CLOCK/BMAL1调控脱腺苷酶Nocturnin转录的机制研究及钟控microRNA的鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Nocturnin是具有生物节律转录特点的基因之一,在RNA水平具有明确的日节律变化,夜间呈现高表达状态,故得名Nocturnin(黑夜因子)。Nocturnin蛋白质所具有的结构域从酵母到人都具有高度的保守性。Nocturnin功能研究发现它具有脱腺苷酶(deadenylase)的作用,参与mRNA的降解以终止翻译过程。
     Nocturnin基因敲除小鼠的脂肪积累能力和野生型对照相比明显下降,当饲喂高脂饮食时,基因敲除小鼠对肥胖和脂肪变性的抵抗能力明显强于野生型对照小鼠,并且基因敲除小鼠的脂肪、肌肉和肝脏的胰岛素敏感性明显增强,而胰腺的葡萄糖反应性下降。可见在正常情况下,Nocturnin的作用在于调节代谢的昼夜节律性变化。肥胖和高血脂在世界范围内都是公认的影响人类健康的疾病并且受到广泛的关注。Nocturnin表达调控的研究对于正确认识和防治肥胖和高血脂、以及与Nocturnin有关的一些未知生理功能有重要意义。尽管Nocturnin作为钟控基因是分子生物钟调控细胞代谢功能的一个重要因子,但分子钟调控Nocturnin的机制尚不十分清楚。
     在爪蟾的Nocturnin转录调控研究中发现,该基因的日节律表达是通过Nocturnin元件(Nocturnin element,NE)(GTGACGTG)由磷酸化的CREB调控的结果。然而,Oishi等人的小鼠CLOCK敲除模型的芯片检测结果显示,Nocturnin与period1等钟基因一样,节律表达受到了影响。这说明高等动物的Nocturnin的节律表达可能不同于爪蟾,而可能是由CLOCK/BMAL1异二聚体通过结合于E-box而激活转录。但他们并没有证实这种可能性。我们的此项研究工作的主要目的是阐明Nocturnin的转录激活是否是由CLOCK/BMAL1异二聚体通过结合于E-box所致。
     本工作分析了Nocturnin启动子区的序列。结果显示,Nocturnin的转录调控可能由E-box参与,即CLOCK/BMAL1直接通过E-box元件调控Nocturnin的转录。然后,我们进一步采用染色体免疫共沉淀技术发现Nocturnin的转录可能直接受到了CLOCK/BMAL1的调控。
     本部分研究利用Huh7细胞节律模型进行了Nocturnin转录水平的检测。在72小时的连续检测中,发现人Nocturnin和钟基因Period1的转录水平呈现十分相近的变化趋势,即在CT16-20,CT40和CT68(CT,circadian time)三个时间点达到峰值,在CT24-32两个时间点达到谷值。这说明人Nocturnin的转录受到了内源性钟基因的调控,并且调控方式和人Periodl可能相同。这一现象与Nocturnin生物信息学预测结果一致。
     为了进一步对Nocturnin启动子区E-box的功能进行检测,我们首先利用荧光素酶报告基因检测技术验证了CLOCK/BMAL1具有对人Period1和Nocturnin的E-box的转录激活能力,然后对两类E-box(E-box1和E-box2)进行突变操作,再检测E-box对Noctunin启动子区的转录激活能力,发现Nocturnin启动子区的E-box2的转录激活能力要比E-box1更为明显。最后通过DNA亲和层析,验证了不同E-box与CLOCK/BMAL1的结合能力,结果显示E-box2的亲和能力要比E-box1更为明显,这些结果说明E-box是CLOCK/BMAL1调控Nocturnin转录的重要顺式作用元件;人Nocturnin的转录与爪蟾Nocturnin的转录机制不同的是CLOCK/BMAL1可以通过E-box元件调控其转录;Nocturnin启动子区的E-box2的作用要比E-box1更为明显。
     此外,依据节律基因调控机制中钟控基因很大程度上依赖于转录因子CLOCK直接通过E-box元件激活转录。而Pri-microRNA的转录调控和基因的调控机制是相同的,所以我们认为应该存在具有钟控基因一样的转录调控机制的钟控microRNA。我们根据John Kim等人在人、小鼠和大鼠脑组织中特异表达microRNA的鉴定结果选择了86个microRNA,进行转录调控区域E-box元件分析,然后根据E-box元件在人、小鼠和大鼠中的同源性挑选出候选的钟控microRNA。再进一步进行染色体免疫共沉淀验证,并在小鼠转录模型中验证这些microRNA的表达变化。从而我们发现了三个受到CLOCK调控的钟控microRNA(miR140、miR329和miR337)进一步研究参与到分子生物钟的microRNA的调控机制和功能提供了基础。
     本研究中,我们筛选到钟控基因Nocturnin,并证明了Nocturnin接受CLOCK/BMAL1的转录调控;并且依据CLOCK调控的分子钟的转录机制鉴定了三个钟控microRNA(miR140、miR329和miR337)。
Nocturnin is one of the circadian genes which show day-night oscillation in transcription.The name 'nocturnin' came from the phenomenon of its high level expression at night and it is conservative from yeast to human.The certified function of nocturnin is still needed to be explored,although recent studies indicate that it may degrade mRNA as a deadenylase.
     Nocturnin knockout mice showed reductions in liver lipid accumulation(steatosis) compared with wild-type mice and,after high-fat feeding;they are resistant to obesity and steatosis.Nocturnin,a RNA deadenylase,may underlie the coregulation of circadian rhythms and metabolism.Obese and hyperlipemia influence human health around the world,and receive the widespread attention.The research of Nocturnin is important for people to understand and solve to the influence of obese and hyperlipemia.Nocturnin is involved in lipogenesis,lipid catabolism,bile acid synthesis,and gluconeogenesis,a series of studies should be undertaken to investigate whether Nocturnin is a clock-controlled gene.
     In Xenopus retina,high expression of nocturnin at night is regulated by phosphorylation of cAMP response element-binding protein through binding to the NE of the nocturnin promoter.Nocturnin transcript levels are greatly reduced in mice homozygous for a hypomorphic allele Clock.The night-time peak transcription of nocturnin in a mouse as well as the disruption of rhythmic expression of nocturnin in mouse homozygous for a hypomorphic allele Clock suggest nocturnin is controlled by CLOCK directly or indirectly.
     Based on our sequence analyses of E-box elements in the nocturnin promoter regions of human and the result from Oishi's laboratory,we suggest that the E-box could be involved in the regulation of nocturnin transcription in higher species.In Huh7 cells,we verified that CLOCK/BMAL1 bound to the canonical E-boxes in the promoter of human nocturnin in vivo.
     We demonstrated in this study that the transcription of human nocturnin displayed circadian oscillations in Huh7 cells(a human hepatoma cell line).The results indicate that hNoc and hPerl have similar oscillation in Huh7 cells.During the 72 hour observation period,hPerl and hNoc transcript levels showed three peaks at CT16-20,CT40 and CT68, respectively,and two toughs at CT24-32 and CT48-56.The results indicate that hNoc is regulated by molecular clock in Huh7 cells.
     To validate the activity hNoc E-boxes,a luciferase reporter system was used.The results suggested that the E-box2 of nocturnin might play a major role in circadian transcription driven by CLOCK/BMAL1 heterodimer.To further identify the relative importance of E-box 1 and E-box2 in the regulation of nocturnin transcription,the binding affinities of CLOCK/BMAL1 to the E-boxes 1 and 2 of nocturnin were examined by a series of DNA pull-down assays.Our results showed that human nocturnin transcription was regulated by CLOCK/BMAL1 via E-box.E-box2 was more efficient in binding CLOCK/BMAL1 than E-box1,suggesting that E-box2 may take a dominant role in mediating the regulation of CLOCK/BMAL1 on nocturnin transcription.
     In addition,base on these studies,we choosed 86 microRNAs which express in mammalian brain and searched the E-box elements in the regions around the microRNAs in genome sequences which come from the Ensembl database (http://www.ebi.ac.uk/ensembl).The results showed that E-box elements exist in regions around the genomic sequences of the 18 microRNAs.By blasting these genomic sequences in rat and human,we found those 12 E-boxes and their flanking sequences showed high identity.We then identified the binding between the predictive elements and transfactors(CLOCK and BMAL1) by useing chromatin immunoprecipition assay(CHIP) and transcription oscillation of these microRNAs by realtime PCR assay in running-wheel mice model.We found three clock-controlled microRNAs.
     In this study,we screened the clock-controlled genes and identified the transcription of nocturnin controlled by CLOCK/BMAL1.Base on the trascrptional mechnism of molecular clock,we identified the three microRNAs(miR140,miR329 and miR337).
引文
1. Eskin A (1979) Identification and physiology of circadian pacemakers. Fed Proc 38:2570-2572
    
    2. Dunlap JC (1999) Molecular bases for circadian clocks. Cell 96: 271-290
    
    3. Young MW and Kay SA (2001) ime zones: A comparative genetics of circadian clocks.Nat Rev Genet 2: 702-715
    
    4. Bargiello TA, Jackson FR, and Young MW (1984) Restoration of circadian behavioural rhythms by gene transfer in Drosophila. Nature 312: 752-754
    
    5. ZehringWA, Wheeler DA, Reddy P, Konopka RJ, Kyriacou CP, Rosbash M, and Hall JC (1984). Cell 39:369-, 376. (1984) P-element transformation with period locus DNA restores rhythmicity to mutant, arrhythmic Drosophila melanogaster. Cell 39: 369-376
    
    6. Jackson FR, Bargiello TA, Yun SH, and Young MW (1986) Product of per locus of Drosophila shares homology with proteoglycans. Nature 320: 185-188
    
    7. Citri Y, Colot HV, Jacquier AC, Yu Q, Hall JC, Baltimore D, and RosbashM (1987) Afamily of unusually spliced biologically active transcripts encoded by a Drosophila clock gene. Nature 326: 42-47
    
    8. Hardin PE, Hall JC, and Rosbash M (1990) Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels. Nature 343: 536-540
    
    9. Zerr DM, Hall JC, Rosbash M, and Siwicki KK (1990) Circadian fluctuations of period protein immunoreactivity in the CNS and the visual system of Drosophila. J Neurosci 10: 2749-2762
    
    10. Hardin PE, Hall JC, and RosbashM (1992) Circadian oscillations in period gene mRNA levels are transcriptionally regulated. Proceedings of the National Academy of Sciences of the United States of America 89: 11711-11715
    
    11.So VW and Rosbash M (1997) Post-transcriptional regulation contributes to Drosophila clock gene mRNAcycling. The EMBO journal 16: 7146-7155
    
    12. Sehgal A, Rothenfluh-Hilfiker A, Hunter-Ensor M, Chen Y, Myers MP, and Young MW (1995) Rhythmic expression of timeless:Abasis for promoting circadian cycles in period gene autoregulation. Science 270: 808-810
    
    13. Vosshall LB, Price JL, Sehgal A, Saez L, and Young MW (1994) Block in nuclear localization of period protein by a second clock mutation, timeless. Science 263:1606-1609
    
    14. Saez L and Young MW (1996) Regulation of nuclear entry of the Drosophila clock proteins period and timeless. Neuron 17: 911-920
    
    15. Price JL, Blau J, Rothenfluh A, Abodeely M, Kloss B, and Young MW (1998) Double-time is a novel Drosophila clock gene that regulates PERIOD protein accumulation. Cell 94: 83-95
    
    16. Kloss B, Price JL, Saez L, Blau J, Rothenfluh A, Wesley CS and Young MW (1998) The Drosophila clock gene doubletime encodes a protein closely related to human casein kinase Iepsilon. Cell 94: 97-107
    
    17. Zeng H QZ, Myers MP, and Rosbash M (1996) A lightentrainment mechanism for the Drosophila circadian clock. Nature 380: 129-135
    
    18. Rothenfluh A Y, and Saez L (2000) A TIMELESSindependent function for PERIOD proteins in the Drosophila clock. Neuron 26: 505-514
    
    19. Chang DC and Reppert SM (2003) A novel C-terminal domain of Drosophila PERIOD inhibits dCLOCK:CYCLE- mediated transcription. Curr Biol 13: 758-762
    
    20. Hao H, Allen DL, and Hardin PE (1997) A circadian enhancer mediates PER-dependent mRNA cycling in Drosophila melanogaster. Mol Cell Biol 17:3687-3693
    
    21. Huang ZJ EI, and Rosbash M (1993) PAS is a dimerization domain common to Drosophila period and several transcription factors. Nature 364: 259-262
    
    22. King DP ZY, Sangoram AM,Wilsbacher LD, Tanaka M,, Antoch MP ST, Vitaterna MH, Kornhauser JM,, Lowrey PL ea (1997) Positional cloning of the mouse circadian clock gene. Cell 89: 641-653
    
    23. Allada R WN, SoWV, Hall JC, and RosbashM (1998) A mutant Drosophila homolog of mammalian Clock disrupts circadian rhythms and transcription of period and timeless. Cell 93: 791-804
    
    24. Bae K LC, Sidote D, ChuangKY, and Edery I (1998) Circadian regulation of a Drosophila homolog of the mammalian Clock gene:PERandTIMfunction as positive regulators. Mol Cell Biol 18: 6142-6151
    
    25. Darlington TK W-SK, Ceriani MF, Staknis D,, Gekakis N ST, Weitz CJ, Takahashi JS, and Kay, SA (1998) Closing the circadian loop: CLOCK-induced transcription of its own inhibitors per and tim. Science 280: 1599-1603
    
    26. Gekakis N SD, Nguyen HB, Davis FC, Wilsbacher, LD K, Takahashi JS, andWeitz CJ (1998) Role of the CLOCKprotein in the mammalian circadian mechanism.Science 280: 1564-1569
    
    27. Hogenesch JB GY, Jain S, and Bradfield CA (1998) The basic-helix-loop-helix-PAS orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors. Proc Natl Acad Sci U S A 95: 5474-5479
    
    28. Rutila JE S, Le M, SoWV, Rosbash M, and Hall JC (1998) CYCLE is a second bHLH-PAS clock protein essential for circadian rhythmicity and transcription of Drosophila period and timeless. Cell 93: 805-814
    
    29. Lee C BK, and Edery I (1999) PER and TIM inhibit the DNA binding activity of a Drosophila CLOCK-CYC/ dBMAL1 heterodimer without disrupting formation of the heterodimer: Abasis for circadian transcription. Mol Cell Biol 19: 5316-5325
    
    30. Hunter-Ensor M OA, and Sehgal A (1996) Regulation of the Drosophila protein timeless suggests a mechanism for resetting the circadian clock by light. Cell 84:677-685
    
    31. Lee C P, Itsukaichi T, Bae K, and Edery I (1996) Resetting the Drosophila clock by photic regulation of PER and a PER-TIM complex. Science 271: 1740-1744
    
    32. Myers MP W-SK, Rothenfluh-Hilfiker A, and, MW Y (1996) Light-induced degradation of TIMELESS and entrainment of the Drosophila circadian clock.Science 271: 1736-1740
    
    33. Lee C BK, and Edery I (1998) The Drosophila CLOCK protein undergoes daily rhythms in abundance, phosphorylation and interactions with the PER-TIM complex.Neuron 21: 857-867
    
    34. Etchegaray JP LC, Wade PA, and Reppert SM (2003) Etchegaray JP, Lee C, Wade PA, and Reppert SM (2003) Rhythmic histone acetylation underlies transcription in the mammalian circadian clock. Nature 421:177-182. Nature 421: 177-182
    
    35. Kume K ZM, Sriram S, Shearman LP,Weaver DR, Jin, X ME, Hastings MH, and Reppert SM (1999) mCRY1 andmCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell 98: 193-205
    
    36. Emery P SW, Kaneko M, Hall JC, and Rosbash M (1998) CRY, a Drosophila clock and light-regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivity. Cell 95: 669-679
    
    37. Stanewsky R KM, EmeryP, Beretta B,Wager-Smith K, Kay SA, Rosbash M, and Hall JC (1998) The cryb mutation identifies cryptochrome as a circadian photoreceptor in Drosophila. Cell 95: 681-692
    
    38. Ivanchenko M SR, and Giebultowicz JM (2001) Circadian photoreception in Drosophila: Functions of cryptochrome in peripheral and central clocks. Journal of biological rhythms 16: 205-215
    
    39. Sangoram AM SL, Antoch MP, Gekakis N, Staknis D, Whiteley A, Fruechte EM,Vitaterna MH, Shimomura K, King DP, et al. (1998) Mammalian circadian autoregulatory loop: Atimeless ortholog and mPerl interact and negatively regulate CLOCK-BMAL1 -induced transcription. Neuron 21:1101-1113
    
    40. Zylka MJ SL, Levine JD, Jin X, Weaver DR, and Reppert SM (1998) Molecular analysis of mammalian timeless. Neuron21: 1115-1122
    
    41. Field MD ME, O'Brien JA, Weaver DR, Reppert, SM aHAocpi, of mSdpd, Neuron tccarm, 25:437-447 (2000) Analysis of clock proteins in mouse SCN demonstrates phylogenetic divergence of the circadian clockwork and resetting mechanisms.Neuron 25: 437-447
    
    42. Koike N HA, Numano R, Hirose M, Sakaki Y, and Tei H (1998) Identification of the mammalian homologues of the Drosophila timeless gene, Timeless1. FEBS Lett 441:427-431
    
    43. Hastings MH FM, Maywood ES, Weaver DR, and, SM R (1999) Differential regulation of mPER1 and mTIM proteins in the mouse suprachiasmatic nuclei: New insights into a core clock mechanism. J Neurosci 19: RC11
    
    44. Gotter AL MT, Weaver DR, Kolakowski LF Jr,, Possidente B SS, MacLaughlin DT,and Reppert, SM (2000) A time-less function for mouse timeless. Nat Neurosci 3:755-756
    
    45. Jin X SL (1999) Weaver DR, Zylka MJ, de Vries GJ, and Reppert SM (1999) A molecular mechanism regulating rhythmic output from the suprachiasmatic circadian clock. Cell 96: 57-68
    
    46. Benna C SP, Piccin A, Sandrelli F, Zordan M, Rosato E, Kyriacou CP, Valle G, and Costa R (2000) Asecond timeless gene in Drosophila shares greater sequence similarity with mammaliantim. Curr Biol 10: R512-R513
    
    47. Takumi T NY, Miyake S, Matsubara C, Taguchi K, Takekida S, Sakakida Y,Nishikawa K, Kishimoto T, Niwa S, et al (1999) Amammalian ortholog of Drosophila timeless, highly expressed in SCN and retina, forms a complex with mPER1.Genes Cells 4: 67-75
    
    48. Lee C EJ, Cagampang FR, Loudon AS, and, SM R (2001) Posttranslational mechanisms regulate the mammalian circadian clock. Cell 107: 855-867
    
    49. Balsalobre A ML, and Schibler U (2000) Multiple signaling pathways elicit circadian gene expression in cultured Rat-1 fibroblasts. Curr Biol 10: 1291-1294
    
    50. Bae K JX, Maywood ES, Hastings MH, Reppert SM, and Weaver DR (2001) Differential functions of mPer1, mPer2, and mPer3 in the SCN circadian clock.Neuron 30: 525-536
    
    51. Lowrey PL SK, Antoch MP, Yamazaki S,, Zemenides PD RM, Menaker M, and Takahashi JS (2000) Positional syntenic cloning and functional characterization of the mammalian circadian mutation tau. Science 288: 483-492
    52. Glossop NR LL, and Hardin PE (1999) Interlocked feedback loops within the Drosophila circadian oscillator. Science 286: 766-768
    
    53. Shearman LP SS, Weaver DR, Maywood ES, Chaves I, Zheng B, Kume K, Lee CC,van der Horst GT, Hastings MH, et al. (2000) Interacting molecular loops in themammalian circadian clock. Science 288: 1013-1019
    
    54. YuW, Nomura M, and Ikeda M (2002) Interactivating feedback loops within the mammalian clock: BMAL1 is negatively autoregulated and upregulated by CRY1,CRY2, and PER2. Biochemical and biophysical research communications 290:933-941
    
    55. R GHaT (1997) he vrille gene of Drosophila is a maternal enhancer of decapentaplegic and encodes a new member of the bZIP family of transcription factors. Genetics 146: 1345-1363
    
    56. Blau J and Young MW (1999) Cycling vrille expression is required for a functional Drosophila clock. Cell 99: 661-671
    
    57. Cyran SA BA, Reddy KL, Lin MC, Glossop, NR HP, Young MW, Storti RV, and Blau J (2003) vrille, Pdp1, and dClock form a second feedback loop in the Drosophila circadian clock. Cell 112: 329-341
    
    58. Glossop NR HJ, Zheng H, Ng FS, Dudek SM, and, PE H (2003) VRILLE feeds back to control circadian transcription of Clock in the Drosophila circadian oscillator.Neuron 37: 249-261
    
    59. Preitner N DF, Lopez-Molina L, Zakany J, Duboule D, Albrecht U, and Schibler U (2002) The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110: 251-260
    
    60. Preitner N B, Ripperger J, Le-Minh N, Damiola F, and Schibler U (2003) Orphan nuclear receptors, molecular clockwork, and the entrainment of peripheral oscillators.Novartis Found Symp 253: 89-109
    
    61. Ueda HR MA, Kawamura M, lino M, Tanimura T, and Hashimoto S (2002) Genome-wide transcriptional orchestration of circadian rhythms in Drosophila. J Biol Chem 277: 14048-14052
    
    62. Kim EY BK, Ng FS, Glossop NR, Hardin PE, and Edery I (2002) Drosophila CLOCK protein is under posttranscriptional control and influences light-induced activity. Neuron 34: 69-81
    
    63. A YZaS (2001) Role of molecular oscillations in generating behavioral rhythms in Drosophila. Neuron 29: 453-467
    
    64. Claridge-Chang A WH, Naef F, Boothroyd C,, Rajewsky N aYM (2001) Circadian regulation of gene expression systems in the Drosophila head. Neuron 32: 657-671
    
    65. McDonald MJ RM, and Emery P (2001) Wild-type circadian rhythmicity is dependent on closely spaced E boxes in the Drosophila timeless promoter. Mol Cell Biol 21: 1207-1217
    
    66. Ceriani MF HJ, Yanovsky M, Panda S, Straume M, and Kay SA (2002) Genome-wide expression analysis in Drosophila reveals genes controlling circadian behavior. J Neurosci 22: 9305-9319
    
    67. LinY H, Shimada B,Wang L, GiblerTM,AmarakoneA,, Awad TA SG, Van Gelder RN,and Taghert PH (2002) Influence of the period-dependent circadian clock on diurnal,circadian, and aperiodic gene expression in Drosophila melanogaster. Proc Natl Acad SciUSA 99: 9562-9567
    
    68. JC H (2003) Genetics and molecular biology of rhythms in Drosophila and other insects. Adv Genet 48: 1-280
    
    69. P DCS-C (2000) Transcriptional regulation by cyclic AMP-responsive factors. Prog Nucleic Acid Res Mol Biol 64: 343-369
    
    70. Doi M, Hirayama J, Sassone-Corsi P (2006) Circadian regulator CLOCK is a histone acetyltransferase. Cell 125: 497-508
    
    71. Panda S AM, Miller BH, Su AI, Schook AB, Straume M, Schultz PG, Kay SA,Takahashi JS, and Hogenesch JB (2002) Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109: 307-320
    
    72. Akhtar RA RA, Maywood ES, Clayton JD, King VM, Smith AG, Gant TW, Hastings MH, and Kyriacou CP (2002) Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus. Curr Biol 12: 540-550
    
    73. Duffield GE BJ, Meurers BH, Bittner A, Loros JJ, and, JC D (2002) Circadian programs of transcriptional activation, signaling, and protein turnover revealed by microarray analysis of mammalian cells. Curr Biol 12: 551-557
    
    74. Oishi K, Miyazaki K, Kadota K, Kikuno R, Nagase T, Atsumi G, Ohkura N, Azama T,Mesaki M, Yukimasa S, Kobayashi H, Iitaka C, Umehara T, Horikoshi M, Kudo T,Shimizu Y, Yano M, Monden M, Machida K, Matsuda J, Horie S, Todo T, Ishida N (2003) Genome-wide expression analysis of mouse liver reveals CLOCK-regulated circadian output genes. J Biol Chem 278: 41519-41527
    
    75. Green CB, Besharse JC (1996) Identification of a novel vertebrate circadian clock-regulated gene encoding the protein nocturnin. Proc Natl Acad Sci U S A 93:14884-14888
    
    76. Green CB, Besharse JC (1997) Identification of vertebrate circadian clock-regulated genes by differential display. Methods Mol Biol 85: 219-230
    
    77. Baggs JE, Green CB (2003) Nocturnin, a deadenylase in Xenopus laevis retina: a mechanism for posttranscriptional control of circadian-related mRNA. Curr Biol 13:189-198
    
    78. Garbarino-Pico E, Niu S, Rollag MD, Strayer CA, Besharse JC, Green CB (2007) Immediate early response of the circadian polyA ribonuclease nocturnin to two extracellular stimuli. Rna 13: 745-755
    
    79. Green CB, Douris N, Kojima S, Strayer CA, Fogerty J, Lourim D, Keller SR,Besharse JC (2007) Loss of Nocturnin, a circadian deadenylase, confers resistance to hepatic steatosis and diet-induced obesity. Proc Natl Acad Sci U S A104: 9888-9893
    
    80. Liu X, Green CB (2002) Circadian regulation of nocturnin transcription by phosphorylated CREB in Xenopus retinal photoreceptor cells. Mol Cell Biol 22:7501-7511
    81. Wang Y, Osterbur DL, Megaw PL, et al (2001) Rhythmic expression of Nocturnin mRNA in multiple tissues of the mouse. BMC Dev Biol 1: 9
    
    82. Green CB (2003) Molecular control of Xenopus retinal circadian rhythms. J Neuroendocrinol 15: 350-354
    
    83. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281-297
    
    84. Bentwich I, Avniel A, Karov Y, et al (2005) Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 37: 766-770
    
    85. Lee Y, Kim M, Han J, et al (2004) MicroRNA genes are transcribed by RNA polymerase II. Embo J 23: 4051-4060
    
    86. Lee Y, Jeon K, Lee JT, et al (2002) MicroRNA maturation: stepwise processing and subcellular localization. Embo J 21: 4663-4670
    
    87. Zeng Y, Yi R, Cullen BR (2003) MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc Natl Acad Sci U S A 100:9779-9784
    
    88. Esquela-Kerscher A, Slack FJ (2006) Oncomirs - microRNAs with a role in cancer.Nat Rev Cancer 6: 259-269
    
    89. Xie X, Lu J, Kulbokas EJ, et al (2005) Systematic discovery of regulatory motifs in human promoters and 3' UTRs by comparison of several mammals. Nature 434:338-345
    
    90. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15-20
    
    91. Lim LP, Lau NC, Garrett-Engele P, et al (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433: 769-773
    
    92. O'Neill JS, Hastings MH (2007) Circadian clocks: timely interference by microRNAs. Curr Biol 17: R760-762
    
    93. Cheng HY, Papp JW, Varlamova O, et al (2007) microRNA modulation of circadian-clock period and entrainment. Neuron 54: 813-829
    
    94. Kim J, Krichevsky A, Grad Y, et al (2004) Identification of many microRNAs that copurify with polyribosomes in mammalian neurons. Proc Natl Acad Sci U S A 101:360-365
    
    95. Singh H, Raghava GP (2001) ProPred: prediction of HLA-DR binding sites.Bioinformatics 17: 1236-1237
    
    96. Zhang GL, Srinivasan KN, Veeramani A, et al (2005) PREDBALB/c: a system for the prediction of peptide binding to H2d molecules, a haplotype of the BALB/c mouse. Nucleic Acids Res 33: W180-183
    
    97. Hirota T, Fukada Y (2004) Resetting mechanism of central and peripheral circadian clocks in mammals. Zoolog Sci 21: 359-368
    
    98. Lu J, Lai A, Merriman B, et al (2004) A comparison of gene expression profiles produced by SAGE, long SAGE, and oligonucleotide chips. Genomics 84: 631-636
    
    99. Impey S, McCorkle SR, Cha-Molstad H, et al (2004) Defining the CREB regulon: a genome-wide analysis of transcription factor regulatory regions. Cell 119: 1041-1054
    
    100. Balsalobre A, Damiola F, Schibler U (1998) A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93: 929-937
    
    101. Munoz E, Brewer M, Baler R (2002) Circadian Transcription. Thinking outside the E-Box. J Biol Chem 277: 36009-36017
    
    102. Baggs JE, Green CB (2006) Functional analysis of nocturnin: a circadian clock-regulated gene identified by differential display. Methods Mol Biol 317:243-254
    1.Liang,F.Q.,Walline,R.and Earnest,D.J.(1998) Circadian rhythm of brain-derived neurotrophic factor in the rat suprachiasmatic nucleus.Neurosci.Lett.242:89-92
    2.Araki M.Taketani S.A.(1992) PCR analysis of rhodopsin gene transcription in rat pineal photoreceptor differentiation.Brain Res.69:149
    3.贺桂琼孙善全(2000)视交叉上核的结构及其在昼夜节律中的作用.解剖科学进展第6卷第2期
    4.Ebling,F.J.P.(1996) The role of glutamate in the photic regulation of the suprachiasmatic nucleus Progress.Neurobiol.50:109-132
    5.Ding,J.M.,Chert,D.,Weber,E.T.,Faiman,L.E.,Rea,M.A.and Gillette,M.U.(1994)Resetting the biological clock:mediation of nocturnal circadian shifts by glutamate and NO.Science 266:1713-1717
    6.Gau D,Lemberger T,yon Gall C,Kretz O,Le Minh N,Gass P,Schmid W,Schibler U,Korf HW,Schutz G(2002) Phosphorylation of CREB Ser142 regulates light-induced phase shifts of the circadian clock.Neuron 34:245-253
    7.陈文雁 刘世熠(1998)视交叉上核的内源性昼夜节律以及光谷氨酸和NO的调制作用.生理科学进展第29卷第2期
    8.LeBmann,V.(1998) Neurotrophin-dependent modulation of glutamatergic synaptic transmission in the mammalian CNS.Gen.Pharmac.31667-674
    9.Kang,H.and Schuman,E.M.(1995) Long-lasting neurotrophin-induced enhancement of synaptic transmission in the adult hippocampus.Science 267:1658-1662
    10.Bina,K.G.Rusak,B,Semba,K.(1997) Sources of p75-nerve growth factor receptor-like immunoreactivity in the rat suprachiasmatic nucleus. Neuroscience 77:461-72
    
    11. Moga, M. M. (1998) Delayed loss of p75 neurotrophin receptor-immunoreactivity in the rat suprachiasmatic nucleus and intergeniculate leaflet after binocular enucleation.Neurosci. Lett. 253: 187-190
    
    12. Moga, M.M. (1998) 192 IgG-saporin abolishes p75 neurotrophin receptor immunoreactivity in rat SCN. NeuroReport 9:3197-3200
    
    13. Liang, F. Q., Walline, R. and Earnest, D. J. (1998) Orcadian rhythm of brain-derived neurotrophic factor in the rat suprachiasmatic nucleus. Neurosci. Lett. 242:89-92
    
    14. Earnest, D. J., Liang, F. Q., Ratcliff, M. and Cassone, V. M. (1999) Immortal time:circadian clock properties of rat suprachiasmatic cell lines. Science 283: 693-695
    
    15. Baranes, E., Lederfein, D., Huang, Y.Y., Chen, M., Bailey, C. H. and Ka ndel, E. R.(1998) Tissue plasminogen activator contributes to the late phase of LTP and to synaptic growth in the hippocampal mossy fiber pathway. Neuron 21:813-825
    
    16. Huang, Y. Y, Bach M. E., Lipp, H. P., Zhao, M., Wolfer, D. P., Hawkins, R. D.,Schoonjans, L., Kandel, E. R., Godfraind, J. M., Mulligan, R., Collen, D. and Carmeliet, P. (1996) Mice lacking the gene encoding tissue-type plasminogen activator show a selective interference with late-phase long-term potentiation in both Schaffer collateral and mossy fiber pathways. Proc. Natl. Acad. Sci. USA 93:8699-8704
    
    17. Kornhauser, J.M., Nelson, D.E., Mayo, K.E., and Takahashi, J.S. (1992) Regulation of junB messenger RNA and AP-1 activity by light and a circadian clock. Science 255:1581-1584
    
    18. Takeuchi, J., Shannon, W., Aronin, N., and Schwartz, W.J. (1993) Compositional changes of AP-1 DNA-binding proteins are regulated by light in a mammalian circadian clock. Neuron 11: 825-836
    
    19. Golombek, D.A. and Ralph, M.R. (1995) circadian responses to loght: the calmodulin connection. Neurosci. Lett. 192: 101-104
    20. Finkbeiner, S. Tavazoie, S.F., Maloratsky, A. Jacobs, K.M. Harris, K.M. and Greenberg M.E. (1997) CREB: a major mediator of neuronal neurotrophin responses. Neuron 19:1031-47
    
    21. Ricci, A. Pierchala, B.A. Ciarallo, C.L. Ginty, D.D. (1997) An NGF TrkA-mediated retrograde signal to transcription factor CREB in sympathetic neurons. Science 277:1097-100
    
    22. Golombek, D.A. and Ralph, M.R. (1994) KN-62, an inhibitor of Ca~(++)/calmodulin kinase II, attenuates circadian responses to light. Neuroreport 5: 1638-1640
    
    23. 23. Joseph S. Takahashi. (2004) Finding New Clock Components: Past and Future.Journal of Biological Rhythms 19:339-347
    
    24. 杜玉珍, 童建 (2004) 生物钟的基因调控.生理科学进展 33(4):343-345
    
    25. Jessica W, Shelley A, Jeffrey A, et al. (2003) Requirement of Mammalian Timeless for Circadian Rhythmicity. Science 302(5644):439-42
    
    26. Martha H, Christopher P, Takeshi T, et al. (1999) Differential regulation of mammalian Period genes and circadian rhythmicity by cryptochromes 1 and 2. Proc Natl Acad Sci U S A96(21):12114-9
    
    27. Shearman LP, Sriram S, Weaver DR, et al. (2000) Interacting molecular loops in the mammalian circadian clock. Science 288(5468): 1013-9
    
    28. Lee C, Etchegaray JP, Cagampang FR, et al. (2001) Posttranslational mechanisms regulate the mammalian circadian clock. Cell 107(7):855-67
    
    29. Oishi K, Fukui H, Ishida N, et al. (2000) Rhythmic expression of BMALI mRNA is altered in clock mutant mice: differential regulation in suprachiasmatic nucleus and peripheral tissues. Biochem Biophys Res Commun 268:164-171
    
    30. Gekakis N, Staknis D, Nguyen HB, et al. (1998) Role of the clock protein in the mammalian circadian mechanism. Science 280(5369): 1564
    
    31. Reick M, Garcia JA, Dudley C, et al. (2001) NPAS2: an analog of clock operative in the mammalian forebrain. Science 293(5529):506-9
    
    32. John B, Yi-Zhong Gu, Susan M, et al. (2000) The Basic Helix-Loop-Helix-PAS Protein M0P9 Is a Brain-Specific Heterodimeric Partner of Circadian and Hypoxia Factors. The Journal of Neuroscience 20: RC83 1-5
    
    33. Shen M, Kawamoto T, Yan W, et al. (1997) Molecular characterization of the novel basic helix-loop-helix protein DEC 1 expressed in differentiated human embryo chondrocytes. Biochem. Biophys. Res. Commun 236:294-298
    
    34. Sato H, Takeshi K, Yumiko T, et al. (2002) Dec1 and Dec2 are regulators of the mammalian molecular clock. Nature 419(6909): 841-4
    
    35. Li Y, Song X, Ma Y, et al. (2004) DNA binding, but not interaction with Bmall, is responsible for DEC1-mediated transcription regulation of the circadian gene mPer1.Biochem J 382(Pt 3):895-904
    
    36. Sato TK, Panda S, Miraglia LJ, et al. (2004) A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron 43(4):443-6
    
    37. Shun Y, Shigeru M, Lily Y, et al. (2000) Role of DBP in the Circadian Oscillatory Mechanism. Molecular and Cellular Biology 20:4773-4781
    
    38. Shigeru M, Shun Y, Takuya M, et al. (2001)Antagonistic role of E4BP4 and PAR proteins in the circadian oscillatory mechanism. Genes Dev 15(8):995-1006
    
    39. Dunlap JC. (1999) Molecular bases for circadian clocks. Cell 96:270-290
    
    40. Bae K, Jin XW, Maywood ES, et al. (2001) Differential functions of mPer1, mPer2,and mPer3 in the SCN circadian clock. Neuron 30:525-536
    
    41. Zheng B, Albrecht U, Kaasik K, et al. (2001) Nonredundant roles of the mPerl and mPer2 genes in the mammalian circadian clock. Cell 105:683-694
    
    42. Shigeyoshi Y, Meyer-Bernstein E, Yagita K, et al. (2002) Restoration of circadian behavioral rhythms in a period null Drosophila mutant(per01) by mammalian period homologues mPerl and mPer2. Genes to Cells 7:163-171
    
    43. Bunger MK, Wilsbacher LD, Moran SM, et al. (2000) Mop3 is an essential component of the master circadian pacemaker in mammals. Cell 103:1009-1017
    
    44. Tsuyoshi Hirota and Yoshitaka Fukada (2004) Resetting mechanism of central and peripheral circadian clocks in mammals. Zoological Science 21:359-368
    45. Okamura H, Miyake S, Sumi Y, et al. (1999) Photic induction of mPer1 and mPer2 in Cry-deficient mice lacking a biological clock. Science 286:2531-2534
    
    46. Preitner N, Damiola F, Lopez-Molina L, et al. (2002) The orphan nuclear receptor REV-ERBa controls circadian anscription within the positive limb of the mammalian circadian oscillator. Cell 110:251-260
    
    47. Ueda HR, Chen W, Adachi A, et al. (2002) A transcription factor response element for gene expression during circadian night. Nature 418:534-539
    
    48. Yu W, Nomura M, Ikeda M. (2002) Interacting feedback loops within the mammalian clock: BMAL1 is negatively autoregulated and upregulated by CRY1, CRY2, and PER2. Biochem. Biophys. Res. Comm 290:933-942
    
    49. O'Neill JS, Hastings MH (2007) circadian clocks: timely interference by microRNAs.Curr Biol 17:R760-762
    
    50. Cheng HY, Papp JW, Varlamova O, Dziema H, Russell B, Curfman JP, Nakazawa T,Shimizu K, Okamura H, Impey S, Obrietan K (2007) microRNA modulation of circadian-clock period and entrainment. Neuron 54: 813-829
    
    51. Coogan AN, Piggins HD. (2004) MAP kinases in the mammalian circadian system—key regulators of clock function. J Neurochem 90(4):769-75
    
    52. Akashi M, Tsuchiya Y, Yoshino T & Nishida E. (2002) Control of intracellular dynamics of mammalian period proteins by casein kinase Iε(CKIe) and CKI5 in cultured cells. Molecular and Cellular Biology 22:1693-1703
    
    53. Kazuhiro Y, Filippo T, Maya Y, et al. (2002) Nucleocytoplasmic shuttling and mCRY-dependent inhibition of ubiquitylation of the mPER2 clock protein. The EMBO Journal 21:1301-1314
    
    54. Panda S, Antoch MP, Miller BH, et al. (2002) Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109:307-320
    
    55. Takuro Y, Yasukazu N, Haruhiko S, et al. (2004) Transcriptional oscillation of canonical clock genes in mouse peripheral tissues. BMC Molecular Biology 5:18
    
    56. Duffield GE. (2003) DNA microarray analyses of circadian timing: the genomic basis of biological time. J Neuroendocrinol 15(10):991-1002
    
    57. Baggs JE, Green CB (2003) Nocturnin, a deadenylase in Xenopus laevis retina: a mechanism for posttranscriptional control of circadian-related mRNA. Curr Biol 13:189-198
    
    58. Garbarino-Pico E, Niu S, Rollag MD, Strayer CA, Besharse JC, Green CB (2007) Immediate early response of the circadian polyA ribonuclease nocturnin to two extracellular stimuli. Rna 13: 745-755
    
    59. Green CB, Douris N, Kojima S, Strayer CA, Fogerty J, Lourim D, Keller SR,Besharse JC (2007) Loss of Nocturnin, a circadian deadenylase, confers resistance to hepatic steatosis and diet-induced obesity. Proc Natl Acad Sci U S A 104: 9888-9893
    
    60. Wright KP Jr, Czeisler CA. (2002) Absence of circadian phase resetting in response to bright light behind the knees. Science 297:571
    
    61. Yamaguchi S, Kobayashi M, Mitsui S, et al. (2001) Gene expression-view of a mouse clock gene ticking. Nature 409:684
    
    62. Travnickova-Bendova Z, Cermakian N, Reppert SM & Sassone-Corsi, PB (2002) Regulation of mPeriod promoters by CREB-dependent signaling and CLOCK:BMAL1 activity. Proc. Natl Acad. Sci. USA 99:7728-7733
    
    63. Shearman, L. P. &Weaver, D. R. (1999) Photic induction of Period gene expression is reduced in Clock mutant mice. NeuroReport 10:613-618
    
    64. Gau D, Lemberger T, von Gall C, et al. (2002) Phosphorylation of CREB Ser-142 regulates light-induced phase shifts of the circadian clock. Neuron 34:245-253
    
    65. Davidson AJ, Castanon-Cervantes O, Stephan FK. (2004)Daily oscillations in liver function: diurnal vs circadian rhythmicity. Liver Int. 24(3): 179-86
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.