基于多种DNA序列和cpSSR的梨属(Pyrus L.)植物分子系统关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
梨属植物是蔷薇科(Rosaceae)苹果亚科(Maloideae)或梨亚科(Pomoideae)中的一个重要属。一般认为梨属植物的基本种有20个左右,被中国植物分类学家认可的原产中国大陆的梨属种(包括非基本种)有13个。由于梨属植物种间和种内杂交非常普遍,种间可以区别的性状特征有时不明显,因此单独基于传统形态学的分类方法很难确切判断种和分析种间的系统关系。化学成分、同工酶、花粉超微结构等研究手段对解明梨属植物种间关系也做出了重要贡献,这些信息虽然不易受环境影响但标记数量非常有限。目前还没有建立起完整的梨属植物内系统关系,许多可疑杂种或栽培种的起源问题仍存在争议。
     本研究广泛选取了东亚原产为主的梨属种和代表品种为样本,应用不同来源的多种DNA序列及cpSSR分子标记试图从分子系统学的角度为阐明梨属内的系统关系、梨属植物分化过程中可能经历的进化史及杂种起源提供证据。主要结果如下:
     1通过PCR优化在包括44个梨样本和3个外类群(苹果属)的所有供试样本中得到了128条功能性ITS序列;而在普通PCR条件下,在若干样本中得到了42条ITS假基因序列。由于功能性拷贝序列分化度低(avr=2.6%),个体内存在不同程度的多态性和可疑重组子,且个体内多态序列在系统树上并非单源,因此导出的系统结果复杂,支持率普遍较低,并没有预期地解决梨属植物种间关系,根据个体内功能性ITS序列多态性程度的高低仍揭示了不同种或品种的杂合背景,暗示了梨属栽培种的分化过程中存在网状进化和其它更复杂的进化史。在梨属植物中得到的ITS假基因序列因GC含量低、二级结构遭破坏,在普通PCR条件下被优先扩增。其序列与相应的功能拷贝序列差异度很大(15%),在系统树上也独立组成单源群,因此推测其起源时间较早。根据不同起源可以将所得假基因分为两个谱系(lineage),即、ψa、ψb、ψc、ψd和ψe、ψf、ψg。其中ψb、ψc、ψd为共同起源,进化速率较快,且基于这些序列导出的系统结果关系明确、支持率高,具有很大的潜力来重建梨属内系统关系。这些假基因序列呈中性进化,是应用分子钟进行分化时间估计的很好的资源。此外,一些“古老孑遗”的ITS假基因序列为阐明一些较原始的种的演化历程提供了宝贵证据。基于功能性ITS功能序列和ITS假基因序列的系统结构中,西方梨都为单源,与东方梨显著分开,支持东西方梨为独立分化的观点。
     2梨属植物Adh基因中存在长度各异的6个内含子区,我们仅对包括内含子1和内含子2区的5'端650 bp长的序列进行了分析。经大量克隆测序发现,梨属植物中至少存在4种主要的Adh位点:Adh1、Adh2、Adh3及Adh4和一种可疑的Adh5。Adh内含子1区长度变异较大,各Adh位点在此区分别共享了其特有的长度变异。不同Adh位点间的序列分化度较高,为8%-20%,而各位点内的序列分化度也较低(<2%)。在大多数样本个体内,每个不同Adh位点都存在序列多态性,即存在多个同类Adh拷贝。其中属于Adh1、Adh2和Adh3的差异拷贝大多为单源;而来自Adh4(拷贝数最多)的个体内差异拷贝大多数为多源,因此导出的系统树结构与功能ITS序列相似,关系复杂,可能存在谱系筛选及基源拷贝未鉴定准确的原因。四个位点中Adh2因起源较晚,拷贝数较单纯,显示了较好的应用价值。从系统树结构和支持率看,低拷贝核基因初步显示了比功能性ITS序列更好的系统学潜力
     3两个叶绿体非编码区,trnL内含子及trnL-F,在梨属植物中高度保守,未能预期解决梨属内系统关系。从系统树结构看,东西方梨两大组再次显著分开,而西方梨样本仅存在一种trnL-F序列的长度类型,多样性简单且与苹果属关系更近。而东方梨存在三种序列长度类型,多样性较丰富。这两个叶绿体非编码区的长度突变和核苷酸突变为一些杂种的母系提供了依据,如‘库尔勒香梨'的母本非西洋梨;褐梨、河北梨及部分秋子梨间关系密切;中国白梨品种并非起源于P.breteschneideri1(罐梨),两者不存在直接联系。在东方梨中秋子梨显示了最丰富的多样性。
     4应用12对cpSSR引物对供试梨样本进行分析发现仅4对引物的PCR产物在梨属中存在多态性。最后共获得14个多态位点,基于这些位点构建的UPGMA系统树结构与两种叶绿体非编码区序列的系统结果基本相似。
The genus Pyrus L.belongs to the subfamily Pomoideae(Maloideae),and the family Rosaceae.It is generally accepted that there are about 20 stock species in Pyrus,and thirteen species originating from China have been classified and extensively accepted by Chinese botanical taxonomists.However,all species of Pyrus are inter-crossable and inter and intra-specific hybridisation have been thought to be the major mode of evolution in this genus,which makes it difficult to define the species and estimate exact genetic relationships of Pyrus species based on morphological characteristics.Other biological markers including chemical compounds,pollen ultrastructure and isozymic patterns have also been used to distinguish pear species and cultivars.However,these markers are quite number-limited and/or vulnerable to environmental effects.The phylogeny of the Pyrus have not been completely constructed and the origin of several putative hybrids and cultivated species remains unclear or controversial.
     In this paper,we selected Pyrus species,cultivars and wild types mainly native to East Asia as samples and tried to elucidate the phylogenetic relationships among Pyurs sepecies and understand the evolutionary process involved in the species diversification in Pyrus based on molecular markers including several DNA fragments and cpSSR marker.The main results were as follows:
     1 A total of 128 funtional ITS sequences were obtained in all investigated accessions including 44 Pyrus speceis or cultivars and three outgroup species(Malus Mill.) under the modified PCR conditions,and 42 putative ITS pseudogenes were discovered in several accessions under normal PCR.Functional ITS copies led to confused and poorly resolved phylogeny as a result of low sequence divergence (avr=2.6%),existence of unidentified ancient recombinants and a high degree of intra-individual functional ITS polymorphism which were mostly polyphyletic in the tree,suggesting reticulate evolution and other complex evolutionary process such as rapid ancient radiation have been involved in the diversification of Pyrus species.The genetic background of different Pyrus species or cultivars were elucidated by their degree of intra-individual functional ITS polymorphism.ITS pseudogenes displaying lower GC content and unstable secondary structure were preferentially amplified under normal PCR conditions.All pseudogenes were highly divergent from their corresponding functional copies(15%) and formed a monophyletic group in the phylogenetic tree based on all paralogs,indicating they were of relatively early origin. All of the pseudogenes found in Pyrus could be divided into two lineages according to their separate orgin.One linegae includedψaψb,ψc andψd,and the other includedψe,ψf andψg.Certain types of pseudogenes(ψb,ψc andψd) were of common origin and have been evolving with high substitution rate.Phylogenetic relationships based on these pseudogenes were unambiguous and highly supported.Therefore,these types of ITS pseudogenes have great potential to reconstruct the phylogeny of Pyrus. Evolution of ITS pseudogenes discovered in this study was under neutral selection and will be good resources to evaluate the divergence time of species using 'molecular clock'.Besides,some relict pseudogenes provided credible clues for the evolutionary history of some relict and primary Pyrus species.The Occidental species were monophyletic in the phylogenetic trees based on both functional ITS sequences and ITS pseudogenes,apparently separating from Oriental pears,which supports the view that Oriental pears geographically and genetically distinct from the East Asian pears.
     2 There were six different-sized introns in the Adh gene in Pyrus sepecies,and only partial sequence of the 5' portion including intron 1 and intron 2(about 650 bp) were sequenced.As a result,four major Adh loci,i.e.Adh1,Adh2,Adh3,and Adh4,in addition to a putative Adh5 were identified and all of these five Adh loci respectively shared particular length variation in intron 1 region.Sequence divergence among different Adh loci ranged from 8%to 10%,while that within Adh loci was quite low (<2%) and could not provide enough information to resolve the phylogeny of Pyrus. Besides,divergent copies representing each Adh loci could be obtained in most pear individuals.Divergent copies found in one individual presenting Adh1,Adh2 and Adh3 were monophyletic in the tree,while those representing Adh4 which was the most frequently cloned in this study were mostly polyphyletic in the tree,which may caused by hybridisation as well as lineage sorting.Besides,there might be unidentifiable paralogs among Adh4.
     Among the four major Adh loci,Adh2 was of relatively late origin and showed potential as another powerful phylogenetic tool for Pyrus.Low copy nuclear gene was more powerful than ITS and cpDNA to resolve the phylogenetic relationships in Pyrus.
     3 trnL intron and trnL-F were highly conserved among Pyrus speceis and failed to resolve the phylogeny of Pyrus.Occidental species displayed only one type of trnL-F region,suggesting they were genetically simple compared to that of Oriental pears.Besides,the Occidental speceis were monophyletic in the tree and more closely related to species of Malus species.Informative length variation and nucleotide substitution in these two cpDNA region also provided evidence of the maternal origin of several species and cultivar.It was found that the maternal parent of 'Korlaxiangli' could not be P.communis,the putative hybrids P.phaeocarpa,P.hopeiensis were closely related to some accessions of P.ussuriensis.Chinese white pear cultivars did not originate from P.breteschneideri.It was also found that P.ussuriensis was the most diversified species among Oriental pears.
     4 In the study of cpSSR analysis,only four from 12 primers showed length polymorphism in all of the Pyrus accessions including outgroup ones from Malus.As a result,only 14 polymorphic loci were examined and the phylogeneitc tree based on UPGMA methods was similar to that based on the above two cpDNA non-coding regions.
引文
白丽莉,杨足君,刘畅,冯娟,邓科君,任正隆.小麦族物种线粒体基因rrn18-trnfM区域的序列多样性分析.作物学报,2007,33:805-813.
    鲍露,张东,滕元文,陈昆松.DNA标记技术在梨属植物研究中的应用.果树学报,2006,23:270-275.
    曹秋芬,和田雅人,孟玉平,黄静,孙毅,王果萍.苹果LEAFY同源基因的cDNA克隆与表达分析.园艺学报,2003,30:267-271.
    程运江,郭文武,邓秀新.叶绿体SSR标记:柑橘细胞杂种胞质遗传分析的一种新方法.植物学报,2003,45:906-909.
    傅青,马建岗.达尔文进化论的挑战.分子进化的中性学说.生物学杂志,1994,59:1-3.
    刘艳玲,徐立铭,程中平.基于ITS序列探讨核果类果树桃、李、杏、梅、樱的系统发育关系.园艺学报,2007,34:23-28.
    刘志鹏,王能飞,赵爱云,沈继红,刘小丽,刘公社.低拷贝核基因在异源多倍体植物中的进化与表达.遗传,2007,29:163-171.
    林伯年,沈德绪.利用过氧化物同工酶分析梨属种质及亲缘关系.浙江农业大学学报,1983,9:235-242.
    滕元文,鲍露,郑小艳.梨属植物的起源和系统关系.赵尊练 主编:园艺学进展(6),陕西科学技术出版社,2004,pp.23-29.
    滕元文,柴明良,李秀根.梨属植物分类的历史回顾及新进展.果树学报,2004a,21:252-257.
    俞德浚.我国梨品种中的一个新系统.园艺学报,1979,6:27-31.
    俞德浚.蔷薇科植物的起源和进化.植物分类学报,1984,22:431-444.
    俞德浚,关克俭.中国蔷薇科植物分类之研究(一).植物分类学报,1963,8:202-236.
    俞德浚,沈隽,张鹏等.华北的梨.北京,科学出版社,1958.
    吴耕民.中国温带果树分类学.农业出版北京社,1984.
    姚宜轩,许方.几种梨属植物叶片的比较解剖学研究.莱阳农学院学报,1992,9:6-12.
    张昀.生物进化.北京大学出版社,1998,pp,36-37.
    赵一之,成文连,尹俊,曹瑞,张竟秋.用rDNA的ITS序列探讨绵刺属的系统位置.植物研 究,2003,23:402-406.
    邹乐敏,张西民,张志德等.根据花粉形态探讨梨属植物的亲缘关系.园艺学报,1986,13:219-223.
    菊池秋雄.支那梨の系統と品種の類別.園研集録,1946,3:1-11.
    菊池秋雄,果樹園芸学.上巻.果樹種類各論.養賢堂,東京.1948.
    Aldasoro JJ,Aedo C,Garmendia FM.The genus Pyrus L.(Rosaceae) in south-west Europe and North Africa.Bot.J.Linn.Soc,1996,121:143-158.
    Alice LA,Campbell CS.Phytogeny of Rubus based on nuclear ribosomal DNA internal transcribed spacer region sequences.Amer.J.Bot.,1999,86:81-97.
    (?)lvarez I,Wendel JF.Ribosomal ITS sequences and plant phylogenetic inference.Mol.Phylogenet.Evol,2003,29:417-434.
    (?)lvarez I,Costa A,Nieto Feliner G Selecting single-copy nuclear genes for plant phylogenetics:a preliminary analysis for the Senecioneae(Asteraceae).J.Mol.Evol.2008,66:276-291.
    Bailey CD,Carr TG,Harris SA,Hughes CE.Characterization of angiosperm nrDNA polymorphism paralogy,and pseudogenes.Mol.Phylogenet.Evol.,2003,29:435-455.
    Bailey LH.Pyrus.In:Standard cyclopedia of horticulture.Macmillan,New York.1917,5:2865-2878.
    Baldwin BG.Phylogenetic utility of the internal transcribed spacers of nuclear ribosomal DNA in plants:an example from the Compositae.Mol.Phylogenet.Evol.,1992,1:3-16.
    Baldwin BG,Sanderson MJ,Porter JM,Wojciechowski MF,Campbell CS,Donoghue MJ.The ITS region of nuclear ribosomal DNA,a valuable source of evidence on angiosperm phylogeny.Ann.Missouri Bot.Gard.,1995,82:247-277.
    Baleiras-Couto MM,Eiras-Dias JE.Detection and identification of grape varieties in must and wine using nuclear and chloroplast microsatellite markers.Anal.Chim.Acta,2006,563:283-291.
    Bao L,Chen K,Zhang D,Cao Y,Yamamoto T,Teng Y.Genetic diversity and similarity of pear (Pyrus L.) cultivars native to East Asia revealed by SSR(simple sequence repeat) markers.Genet.Resour.Crop.Evol.,2007,54:959-971.
    Bao L,Chen K,Zhang D,Li X,Teng Y.An assessment of genetic variability and relationships within Asian pears based on AFLP(amplified fragment length polymorphism) markers.Sci. Hort.,2008,116:374-380.
    Barkman TJ,Simpson BB.Hybrid origin and parentage of Dendrochilum acuiferum(Orchidaceae)inferred in a phylogenetic context using nuclear and plastid DNA sequence data Sys.Bot.,2002,27:209-220.
    Bayly MJ,Ladiges PY.Divergent paralogues of ribosomal DNA in eucalypts(Myrtaceae).Mol.Phylogenet.Evol.,2007,44:346-356.
    Brant J.Fast and sensitive silver staining of DNA in polyacrylamide gels.Anal.Biochem.,1991,196:80-83.
    Brownell E,Krystal M,Arheim N.Structure and evolution of human and African ape rDNA pseudogenes.Mol.Biol.Evol.,1983,1:29-37.
    Buckler ESI,Holtsford TP.Zea ribosomal repeat evolution and substitution patterns.Mol.Biol.Evol.,1996,13:623-632.
    Buckler ESI,Ippolito A,Holtsford TP.The evolution of ribosomal DNA,divergent paralogues and phylogenetic implications.Genetics,1997,145:821-832.
    Campbell CS,Donoghue MJ,Baldwin BG,Wojciechowski MF.Phylogenetic relationships in Maloideae(Rosaceae),evidence from sequences of the internal transcribed spacer of nuclear ribosomal DNA and ITS congruence with morphology.Am.J.Bot.,1995,82:903-918.
    Campbell CS,Evans RC.,Morgan DR,Dickinson TA,Arsenault MP.Phylogeny of subtribe Pyrinae(formerly the Maloideae,Rosaceae):Limited resolution of a complex evolutionary history.PI.Syst.Evol.,2007,266:119-145.
    Campbell CS,Wojciechowski MF,Baldwin LA,Donoghue MJ.Persistent nuclear ribosomal DNA sequence polymorphism in the Amelanchier Agamic complex(Rosaceae).Mol.Biol.Evol.,1997,14:81-90.
    Challice JS,Westwood MN.Numerical taxonomic studies of the genus Pyrus using both chemical and botanical characters.Bot.J.Linn.Soc,1973,67:121-148.
    Chen K,Peng Y,Wang Y,Korpelainen H,Li C.Genetic relationships among poplar species in section Tacamahaca(Popidus L.)from western Sichuan,China.Plant Sci.,2007,172:196-203.
    Clegg MT,Cummings MP,Durbin ML.The evolution of plant nuclear genes.Proc.Natl.Acad.Sci.USA,1997,94:7791-7798.
    Corriveau JL,Coleman AW.Rapid screening method to detect potential biparental inheritance of plastid DNA and results for over 200 angiosperm species.Amer.J.Bot.,1988,75:1443-1458.
    Curtis SE,Clegg MT.Molecular evolution of chloroplast DNA sequence.Mol.Biol.Evol.,1984,1:291-301.
    Dellaporta SL,Wood J,Hicks,JB.A plant DNA minipreparation,Version Ⅱ.Plant.Mol.Biol.Rpt,1983,1:19-21.
    Deng Z,Malfa SL,Xie Y,Xiong X,Gentile A.Identification and evaluation of chloroplast uniand trinucleotide sequence repeats in citrus.Sci.Hort.,2007,111:186-192.
    Eriksson T,Hibbs MS,Yoder AD,Delwiche CF,Donoghue MJ.The phylogeny of Rosoideae(Rosaceae)based on sequences of the internal transcribed spacer(ITS)of nuclear ribosomal DNA and the trnL-F region of chloroplast DNA.Int.J.Plant Sci.,2003,164:197-211.
    Evans RC.,Alice LA,Campbell CS,Kellogg EA,Dickinson TA.The Granule-bound starch synthase(GBSSI)gene in the Rosaceae:multiple loci and phylogenetic utility.Mol.Phylogenet.Evol.,2000,17:388-400.
    Evans RC.,Campbell CS.The origin of the apple subfamily(Maloideae;Rosaceae)is clarified by DNA sequence data from duplicated GBSSI genes.Amer.J.Bot,2002,89:1478-1484.
    Feschenko VV,Lovett ST.Slipped misalignment mechanisms of deletion formation,analysis of deletion endpoints.J.Mol.Biol.,1998,276:559-569.
    Funk V,Cracraft JJ.The implications of phylogenetic analysis of the comparative biology:the thirtieth annual systematic symposium.Ann.Missouri.Bot.Gard.,1985,72:591-595.
    Gernandt DS,Liston A,Pinero D.Variation in the nrDNA ITS of Pinus Subsection Cembroides,implications for molecular systematic studies of pine species complexes.Mol.Phylogenet.Evol.,2001.21:449-467.
    Gielly L,Yuan YM,Kupfer P,Taberlet P.Phylogenetic use of non-coding regions in the genus Gentiana L:Chloroplast trnL(UAA)intron versus nuclear ribosomal internal transcribed spacer sequences.Mol.Phylogenet.Evol.,1996,5:460-466.
    Golenberg EM,Clegg MT,Durbin ML,Doebley J,Ma DP.Evolution of a noncoding region of the chloroplast genome.Mol.Phylogenet.Evol.,1993,2:52-64.
    Guzman B,Vargas P.Systematic,character evolution,and biogeography of Cistus L.(Cistaceae) based on ITS,trnL-trnF,and matK sequences.Mol.Phylogenet.Evol.,2005,37:644-660.
    Hall TA.BioEdit,a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT.Nucleic Acids Symp.Sen,1999,41:95-98.
    Harpke D,Peterson A.Non-concerted ITS evolution in Mammillaria(Cactaceae).Mol.Phylogenet.Evol,2006,41:579-593.
    Henning W.Phylogenetic systematics.Urbana:Univ Illionis Press,1966,34.
    Hamilton MB,Bravennan JM,Soria-Hernanz DF.Patterns and relative rates of nucleotide and insertion/deletion evolution at six chloroplast intergenic regions in New World species of the Lecythidaceae.Mol.Biol.Evol.2003,20:1710-1721.
    Hayasaku K.Phylogenetic relationships among Japanese,rhesus,Formosan,and crab-eating monkeys,inferred from restriction-enzyme analysis mitochondrial DNAs.Mol.Biol.Evol.,1988.5:270-281.
    Hoshikawa Y,lida Y,Iwabuchi M.Nucleotide sequence of the transcriptional initiation region of Dictyastelium discoideum rRNA gene and comparison of the genes.Nucleic Acids Res.,1983,11:1725-1734.
    Iketani H,Manabe T,Matsuta N,Akihama T,Hayashi T.Incongruence between RFLPs of chloroplast DNA and morphological classification in east Asian pear(Pyrus spp.).Genetic Resour.Crop.Evol.,1998,45:533-539.
    Iwata H,Kato T,Ohno S.Triparental origin of Damask roses.Gene,2000,259:53-59.
    Johnson LA,Soltis DE.Phylogenetic inference in Saxifragaceae sensu strictro and Gillia(Polemoniaceae)using matK.sequences.Ann.Missouri.Bot.Gard.,1995,82:149-175.
    Katayama H,Adachi S,Yamamoto T,Uematsu C.A wide range of genetic diversity in pear(Pyrus ussuriensis var.aromatica)genetic resources from Iwate,Japan revealed by SSR and chloroplast DNA markers.Genet.Resour.Crop.Evol.,2007,54:1573-1585.
    Kawata TA,Itai A,Tanabe K,Tamura,F.Genetic variation in Pyrus species by RPLP analysis of genomic DNA(in Japanese).J.Jpn.Soc.Hort.Sci.,1995,61(Suppl 2):148-149.
    Kelchner SA.The evolution of non-coding chloroplast DNA and ITS application in plant systematics.Ann.Missouri Bot.Gard.,2000,87:482-498.
    Kim CS,Lee CH,Park KW,Kang SJ,Shin IS and Lee GP.Phylogenetic relationships among Pyrus pyrifolia and P.communis detected randomly amplified polymorphic DNA(RAPD) and conserved rDNA sequences.Sci.Hort.,2005,106:491-501.
    Kimura M.A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences.J.Mol.Evol.,1980,16:111-120.
    Kimura T,Iketani H,Kotobuki K,Matsuta N,Ban Y,Hayashi T,Yamamoto T.Genetic characterization of pear varieties revealed by chloroplast DNA sequences.J.Hort.Sci.Biot.,2003,78:241-247.
    Komarova NY,Grabe T,Huigen DJ,Hemleben V,Volkov RA.Organization,differential expression and methylation of rDNA in artificial Solatium allopolyploids.Plant Mol.Biol.,2004,56:439-463.
    Korban SS,Skirvin RM.Nomenclature of the cultivated apple.HortScience,1984,19:177-180.
    Lee S,Wen J.A phylogenetic analysis of Primus and the Amygdaloideae(Rosaceae)using ITS sequences of nuclear ribosomal DNA.Am.J.Bot,2001,88:150-160.
    Lim KY,Kovar(?)k A.,Mata(?)sek R,Bezdek M,Lichtenstein CP,Leitch AR.Gene conversion of ribosomal DNA in Nicotiana tabacum is associated with undermethylated,decondensed and probably active gene units.Chromosoma,2000,109:161-172.
    Linder CR,Goertzen LR,Heuvel BV,Ortega JF,Jansen RK.The complete external transcribed spacer of 18S-26S rDNA:amplification and phylogenetic utility at low taxonomic levels in Asteraceae and closely allied families.Mol.Phylogenet.Evol.,2000,14:285-303.
    Mai JC.,Coleman,AW.The internal transcribed spacer 2 exhibits a common secondary structure in green algae and flowering plants.J.Mol.Evol.,1997,44:258-271.
    Martin D,Rybicki E.RDP,detection of recombination amongst aligned sequences.Bioinformatics.2000,16:562-563.
    Matsumotoa S,Kouchib M,Yabukib J,Kusunokia M,Uedac Y,Fukuib H.Phylogenetic analyses of the genus Rosa using the matK sequence:molecular evidence for the narrow genetic background of modern roses.Sci.Hort.,1998,77:73-82.
    Mayol M,Rossello JA.Why nuclear ribosomal DNA spacers(ITS)tell different stories in Quercus.Mol.Phylogenet.Evol.,2001,19:167-176.
    Medail F,Quezel P,Besnard G,Khadari B.Systematics,ecology and phylogeographic significance of Olea europaea L.ssp.Maroccana(Greuter & Burdet)P.Vargas et al a relictual olive tree in south-west Morocco.Bot.J.Linn.Soc,2001,137:249-266.
    Mes THM,Kuperus P,Kischner J,Stepanek J,Oosterveld P,Storchova H,den Nijis JCM.Hairpins involving both inverted and direct repeats are associated with homoplasious indels in non-coding chloroplast DNA of Taraxacum(Lactuceae:Asteraceae).Genome.2000,43:634-641.
    Monte-Corve L,Cabrita L,Oliveira C.,Leitao J.Assessment of genetic relationships among Pyrus species and cultivars using AFLP and RAPD markers.Genet.Resour.Crop.Evol.,2000,47:257-265.
    Morgan DR,Solits DE,Robertson KR.Systematics and evolutionary implications of rbcL sequence variation in Rosaceae.Amer.J.Bot.1994,81:890-903.
    Muir G,Fleming CC.,Schlotterer C.Three divergent rDNA clusters predate the species divergence of Quercus petraea(Matt.)Liebl.,Quercus robur L.Mol.Biol.Evol.,2001,18:112-119.
    Muller KF,Borsch T,Hilu KW.Phylogenetic utility of rapidly evolving DNA at high taxonomical levels:Contrasting matK,trnT-Y,and rbcL in basal angiosperms.Mol.Phylogenet.Evol,2006,41:99-117.
    Newton KJ.Plant mitochondrial genomes:organization,expression and variation.Ann.Rev.Plant Physiol.Plant Mol.Biol.,1988,39:503-532.
    Nieto Feliner G.,Rossello JA.Better the devil you know? Guidelines for insightful utilization of nrDNA ITS in species-level evolutionary studies in plants.Mol.Phylogenet.Evol.,2007,44:911-919.
    Ochieng JW,Henry RJ,Baverstock PR,Steane DA,Shepherd M.Nuclear ribosomal pseudogenes resolve a corroborated monophyly of the eucalypt genus Corymbia despite misleading hypotheses at functional ITS paralogs.Mol.Phylogenet.Evol.,2007,44:752-764.
    Oh SH,Potter D.Phylogenetic utility of the second intron of LEAFY in Neillia and Stephanandra(Rosaceae)and implications for the origin of Stephanandra.Mol.Phylogenet.Evol.,2003,29:203-215.
    Ohta S,Nishitan C.,Yamamoto T.Chloroplast microsatellites in Prunus,Rosaceae.Mol.Ecol.Notes,2005,5:837-840.
    Ohta S.Yamamoto T,Nishitani C.,Katsuki T,Iketani H,Omura M.Phylogenetic relationshipsamong Japanese flowering cherries(Prunus subgenus Cerasus)based on nucleotide sequences of chloroplast DNA.PL Sys.Evol.,2007,263:209-225.
    Padidam M,Sawyer S,Fauquet CM.Possible emergence of new geminiviruses by frequent recombination.Virology,1999,265:218-225.
    Petrov DA,Haiti DL.Pseudogene evolution and natural selection for a compact genome.J.Heredity,2000,3:221-227.
    Potter D,Eriksson T,Evans RC.,Oh S,Smedmark JEE.,Morgan DR,Kerr M,Robertson KR,Arsenault M,Dickinson TA,Campbell CS.Phylogeny and classification of Rosaceae.PI.Syst Evol.,2007a,266:5-43.
    Potter D,Gao F,Bortiri E,Oh S,Baggett S.Phylogenetic relationships in Rosaceae inferred from chloroplast matK.and trnL-trnF nucleotide sequence data.PL Syst.Evol.,2002,231:77-89.
    Potter D,Still SM,Grebenc T,Ballian D,Bozic G,Franji J,Kraigher H.Phylogenetic relationships in tribe Spiraeeae(Rosaceae)inferred from nucleotide sequence data.PI.Syst Evol.,2007b,266:105-118.
    Razafimandimbison SG,Kellogg EA,Bremer B.Recent origin and phylogenetic utility of divergent ITS putative pseudogenes,a case study from Naucleeae(Rubiaceae).Syst.Biol.,2004,53:177-192.
    Rehder A.Synopsis of the Chinese species of Pyrus.Proc.Amer.Acad.Art.Sci.,1915,50:225-241.
    Ritz CM,Schmuths H,Wissemann V.Evolution by reticulation,European dogroses originated by multiple hybridization across the genus Rosa.Hered.,2005,96:4-14.
    Robinson JP,Harris SA,Juniper BE.Taxonomy of the genus Mains Mill.(Rosaceae)with emphasis on the cultivated apple.Malus domesitca Borkh.PI.Syst.Evol.,2001,226:35-58.
    Rose PR,Korber BT.Detecting hypermutations in viral sequences with an emphasis on G→A hypermutation.Bioinformatics,2000,16:400-401.
    Rozas J,Rozas R.DnaSP version 3,an integrated program for molecular population genetics and molecular evolution analysis.Bioinformatics,1999,15:174-175.
    Rubstov GA.Geographical distribution of the genus Pyrus and trends and factors in its evolution.Am.Naturlist,1944,78:358-366.
    Sang T.Utility of low-copy nuclear gene sequences in plant phylogenetics.Crit.Rev.Biochem Mol Biol.,2002,37:121-147.
    Sibley CG,Johnsgard PA.Variability in the electrophoretic patterns of avian serum proteins. Condor,1959a,61:85-95.
    Sibley CG,Johnsgard PA.An electrophoretic study of egg-white proteins in twenty-three breeds of the domestic fowl.Am.Naturalist,1959b,93:107-115.
    Smedmark JEE,Eriksson T,Bremer B.Allopolyploid evolution in Geinae(Colurieae:Rosaceae)-building reticulate species trees from bifucating gene trees.Org.Diver.Evol.,2005,5:275-283.
    Soltis DE,Soltis PS.Choosing an approach and an appropriate gene for phylogenetic analysis.In:Soltis DE.,Sotis PS,Doyle JJ.(Eds.),Molecular Systematics of Plants Ⅱ:DNA Sequencing.Kluwer Academic publishers,Boston,1998.pp.1-42.
    Su YCF,Smith GJD and Saunders MK.Phylogeny of the basal angiosperm genus Pseuduvaria(Annonaceae)inferred from five chloroplast DNA regions,with interpretation of morphological character evolution.Mol.Phylogenet.Evol.,2008,48:188-206.
    Swofford DL.PAUP.hylogenetic analysis using parsimony,ersion 4.0b4a.Sunderland,Sinauer Associates,Inc.2000.
    Taberlet P,Gielly L,Bouvet J.Universal primers for amplification of three non-coding regions of chloroplast DNA.Plant Mol.Biol.,1991,17:1105-1109.
    Tamura K,Dudley J,Nei M,Kumar S.MEGA4:Molecular evolutionary genetics analysis(MEGA)software version 4.0.Mol.Biol.Evol.,2007,24:1596-1599.
    Tank DC.,Sang T.Phylogenetic Utility of the Glycerol-3-Phosphate Acyltransferase Gene:Evolution and Implications in Paeonia(Paeoniaceae).Mol.Phylogenet.Evol.,2001,19:421-429.
    Teng Y,Tanabe K,Tamura F,Itai A.Genetic relationships of pear cultivars in Xinjiang,China,as mearsured by RAPD markers.J.Hort.Sci.Biotech.,2001,76:771-779.
    Teng Y,Tanabe K,Tamura F,Itai A.Genetic relationships of Pyrus species and cultivars native to East Asia revealed by randomly amplified polymorphic DNA markers.J.Amer.Soc.Hort.Sci.,2002,127:262-270.
    Thompson JD,Gibson TJ,Plewniak F,Jeanmougin F,Higgins DG.The CLUSTAL_X windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools.Nucleic Acids Res.,1997,25:4876-4882.
    Van Ham RCHJ,'t Hart H,Mes THM,Sandbrink JM.Molecular evolution of non-coding regions of the chloroplast genome in the Crassulaceae and related species.Curr.Genet.,1994,25:558-566.
    Weising K,Gardner RC.A set of conserved PCR primers for the analysis of simple sequence repeat polymorphisms in chloroplast genomes of dicotyledonous angiosperms.Genome.1999,42:9-19.
    Westwood MN,Challice JS.Morphology and surface topography of pollen and anthers of Pyrus species.J.Amer.Soc.Hort.Sci.,1978,103:28-37.
    Westwood MN,Bjornstad HO.Some fruit characteristics of interspecific hybrids and extent of self-sterility in Pyrus.Bull.Torrey Bot.Club,1971,98:22-24.
    White TJ.,Bruns TD,Lee SB,Taylor JW.Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics.In,Innis,M.,Gelfand,D.,Sninsky,J.,White,T.(Eds.),PCR protocols,a guide to methods and applications.Academic Press,San Diego,1990.pp.315-322.
    Wissemann V,Ritz CM.The genus Rosa(Rosoideae,Rosaceae)revisited:molecular analysis of nrITS-1 and atpB-rbc L intergenic spacer(IGS)versus conventional taxonomy.Bot.J.Linn.Soc,2005,147:275-290.
    Wolfe KH.Protein-coding genes in chloroplast DNA:compilation of nucleotide sequences,data base entries and rates of molecular evolution,in Vasil I K.Cell culture and somatic Cell Genetics of Plants.Academic Press,San Diego.1991,7B:467-482.
    Won H,Renner SS.The internal transcribed spacer of nuclear ribosomal DNA in the gymnosperm Gnetum.Mol.Phylogenet.Evol.,2005,36:581-597.
    Yamamoto T,Kimura T,Sawamura Y,Kotobuki K,Ban Y,Hayashi T,Matsuta N.SSRs isolated from apple can indetify polymorphism and genetic diversity in pear.Theor.Appl.Genet.2001,102:865-870.
    Yamamoto T,Kimura T,SawamuraY,Manabe T,Kotobuki K,Hayashi T,Ban Y and Matsuta N.Simple sequence repeats for genetic analysis in pear.Euphytica.2002,124:129-137.
    Yang YW,Lai KN,Tai PY,Ma DP,Li WH.Molecular phylogenetic studies of Brassica,Rorippa,Arabidopsis and allied genera based on the internal transcribed spacer region of 18S-25S rDNA.Mol.Phylogenet.Evol.,1999,13:455-462.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.