang L, Morello F, et al.Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stemcell-mediated cardiac protection and functional improvement. FASEB J2006;20(6):661-9.
    98. Gnecchi M, He H, Liang OD, Melo LG, Morello F, Mu H, et al. Paracrineaction accounts for marked protection of ischemic heart by Akt-modifiedmesenchymal stem cells. Nat Med 2005;11(4):367-8.
    99. Tang YL, Tang Y, Zhang YC, Qian K, Shen L, Phillips MI. Improved graftmesenchymal stem cell survival in ischemic heart with a hypoxia-regulatedheme oxygenase-1 vector. J Am Coll Cardiol 2005;46(7):1339-50.
    100. Kim SW, Han H, Chae GT, Lee SH, Bo S, Yoon JH, et al. Successful stemcell therapy using umbilical cord blood-derived multipotent stem cells forBuerger's disease and ischemic limb disease animal model. Stem Cells2006;24(6):1620-6.
    101. Chen J, Li Y, Wang L, Zhang Z, Lu D, Lu M, et al. Therapeutic benefit ofintravenous administration of bone marrow stromal cells after cerebral ischemiain rats. Stroke 2001;32(4):1005-11.
    102. Wang L, Li Y, Chen X, Chen J, Gautam SC, Xu Y, et al. MCP-1, MIP-1,IL-8 and ischemic cerebral tissue enhance human bone marrow stromal cellmigration in interface culture. Hematology 2002;7(2):113-7.
    103. Hellmann MA, Panet H, Barhum Y, Melamed E, Offen D. Increasedsurvival and migration of engrafted mesenchymal bone marrow stem cells in6-hydroxydopamine-lesioned rodents. Neurosci Lett 2006;395(2):124-8.
    104. Grunblatt E, Mandel S, Youdim MB. Neuroprotective strategies inParkinson's disease using the models of 6-hydroxydopamine and MPTP. Ann NY Acad Sci 2000;899:262-73.
    105. Levy YS, Merims D, Panet H, Barhum Y, Melamed E, Offen D. Inductionof neuron-specific enolase promoter and neuronal markers in differentiatedmouse bone marrow stromal cells. J Mol Neurosci 2003;21(2):121-32.
    106. Li Y, Chen J, Zhang CL, Wang L, Lu D, Katakowski M, et al. Gliosis andbrain remodeling after treatment of stroke in rats with marrow stromal cells.Glia 2005;49(3):407-17.
    107. Isakova IA, Baker K, Dufour J, Gaupp D, Phinney DG. Preclinicalevaluation of adult stem cell engraftment and toxicity in the CNS of rhesusmacaques. Mol Ther 2006;13(6):1173-84.
    108. Yamada Y, Ueda M, Naiki T, Takahashi M, Hata K, Nagasaka T.Autogenous injectable bone for regeneration with mesenchymal stem cells andplatelet-rich plasma: tissue-engineered bone regeneration. Tissue Eng2004;10(5-6):955-64.
    109. Ueda M, Yamada Y, Ozawa R, Okazaki Y. Clinical case reports ofinjectable tissue-engineered bone for alveolar augmentation with simultaneousimplant placement. Int J Periodontics Restorative Dent 2005;25(2):129-37.
    110. Friedman MS, Long MW, Hankenson KD. Osteogenic differentiation ofhuman mesenchymal stem cells is regulated by bone morphogenetic protein-6. JCell Biochem 2006;98(3):538-54.
    111. Pereira RF, O'Hara MD, Laptev AV, Halford KW, Pollard MD, Class R, etal. Marrow stromal cells as a source of progenitor cells for nonhematopoietictissues in transgenic mice with a phenotype of osteogenesis imperfecta. ProcNatl Acad Sci U S A 1998;95(3):1142-7.
    112. Horwitz EM, Prockop DJ, Gordon PL, Koo WW, Fitzpatrick LA, Neel MD,et al. Clinical responses to bone marrow transplantation in children with severeosteogenesis imperfecta. Blood 2001;97(5):1227-31.
    113. Horwitz EM, Gordon PL, Koo WK, Marx JC, Neel MD, McNall RY, et al.Isolated allogeneic bone marrow-derived mesenchymal cells engraft andstimulate growth in children with osteogenesis imperfecta: Implications for celltherapy of bone. Proc Natl Acad Sci U S A 2002;99(13):8932-7.
    114. Wakitani S, Imoto K, Yamamoto T, Saito M, Murata N, Yoneda M.Human autologous culture expanded bone marrow mesenchymal celltransplantation for repair of cartilage defects in osteoarthritic knees.Osteoarthritis Cartilage 2002;10(3):199-206.
    115. Ohgushi H, Kotobuki N, Funaoka H, Machida H, Hirose M, Tanaka Y, etal. Tissue engineered ceramic artificial joint--ex vivo osteogenic differentiationof patient mesenchymal cells on total ankle joints for treatment of osteoarthritis.Biomaterials 2005;26(22):4654-61.
    116. Warnke PH, Springer IN, Wiltfang J, Acil Y, Eufinger H, Wehmoller M, etal. Growth and transplantation of a custom vascularised bone graft in a man.Lancet 2004;364(9436):766-70.
    117. Stock UA, Vacanti JP. Tissue engineering: current state and prospects.Annu Rev Med 2001;52:443-51.
    118. Osawa M, Hanada K, Hamada H, Nakauchi H. Long-termlymphohematopoietic reconstitution by a single CD34-low/negativehematopoietic stem cell. Science 1996;273(5272):242-5.
    119. Morel F, Galy A, Chen B, Szilvassy SJ. Equal distribution of competitivelong-term repopulating stem cells in the CD34+ and CD34- fractions ofThy-1lowLin-/lowSca-1+ bone marrow cells. Exp Hematol 1998;26(5):440-8.
    120. Nakamura Y, Ando K, Chargui J, Kawada H, Sato T, Tsuji T, et al. Ex vivogeneration of CD34(+) cells from CD34(-) hematopoietic cells. Blood1999;94(12):4053-9.
    121. Sato T, Laver JH, Ogawa M. Reversible expression of CD34 by murinehematopoietic stem cells. Blood 1999;94(8):2548-54.
    122. Donnelly DS, Zelterman D, Sharkis S, Krause DS. Functional activity ofmurine CD34+ and CD34- hematopoietic stem cell populations. Exp Hematol1999;27(5):788-96.
    123. Nakayama A, Matsui H, Fukushima T, Ichikawa H, Yamada K, Amao T, etal. Murine serum obtained from bone marrow-transplanted mice promotes theproliferation of hematopoietic stem cells by co-culture with MS-5 murinestromal cells. Growth Factors 2006;24(1):55-65.
    124. Lawrence HJ, Christensen J, Fong S, Hu YL, Weissman I, Sauvageau G, etal. Loss of expression of the Hoxa-9 homeobox gene impairs the proliferationand repopulating ability of hematopoietic stem cells. Blood2005;106(12):3988-94.
    125. Nakauchi H. Isolation and clonal characterization of hematopoietic andliver stem cells. Cornea 2004;23(8 Suppl):S2-7.
    126. Yang L, Bryder D, Adolfsson J, Nygren J, Mansson R, Sigvardsson M, etal. Identification of Lin(-)Sca1(+)kit(+)CD34(+)Flt3- short-term hematopoieticstem cells capable of rapidly reconstituting and rescuing myeloablated transplantrecipients. Blood 2005;105(7):2717-23.
    127. Yilmaz OH, Kiel MJ, Morrison SJ. SLAM family markers are conservedamong hematopoietic stem cells from old and reconstituted mice and markedlyincrease their purity. Blood 2006;107(3):924-30.
    128. Okamoto R, Ueno M, Yamada Y, Takahashi N, Sano H, Suda T, et al.Hematopoietic cells regulate the angiogenic switch during tumorigenesis. Blood2005;105(7):2757-63.
    129. Kotton DN, Fabian AJ, Mulligan RC. A novel stem-cell population in adultliver with potent hematopoietic-reconstitution activity. Blood2005;106(5):1574-80.
    130. Doyonnas R, Nielsen JS, Chelliah S, Drew E, Hara T, Miyajima A, et al.Podocalyxin is a CD34-related marker of murine hematopoietic stem cells andembryonic erythroid cells. Blood 2005;105(11):4170-8.
    131. Matsubara A, Iwama A, Yamazaki S, Furuta C, Hirasawa R, Morita Y, et al.Endomucin, a CD34-like sialomucin, marks hematopoietic stem cellsthroughout development. J Exp Med 2005;202(11):1483-92.
    132. Zhang CC, Steele AD, Lindquist S, Lodish HF. Prion protein is expressedon long-term repopulating hematopoietic stem cells and is important for theirself-renewal. Proc Natl Acad Sci U S A 2006;103(7):2184-9.
    133. Kim I, Yilmaz OH, Morrison SJ. CD144 (VE-cadherin) is transientlyexpressed by fetal liver hematopoietic stem cells. Blood 2005;106(3):903-5.
    134. Spangrude GJ, Brooks DM. Mouse strain variability in the expression ofthe hematopoietic stem cell antigen Ly-6A/E by bone marrow cells. Blood1993;82(11):3327-32.
    135. Zhang CC, Lodish HF. Murine hematopoietic stem cells change theirsurface phenotype during ex vivo expansion. Blood 2005;105(11):4314-20.
    136. Wang X, Hisha H, Taketani S, Adachi Y, Li Q, Cui W, et al.Characterization of Mesenchymal Stem Cells Isolated from Mouse Fetal BoneMarrow. Stem Cells 2005.
    137. Gang EJ, Bosnakovski D, Figueiredo CA, Visser JW, Perlingeiro RC.SSEA-4 identifies mesenchymal stem cells from bone marrow. Blood2007;109(4):1743-51.
    138. Conget PA, Minguell JJ. Phenotypical and functional properties of humanbone marrow mesenchymal progenitor cells. J Cell Physiol 1999;181(1):67-73.
    139. Reyes M, Lund T, Lenvik T, Aguiar D, Koodie L, Verfaillie CM.Purification and ex vivo expansion of postnatal human marrow mesodermalprogenitor cells. Blood 2001;98(9):2615-25.
    140. Green T. Haematopoiesis. Master regulator unmasked. Nature1996;383(6601):575, 577.
    141. Li F, Lu S, Vida L, Thomson JA, Honig GR. Bone morphogenetic protein4 induces efficient hematopoietic differentiation of rhesus monkey embryonicstem cells in vitro. Blood 2001;98(2):335-42.
    142. Maeno M. Regulatory signals and tissue interactions in the earlyhematopoietic cell differentiation in Xenopus laevis embryo. Zoolog Sci2003;20(8):939-46.
    143. Honig GR, Li F, Lu SJ, Vida L. Hematopoietic differentiation of rhesusmonkey embryonic stem cells. Blood Cells Mol Dis 2004;32(1):5-10.
    144. Hemmati-Brivanlou A, Thomsen GH. Ventral mesodermal patterning inXenopus embryos: expression patterns and activities of BMP-2 and BMP-4. DevGenet 1995;17(1):78-89.
    145. Bhatia M, Bonnet D, Wu D, Murdoch B, Wrana J, Gallacher L, et al. Bonemorphogenetic proteins regulate the developmental program of humanhematopoietic stem cells. J Exp Med 1999;189(7):1139-48.
    146. Majumdar MK, Thiede MA, Haynesworth SE, Bruder SP, Gerson SL.Human marrow-derived mesenchymal stem cells (MSCs) express hematopoieticcytokines and support long-term hematopoiesis when differentiated towardstromal and osteogenic lineages. J Hematother Stem Cell Res 2000;9(6):841-8.
    147. Kushida T, Inaba M, Hisha H, Ichioka N, Esumi T, Ogawa R, et al.Intra-bone marrow injection of allogeneic bone marrow cells: a powerful newstrategy for treatment of intractable autoimmune diseases in MRL/lpr mice.Blood 2001;97(10):3292-9.
    148. Wang J, Kimura T, Asada R, Harada S, Yokota S, Kawamoto Y, et al.SCID-repopulating cell activity of human cord blood-derived CD34- cellsassured by intra-bone marrow injection. Blood 2003;101(8):2924-31.
    149. Yahata T, Ando K, Sato T, Miyatake H, Nakamura Y, Muguruma Y, et al.A highly sensitive strategy for SCID-repopulating cell assay by direct injectionof primitive human hematopoietic cells into NOD/SCID mice bone marrow.Blood 2003;101(8):2905-13.
    150. Kawada H, Fujita J, Kinjo K, Matsuzaki Y, Tsuma M, Miyatake H, et al.Nonhematopoietic mesenchymal stem cells can be mobilized and differentiateinto cardiomyocytes after myocardial infarction. Blood 2004;104(12):3581-7.
    151. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD,et al. Multilineage potential of adult human mesenchymal stem cells. Science1999;284(5411):143-7.
    152. Anjos-Afonso F, Siapati EK, Bonnet D. In vivo contribution of murinemesenchymal stem cells into multiple cell-types under minimal damageconditions. J Cell Sci 2004;117(Pt 23):5655-64.
    153. Muguruma Y, Yahata T, Miyatake H, Sato T, Uno T, Itoh J, et al.Reconstitution of the functional human hematopoietic microenvironmentderived from human mesenchymal stem cells in the murine bone marrowcompartment. Blood 2006;107(5):1878-87.
    154. Mouiseddine M, Francois S, Semont A, Sache A, Allenet B, Mathieu N, etal. Human mesenchymal stem cells home specifically to radiation-injuredtissues in a non-obese diabetes/severe combined immunodeficiency mousemodel. Br J Radiol 2007;80 Spec No 1:S49-55.
    155. Wang Y, Schulte BA, LaRue AC, Ogawa M, Zhou D. Total bodyirradiation selectively induces murine hematopoietic stem cell senescence.Blood 2006;107(1):358-66.
    156. Reyes M, Dudek A, Jahagirdar B, Koodie L, Marker PH, Verfaillie CM.Origin of endothelial progenitors in human postnatal bone marrow. J Clin Invest2002;109(3):337-46.
    157. Schwartz RE, Reyes M, Koodie L, Jiang Y, Blackstad M, Lund T, et al.Multipotent adult progenitor cells from bone marrow differentiate intofunctional hepatocyte-like cells. J Clin Invest 2002;109(10):1291-302.
    158. Kopen GC, Prockop DJ, Phinney DG. Marrow stromal cells migratethroughout forebrain and cerebellum, and they differentiate into astrocytes afterinjection into neonatal mouse brains. Proc Natl Acad Sci U S A1999;96(19):10711-6.
    159. Makino S, Fukuda K, Miyoshi S, Konishi F, Kodama H, Pan J, et al.Cardiomyocytes can be generated from marrow stromal cells in vitro. J ClinInvest 1999;103(5):697-705.
    160. Alhadlaq A, Mao JJ. Mesenchymal stem cells: isolation and therapeutics.Stem Cells Dev 2004;13(4):436-48.
    161. Kogler G, Sensken S, Airey JA, Trapp T, Muschen M, Feldhahn N, et al. Anew human somatic stem cell from placental cord blood with intrinsicpluripotent differentiation potential. J Exp Med 2004;200(2):123-35.
    162. Dominici M, Pritchard C, Garlits JE, Hofmann TJ, Persons DA, HorwitzEM. Hematopoietic cells and osteoblasts are derived from a common marrowprogenitor after bone marrow transplantation. Proc Natl Acad Sci U S A2004;101(32):11761-6.
    163. Olmsted-Davis EA, Gugala Z, Camargo F, Gannon FH, Jackson K,Kienstra KA, et al. Primitive adult hematopoietic stem cells can function asosteoblast precursors. Proc Natl Acad Sci U S A 2003;100(26):15877-82.
    164. Pimanda JE, Silberstein L, Dominici M, Dekel B, Bowen M, Oldham S, etal. Transcriptional link between blood and bone: the stem cell leukemia geneand its +19 stem cell enhancer are active in bone cells. Mol Cell Biol2006;26(7):2615-25.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.