L-苯丙氨酸生产菌株的构建、代谢调控和发酵条件优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
L-苯丙氨酸(L-phenylalanine, L-Phe)是一种重要的必需氨基酸,广泛应用于食品、饲料添加剂以及医药等领域中。微生物发酵法由于具有原料廉价易得、环境污染较小、产物纯度高等优点成为目前国内外工业化生产L-Phe的主要方法。但微生物中L-Phe的合成途径和调控方式较复杂,L-Phe的合成效率受到限制。
     本研究利用代谢工程手段构建了一株新的L-Phe高效生产菌株Escherichia coli WSH-Z06 (pAP-B03),在此基础上筛选到抗噬菌体BP-1的突变株BR-42 (pAP-B03),同时研究了葡萄糖流加方式对BR-42 (pAP-B03)生产L-Phe的影响。为了提高L-Phe对葡萄糖的转化率,分别敲除了BR-42 (pAP-B03)的丙酮酸激酶(Pyruvate kinase, PYK)基因(pykA和/或pykF),并优化了pykA缺失菌株BR-42ΔpykA (pAP-B03)生产L-Phe的诱导温度,进一步提高产物对底物的转化率。其主要研究内容及结果如下:
     1.通过NTG诱变获得了一个新的抗反馈抑制的分支酸变位酶-预苯酸脱水酶(CM-PDT)编码基因pheAfbr,将该基因和编码3-脱氧-D-阿拉伯庚酮糖酸7-磷酸合成酶(DS)的aroF基因插入一个低拷贝、温度诱导表达的质粒pAP-B中,构建了一个重组表达质粒pAP-B03,转化到L-酪氨酸(L-Tyr)营养缺陷型的E. coli WSH-Z06中进行表达,构建了L-Phe生产菌株E. coli WSH-Z06 (pAP-B03)。在3-L发酵罐上采用pH-stat分批补料培养方式比较了WSH-Z06 (pAP-B03)和WSH-Z06生长及生产L-Phe的发酵过程。结果表明,质粒pAP-B03的引入使得E. coli WSH-Z06生产L-Phe的能力得到显著提高,发酵58 h时,L-Phe产量达到35.38 g/L,对底物的转化率为0.26 mol/mol,生产强度为0.61 g/L/h,分别比对照菌提高了181%、100%和178%,且在整个发酵过程中,质粒的稳定性保持在95%以上,从而保证了合成L-Phe的关键酶的过量表达。
     2.利用双层平板法从WSH-Z06 (pAP-B03)发酵生产L-Phe的异常发酵液中分离、纯化到一株噬菌体BP-1,以该噬菌体为筛子,逐一检测经不同浓度的NTG (0.2 mg/mL、0.4 mg/mL、0.6 mg/mL和0.8 mg/mL)诱变处理后的WSH-Z06突变株对该噬菌体的敏感性,获得了两株对BP-1不敏感的菌株BR-42和BR-130。将生产L-Phe的重组质粒pAP-B03转化到BR-42和BR-130中,并在摇瓶水平上进一步考察了两突变株生产L-Phe的能力。通过与原始菌株WSH-Z06 (pAP-B03)的发酵特性进行比较发现,BR-130的生长和生产L-Phe的水平较原始菌明显降低,而BR-42 (pAP-B03)无论在菌体生长还是生产L-Phe能力方面都无显著变化。因此将BR-42 (pAP-B03)作为目的菌株用于L-Phe的发酵生产中。为了进一步考察BR-42 (pAP-B03)在噬菌体存在条件下的发酵特性,在3-L发酵罐中分别对WSH-Z06 (pAP-B03)和BR-42 (pAP-B03)进行了pH-stat分批补料培养,并在发酵初始时向发酵罐中添加1% (v/v)效价为1×1010 pfu/mL的BP-1裂解液。结果表明,WSH-Z06 (pAP-B03)在发酵进行到14 h时,发酵液变得澄清,菌体大量裂解,葡萄糖消耗缓慢;而BR-42 (pAP-B03)则没有受到BP-1的影响,最大菌体浓度达到15.41 g/L,在52 h时,L-Phe产量达到34.87 g/L,该水平与WSH-Z06 (pAP-B03)正常发酵时无显著差别,说明BR-42 (pAP-B03)是一株可以抗噬菌体BP-1并能生产L-Phe的优良菌株。
     3.在pH-stat分批补料培养模式下,考察了诱导时间对BR-42 (pAP-B03)发酵生产L-Phe的影响。结果表明,最优的诱导时间为对数中期,即DCW为9.60 g/L左右时,L-Phe产量最高,达到52.75 g/L。在此基础上考察了葡萄糖流加方式即pH-stat、F=16 mL/h和10 mL/h的恒速流加、F= (-0.55×t+23) mL/h的速率线性下降的流加以及μset=0.12 h-1和0.18 h-1的指数流加对BR-42 (pAP-B03)发酵生产L-Phe的影响。通过分析各种流加方式下的发酵参数,提出并采用了在20 h前采用μset=0.18 h-1的指数流加,20 h后采用F= (-0.55×t+18.6) mL/h的速率线性下降的流加方式,显著促进了L-Phe的生产,发酵时间缩短到50 h,L-Phe最高产量达到57.63 g/L,生产强度为1.153 g/L/h,平均L-Phe比合成速率为0.100 h-1,分别比采用pH-stat流加时高了34.81%、48.20%和42.86%。
     4.通过Red同源重组的方法,敲除了L-Phe生产菌株E. coli BR-42 (pAP-B03)的PYK基因(pykA和/或pykF),构建了3株PYK突变株,分别为BR-42ΔpykA (pAP-B03)、BR-42ΔpykF (pAP-B03)和BR-42ΔpykA/pykF (pAP-B03)。通过检测3株PYK突变株的PYK相对酶活,发现pykA单基因敲除后保留有73.2%的PYK酶活;pykF单基因敲除后PYK的活性降低至21.8%;pykA和pykF双基因敲除后,PYK的酶活仅为12.8%。在3-L发酵罐上进行发酵生产L-Phe的研究和分析,结果表明,BR-42ΔpykF (pAP-B03)和BR-42ΔpykA/pykF (pAP-B03)菌体生长缓慢,不利于L-Phe的合成;而pykA单缺失对菌体生长没有明显的影响,同时,L-Phe的产量也和出发菌株无显著差异,L-Phe的生产强度和L-Phe对葡萄糖的得率分别提高了6.1%和3.5%,达到了0.714 g/L/h和0.265 mol/mol。pykA的单缺失虽然没有明显地提高L-Phe的产量,但在L-Phe的生产强度和对碳源的得率方面具有一定的积极作用。
     5.考察了不同诱导温度对E. coli BR-42ΔpykA (pAP-B03)菌体生长和L-Phe生产的影响,通过对发酵参数进行动力学分析,发现几乎整个诱导阶段,菌体比生长速率(μ)在36oC时最高;而在不同的诱导阶段,L-Phe比合成速率(qp)对于不同的诱导温度呈现不同变化趋势,根据平均qp的大小,将发酵过程分为3个阶段,分别为13.5-20 h (第1阶段)、20-37 h (第2阶段)和37-46 h (第3阶段)。在第1阶段诱导温度采用40oC;第2阶段采用38oC,第3阶段采用36oC。结果表明,分阶段控制诱导温度可以显著改善菌株生产L-Phe的能力,发酵48 h时,L-Phe的产量达到52.70 g/L,分别比在40oC、38oC和36oC时提高了22.39%、13.77%和12.01%。qp和L-Phe生产强度都有不同程度的提高。采用分阶段温度控制策略解决了较高的诱导温度下菌体浓度下降和质粒不稳定等问题,显著提高了菌体合成L-Phe的能力。
L-phenylalanine (L-Phe), an essential amino acid for human being, is widely used in food, feed additives and medical industries. With lower cost of raw materials, less environment pollution and higher purity of product, fermentative production of L-Phe is becoming more promising. The complicacy of L-Phe biosynthesis pathway and its regulation mechanism results in low efficiency of L-Phe production.
     In this thesis, a new strain for L-Phe production was constructed, and a mutant able to resist bacteriophage was subsequently screened. We also investigated the effect of glucose feeding on L-Phe production with mutant as the producing strain. Engineered strains with pyruvate kinase gene (pykA and/or pykF) knocked-out were constructed and the induction temperature was optimized to further improve L-Phe yield against glucose. The main contents and results of this thesis are as following:
     1. A new L-Phe-producing strain E. coli WSH-Z06 (pAP-B03) was constructed by introducing aroF gene encoding DS and pheAfbr gene encoding feedback inhibition resistant enzymes CM-PDT, into plasmid pAP-B, a low-copy number and temperature inducible expression plasmid. In 3-L fermentor, the pH-stat based fed-batch culture of WSH-Z06 (pAP-B03) and WSH-Z06 was conducted for L-Phe synthesis. The results indicated that the capability of E. coli WSH-Z06 for L-Phe production was greatly enhanced with the introduction of plasmid pAP-B03. At 58 h, the titer of L-Phe reached 35.38 g/L, and L-Phe yield on glucose was 0.26 mol/mol, and L-Phe productivity was 0.61 g/L/h, increased by 181%, 100% and 178% compared to the control, respectively. Moreover, during the whole fermentation process, plasmid stability was maintained above 95%, guaranteeing the over-expression of the key enzymes for L-Phe synthesis.
     2. With a double-layer agar method, bacteriophage BP-1 was screened and purified from the contaminated fermentation broth using WSH-Z06 (pAP-B03) as a producing strain. With bacteriophage BP-1 as the sieve, WSH-Z06 was treated with different concentrations of NTG (0.2 mg/mL, 0.4 mg/mL, 0.6 mg/mL, and 0.8 mg/mL), yielding two strains (BR-42 and BR-130) resistant to bacteriophage BP-1. The plasmid pAP-B03 was introduced to BR-42 and BR-130. In shake flasks, the biomass and L-Phe production of BR-130 were greatly lower than those of WSH-Z06 (pAP-B03); on the contrary, BR-42 didn’t exhibit great difference in term of biomass and L-Phe titer compared to WSH-Z06 (pAP-B03). Therefore, BR-42 (pAP-B03) was used in subsequent L-Phe production. To further study the fermentation characteristics of BR-42 (pAP-B03) in the presence of bacteriophage BP-1, WSH-Z06 (pAP-B03) and BR-42 (pAP-B03) were cultured, respectively, by using pH-stat fed-batch approach in a 3-L fermentor added with 1% (v/v) BP-1 lysate with a titer of 1×1010 pfu/mL. The results showed that the culture broth of WSH-Z06 (pAP-B03) became clear at 14 h, and cell significantly lysed, and the glucose consumption was remarkablely slowed. However, BR-42 (pAP-B03) was not affected by the bacteriophage, and the maximal biomass reached 15.41 g/L and L-Phe titer was 34.87 g/L at 52h, almost the same as those achieved by WSH-Z06 (pAP-B03) without bacteriophage affection, indicating that BR-42 (pAP-B03) was an appropriate strain able to resist BP-1 as well as produce L-Phe.
     3. The effect of induction time on L-Phe production by E. coli BR-42 (pAP-B03) in pH-stat fed-batch culture was investigated. The results demonstrated that the optimal induction time was mid-logarithm stage at which DCW of 9.60 g/L and the maximal L-Phe yield of 52.75 g/L achieved. To enhance L-Phe production by E. coli BR-42 (pAP-B03), the effects of different feeding strategies including pH-stat, constant rate feeding, linear decreasing rate feeding, and exponential feeding on L-Phe production were investigated. A two-stage feeding strategy, namely, exponential feeding atμset=0.18 h-1 in the first 20 h and a following linear varying rate feeding with F= (-0.55×t+18.6) mL/h was developed to improve L-Phe production. The results showed that the two-stage feeding strategy could remarkably improve L-Phe production and reduce fermentation period to 50 h. Maximal L-Phe yield of 57.63 g/L, L-Phe productivity of 1.153 g/L/h and average specific L-Phe production rate of 0.100 h-1 were achieved, which were 34.81%, 48.20% and 42.86% higher than those of pH-stat feeding method, respectively.
     4. The PYK encoding gene (pykF/pykA) of BR-42 (pAP-B03) was knocked out through Red homologous recombination. The capability of the constructed strains for L-Phe production in 3-L fermentor was investigated and analyzed. The results showed that the deletion of pykF and pykA/pykF resulted in slow cell growth and low L-Phe titer, while, the single deletion of pykA didn’t have significant impacts on cell growth and L-Phe production. however, the L-Phe productivity and the L-Phe yield against glucose reached 0.714 g/L/h and 0.265 mol/mol which were 6.1% and 3.5% higher than those of the original strain BR-42 (pAP-B03). The single deletion of pykA could slightly enhance L-Phe produciton and more efforts are needed to optimize the fermentative performance of the PYK mutant strains.
     5. The effect of induction time on E. coli BR-42ΔpykA (pAP-B03) cell growth and L-Phe production was investigated. It was found that during the entire fermentation process, the specific cell growth rateμwas the highest at 36oC, and the specific L-Phe production rate qp varied much in different fermentation period. According to the average qp, the induction process was divided into three stages, the first stage was 13.5-20 h, and the second stage was 20-37 h, and the third stage was 37-46 h. A three-stage induction time controlled strategy was proposed, in these three stages, the temperature was controlled at 40oC, 38oC, and 36oC, respectively. With this strategy, L-Phe production by E. coli BR-42ΔpykA (pAP-B03) was remarkably improved. At 48 h, L-Phe titer reached 52.70 g/L, which was 22.39%, 13.77%, and 12.01% higher than that at 40oC, 38oC and 36oC, respectively. The specific L-Phe production rate and L-Phe productivity were also increased. With the three-stage induction time controlled strategy, the cell growth, plasmid maintainance and the capacity of L-Phe biosynthesis by E. coli BR-42ΔpykA (pAP-B03) were greatly improved.
引文
[1]李冀新,张超. L-苯丙氨酸生产及应用研究进展[J].氨基酸和生物资源, 2006, 28:51-56
    [2] Polen T, Kramer M, Bongaerts J, et al. The global gene expression response of Escherichia coli to L-phenylalanine [J]. J Biotechnol, 2005, 115:221-237
    [3] Portmann M-O, Kilcast D. Psychophysical characterization of new sweeteners of commercial importance for the EC food industry [J]. Food Chem, 1996, 56:291-302
    [4]雷呈祥,范长胜,黄伟达,等.大肠杆菌pheA基因在黄色短杆菌中的克隆与表达[J].生物工程学报, 1996, 12:179-184
    [5]曾小冰,范长胜,江培翃,等.外源基因pheA、aroG和tyrB在苯丙氨酸合成途径中的共表达[J].生物工程学报, 2000, 16:671-674
    [6] Ikeda M, Katsumata R. Metabolic engineering to produce tyrosine or phenylalanine in a tryptophan-producing Corynebacterium glutamicum Strain [J]. Appl Environ Microbiol, 1992, 58:781-785
    [7] Liu DX, Fan CS, Tao JH, et al. Integration of E. coli aroG-pheA tandem genes into Corynebacterium glutamicum tyrA locus and its effect on L-phenylalanine biosynthesis [J]. World J Gastroenterol, 2004, 10:3683-3687
    [8]范代娣,原龙,米钰,等.基因工程菌发酵生产L-苯丙氨酸工艺优化[J].西北大学学报(自然科学版), 2002, 32:33-35
    [9] Konstantinov KB, Nishio N, Seki T, et al. Physiologically motivated strategies for control of the fed-batch cultivation of recombinant Escherichia coli for phenylalanine production [J]. J Ferment Bioeng, 1991, 71:350-355
    [10] Khamduang M, Packdibamrung K, Chutmanop J, et al. Production of L-phenylalanine from glycerol by a recombinant Escherichia coli [J]. J Ind Microbiol Biotechnol, 2009, 36:1267-1274
    [11] Shu CH, Liao CC. Optimization of L-phenylalanine production of Corynebacterium glutamicum under product feedback inhibition by elevated oxygen transfer rate [J]. Biotechnol Bioeng, 2002, 77:131-141
    [12] Gerigk M, Bujnicki R, Ganpo-Nkwenkwa E, et al. Process control for enhanced L-phenylalanine production using different recombinant Escherichia coli strains [J]. Biotechnol Bioeng, 2002, 80:746-754
    [13] Backman K, Oconnor MJ, Maruya A, et al. Genetic engineering of metabolic pathways applied to the production of phenylalanine [J]. ANN NY ACAD SCI, 1990, 589:16-24
    [14] Zhou H, Liao X, Wang T, et al. Enhanced L-phenylalanine biosynthesis by co-expression of pheAfbr and aroFwt [J]. Bioresour Technol, 2010, 101:4151-4156
    [15]王敏. L-苯丙氨酸开发前景诱人[J].化工生产与技术, 2003, 10:23
    [16]邓菊香,王祖元.苯丙氨酸的生产现状与发展前景[J].安徽化工, 2007, 33:1-2
    [17] Takors R. Model-based analysis and optimization of an ISPR approach using reactiveextraction for pilot-scale L-phenylalanine production [J]. Biotechnol Progr, 2004, 20:57-64
    [18] Sprenger G. From scratch to value: engineering Escherichia coli wild type cells to the production of L-phenylalanine and other fine chemicals derived from chorismate [J]. Appl Microbiol Biotechnol, 2007, 75:739-749
    [19] Chem. SJ. L-苯丙氨酸的现状与发展前景[J].精细与专用化学品, 2002, 10:13-14
    [20]吴永庆.苯丙氨酸生物合成的5个关键酶基因的串联表达[D]: [硕士学位论文].上海:复旦大学, 2002
    [21]刘云.苯丙氨酸生物合成途径关键酶基因串联表达及抗反馈抑制研究[D]: [博士学位论文].北京:中国人民解放军军事医学科学院, 2000
    [22] Anazawa H, Araki K, Ito Y, et al. Enzymatic production of L-phenylalanine through transaminase reaction [J]. J Gen Appl Microbiol, 1991, 37:71-83
    [23] Xu H, Wei P, Zhou H, et al. Efficient production of L-phenylalanine catalyzed by a coupled enzymatic system of transaminase and aspartase [J]. Enzyme Microb Technol, 2003, 33:537-543
    [24] Wu YQ, Jiang PH, Fan CS, et al. Co-expression of five genes in E coli or L-phenylalanine in Brevibacterium flavum [J]. World J Gastroenterol, 2003, 9:342-346
    [25] Yue H, Yuan Q, Wang W. Enhancement of L-Phenylalanine production by [beta]-cyclodextrin [J]. J Food Eng, 2007, 79:878-884
    [26]王建刚.芳香族氨基酸生物合成相关基因的克隆表达[D]:硕士学位论文.上海:复旦大学, 2003
    [27] Ikeda M. Towards bacterial strains overproducing L-tryptophan and other aromatics by metabolic engineering [J]. Appl Microbiol Biotechnol. 2006, 69:615-626
    [28] Hu C, Jiang P, Xu J, et al. Mutation analysis of the feedback inhibition site of phenylalanine-sensitive 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase of Escherichia coli [J]. J Basic Microb, 2003, 43:399-406
    [29] Zhang S, Wilson DB, Ganem B. Probing the catalytic mechanism of prephenate dehydratase by site-directed mutagenesis of the Escherichia coli P-protein dehydratase domain [J]. Biochem, 2000, 39:4722-4728
    [30] Pohnert G, Zhang S, Husain A, et al. Regulation of phenylalanine biosynthesis. Studies on the mechanism of phenylalanine binding and feedback inhibition in the Escherichia coli P-protein [J]. Biochem, 1999, 38:12212-12217
    [31] Gowrishankar J, Pittard J. Regulation of phenylalanine biosynthesis in Escherichia coli K-12: control of transcription of the pheA operon [J]. J Bacteriol, 1982, 150:1130-1137
    [32] Im SWK, Pittard J. Phenylalanine Biosynthesis in Escherichia coli K-12: Mutants Derepressed for Chorismate Mutase P-Prephenate Dehydratase [J]. J Bacteriol, 1971, 106:784-790
    [33] Wang JG, Fan CS, Wu YQ, et al. Regulation of aroP expression by tyrR gene in Escherichia coli [J]. Acta Bioch Bioph Sin, 2003, 35:993-997
    [34] Pittard AJ, Davidson BE. TyrR protein of Escherichia coli and its role as repressor andactivator [J]. Mol Microbiol, 1991, 5:1585-1592
    [35] Ray JM, Yanofsky C, Bauerle R. Mutational analysis of the catalytic and feedback sites of the tryptophan-sensitive 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase of Escherichia coli [J]. J Bacteriol, 1988, 170:5500-5506
    [36] Weaver LM, Herrmann KM. Cloning of an aroF allele encoding a tyrosine-insensitive 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase [J]. J Bacteriol, 1990, 172:6581-6584
    [37] Kikuchi Y, Tsujimoto K, Kurahashi O. Mutational analysis of the feedback sites of phenylalanine-sensitive 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase of Escherichia coli [J]. Appl Environ Microbiol, 1997, 63:761-762
    [38] Jiang PH, Shi M, Qian ZK, et al. Effect of F209S mutation of Escherichia coli AroG on resistance to phenylalanine feedback inhibition [J]. Acta Bioch Bioph Sin, 2000, 32:441-444
    [39]范长胜,曾小冰,柴运嵘,等.苯丙氨酸合成的关键酶基因aroG与pheA串联表达[J].微生物学报, 1999, 39:430-435
    [40] Ger Y-M, Chen S-L, Chiang H-J, et al. A single Ser-180 mutation desensitizes feedback inhibition of the phenylalanine-sensitive 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthetase in Escherichia coli [J]. J Biochem, 1994, 116:986-990
    [41] Schmit JC, Zalkin H. Chorismate mutase-prephenate dehydratase. Partial purification and properties of the enzyme from Salmonella typhimurium [J]. Biochem, 1969, 8:174-181
    [42] Xia T, Zhao G, Jensen RA. Loss of allosteric control but retention of the bifunctional catalytic competence of a fusion protein formed by excision of 260 base pairs from the 3' terminus of pheA from Erwinia herbicola [J]. Appl Environ Microbiol, 1992, 58:2792-2798
    [43] Nelms J, Edwards RM, Warwick J, et al. Novel mutations in the pheA gene of Escherichia coli K-12 which result in highly feedback inhibition-resistant variants of chorismate mutase/prephenate dehydratase [J]. Appl Environ Microbiol, 1992, 58:2592-2598
    [44] Gething MJ, Davidson BE, Dopheide TA. Chorismate Mutase/Prephenate Dehydratase from Escherichia coli K12 [J]. Eur J Biochem, 1976, 71:317-325
    [45] Tonouchi N, Kojima H, Matsui H. Recombinant DNA sequences encoding feedback inhibition released enzymes, plasmids comprising the recombinant DNA sequences, transformed microorganisms useful in the production of aromatic amino acids, and a process for preparing aromatic amino acids by fermentation [P]. European Patent, 0488424 B1. 1997-05-03
    [46] Sugimoto S, Yabuta M, Kato N, et al. Hyperproduction of phenylalanine by Escherichia coli: application of a temperature-controllable expression vector carrying the repressor-promoter system of bacteriophage lambda [J]. J Biotechnol, 1987, 5:237-253
    [47] Ikeda M, Ozaki A, Katsumata R. Phenylalanine production by metabolically engineeredCorynebacterium glutamicum with the pheA gene of Escherichia coli [J]. Appl Microbiol Biotechnol, 1993, 39:318-323
    [48] Anda RD, Lara AR, Hernandez V, et al. Replacement of the glucose phosphotransferase transport system by galactose permease reduces acetate accumulation and improves process performance of Escherichia coli for recombinant protein production without impairment of growth rate [J]. Metab Eng, 2006, 8:281-290
    [49]李寅,高海军,陈坚.高细胞密度发酵技术[M].北京:化学工业出版社, 2006. 224-225
    [50] Ojima Y, Komaki M, Nishioka M, et al. Introduction of yggG gene induces enhanced yield of L-phenylalanine with reduced acetic acid production in recombinant Escherichia coli [J]. J Biosci Bioeng, 2009, 108:S114-S114
    [51] Ojima Y, Komaki M, Nishioka M, et al. Introduction of a stress-responsive gene, yggG, enhances the yield of L-phenylalanine with decreased acetic acid production in a recombinant Escherichia coli [J]. Biotechnol Lett, 2009, 31:525-530
    [52] Ojima Y, Fukuda Y, Shirasaka N, et al. Effect of yggG gene knockout on the acetic acid assimilation in Escherichia coli [J]. J Biosci Bioeng, 2009, 108:S120-S120
    [53] Chen RZ, Hatzimanikatis V, Yap W, et al. Metabolic consequences of phosphotransferase (PTS) mutation in a phenylalanine-producing recombinant Escherichia coli [J]. Biotechnol Progr, 1997, 13:768-775
    [54] Baez-Viveros JL, Osuna J, Hernandez-Chavez G, et al. Metabolic engineering and protein directed evolution increase the yield of L-phenylalanine synthesized from glucose in Escherichia coli [J]. Biotechnol Bioeng, 2004, 87:516-524
    [55] Lara AR, Caspeta L, Gosset G, etc. Utility of an Escherichia coli strain engineered in the substrate uptake system for improved culture performance at high glucose and cell concentrations: An alternative to fed-batch cultures [J]. Biotechnol Bioeng, 2008, 99:893-901
    [56] Wong MS, Wu S, Causey TB, et al. Reduction of acetate accumulation in Escherichia coli cultures for increased recombinant protein production [J]. Metab Eng, 2008, 10:97-108
    [57] Maiti TK, Chatterjee SP. L-Phenylalanine production by double auxotrophic mutants of Arthrobacter globiformis [J]. Folia Microbiol, 1991, 36:234-239
    [58] Liu C-H, Liao C-C. Medium optimization for L-phenylalanine production by a tryptophan auxotroph of Corynebacterium glutamicum [J]. Biotechnol Lett, 1994, 16:801-806
    [59] Doroshenko VG, Shakulov RS, Kazakova SM, et al. Construction of an L-phenylalanine-producing tyrosine-prototrophic Escherichia coli strain using tyrA ssrA-like tagged alleles [J]. Biotechnol Lett, 2010, 32:1117-1121
    [60] Sprenger G. Aromatic amino acids. In: V. F. Wendisch editor. Amino acid biosynthesis ~ Pathways, regulation and metabolic engineering. Heidelberg: Springer Berlin, 2007. p. 93-127
    [61] Elizabeth PAM, Francisco B, Fernando V, et al. Stimulation of glucose catabolism through the pentose pathway by the absence of the two pyruvate kinase isoenzymes inEscherichia coli [J]. Biotechnol Bioeng, 1998, 58:292-295
    [62] Gosset G, Yong-Xiao J, Berry A. A direct comparison of approaches for increasing carbon flow to aromatic biosynthesis in Escherichia coli [J]. J Ind Microbiol, 1996, 17:47-52
    [63] Siddiquee KAZ, Arauzo-Bravo MJ, Shimizu K. Effect of a pyruvate kinase (pykF-gene) knockout mutation on the control of gene expression and metabolic fluxes in Escherichia coli [J]. FEMS Microbiol Lett, 2004, 235:25-33
    [64] Ponce E, Martinez A, Bolivar F, et al. Stimulation of glucose catabolism through the pentose pathway by the absence of the two pyruvate kinase isoenzymes in Escherichia coli [J]. Biotechnol Bioeng, 1998, 58:292-295
    [65] Kedar P, Colah R, Shimizu K. Proteomic investigation on the pyk-F gene knockout Escherichia coli for aromatic amino acid production [J]. Enzyme Microb Technol, 2007, 41:455-465
    [66] Yakandawala N, Romeo T, Friesen AD, et al. Metabolic engineering of Escherichia coli to enhance phenylalanine production [J]. Appl Microbiol Biotechnol, 2008, 78:283-291
    [67] Gosset G. Production of aromatic compounds in bacteria [J]. Curr Opin Biotechnol, 2009, 20:651-658
    [68] Draths KM, Pompliano DL, Conley DL, etc. Biocatalytic synthesis of aromatics from D-glucose: the role of transketolase [J]. J Am Chem Soc. 2002, 114:3956-3962
    [69]刘永辉,刘云,王世春,等.大肠杆菌tktA基因的克隆表达[J].生物技术通讯, 2002, 13:427-429
    [70] Lee SB, Won CH, Park C, et al. A method for production of L-phenylalanine by recombinant E. coli [P]. European Patent, 0284185 B1. 1994-04-20
    [71] Hwang SO, Gil GH, Cho YJ, et al. The fermentation process for L-phenylalanine production using an auxotrophic regulatory mutant of Escherichia coli [J]. Appl Microbiol Biotechnol, 1985, 22:108-113
    [72] Takagi M, Nishio Y, Oh G, et al. Control of L-phenylalanine production by dual feeding of glucose and L-tyrosine [J]. Biotechnol Bioeng, 1996, 52:653-660
    [73] Gerigk MR, Maass D, Kreutzer A, et al. Enhanced pilot-scale fed-batch L-phenylalanine production with recombinant Escherichia coli by fully integrated reactive extraction [J]. Bioprocess Biosyst Eng, 2002, 25:43-52
    [74] Cuellar MC, Straathof AJJ, van de Sandt E, et al. Conceptual evaluation of integrated process configurations for the recovery of L-phenylalanine product crystals during fermentation [J]. Ind Eng Chem Res, 2010, 49:682-689
    [75] Rittmann D, Lindner SN, Wendisch VF. Engineering of a glycerol utilization pathway for amino acid production by Corynebacterium glutamicum [J]. Appl Environ Microbiol, 2008, 74:6216-6222
    [76]李永辉,刘云,徐琪寿.苯丙氨酸生物合成的研究进展[J].生物技术通讯, 2002, 13:296-300
    [77]诸葛健,王正祥.工业微生物实验技术手册[M].北京:中国轻工业出版社, 1994.33-34
    [78] Chang AC, Cohen SN. Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid [J]. J Bacteriol, 1978, 134:1141-1156
    [79] Love CA, Lilley PE, Dixon NE. Stable high-copy-number bacteriophageγpromoter vectors for overproduction of proteins in Escherichia coli [J]. Gene, 1996, 176:49-53
    [80] Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors [J]. Proc Natl Acad Sci USA, 1977, 74:5463-5467
    [81] Schoner R, Herrmann KM. 3-Deoxy-D-arabino-heptulosonate 7-phosphate synthase. purification, properties, and kinetics of the tyrosine-sensitive isoenzyme from Escherichia coli [J]. J Biol Chem, 1976, 251:5440-5447
    [82] Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Anal Biochem, 1976, 72:248-254
    [83]汪家政,范明.蛋白质技术手册[M].北京:科学出版社, 2001. 2077-2100
    [84] Panda AK, Khan RH, Rao KB, et al. Kinetics of inclusion body production in batch and high cell density fed-batch culture of Escherichia coli expressing ovine growth hormone [J]. J Biotechnol, 1999, 75:161-172
    [85] Henderson JW, Ricker RD, Bidlingmeyer BA, et al. Rapid, accurate, sensitive, and reproducible HPLC analysis of amino acids. USA (Agilent App Note 5980-1193E): Agilent Technologies, 2000
    [86] Zhang S, Pohnert G, Kongsaeree P, et al. Chorismate mutase-prephenate dehydratase from Escherichia coli. Study of catalytic and regulatory domains using genetically engineered proteins. [J]. J Biol Chem, 1998, 273:6248-6253
    [87] Kim HY, Rhym H, Lee D, et al. Method for production of L-phenylalanine by recombinant E. coli [P]. US patent, 5304475. 1994-04-19
    [88] Lee SB, Won CH, Park C, et al. Method for production of L-phenylalanine by recombinant E. coli [P]. US Patent, 5008190. 1991-04-16
    [89]李彦英,方宏清,陈惠鹏.抗噬菌体工程菌的选育[J].生物技术杂志, 2003, 14:15-18
    [90] Romig WR, Brodetsky AM. Isolation and preliminary characterization of bacteriophages for bacillus subtilis [J]. J Bacteriol, 1961, 82:135-141
    [91]蒋如璋,于利民,侯炳炎,等.短小芽孢杆菌1037抗温和性噬菌体菌株的筛选及投产[J].遗传, 1980, 2:21-24
    [92] Albert MJ, Bhuiyan NA, Rahman A, et al. Phage specific for Vibrio cholerae O139 Bengal [J]. J Clin Microbiol, 1996, 34:1843-1845
    [93]杨水云,郭春林,赵文明.理化因素对苏云金芽孢杆菌噬菌体活性影响的研究[J].陕西师范大学学报(自然科学版), 1998, 26:225-228
    [94] Forberg C, Haggstrom L. Effects of cultural conditions on the production of phenylalanine from a plasmid-harboring E. coli strain [J]. Appl Microbiol Biotechnol, 1987, 26:136-140
    [95] Sugimoto S, Kato N, Kitaoka Y, et al. Phenylalanine production by periodic induction of gene expression using a temperature-distributed dual fermenter system [J]. J Ferment Bioeng, 1990, 70:376-380
    [96] Ruffer N, Heidersdorf U, Kretzers I, et al. Fully integrated L-phenylalanine separation and concentration using reactive-extraction with liquid-liquid centrifuges in a fed-batch process with E. coli [J]. Bioprocess Biosyst Eng, 2004, 26:239-248
    [97] Weikert C, Sauer U, Bailey JE. Increased phenylalanine production by growing and nongrowing Escherichia coli strain CWML2 [J]. Biotechnol Prog, 1998, 14:420-424
    [98] Konstantinov KB, Nishio N, Yoshida T. Glucose feeding strategy accounting for the decreasing oxidative capacity of recombinant Escherichia coli in fed-batch cultivation for phenylalanine production [J]. J Ferment Bioeng, 1990, 70:253-260
    [99] Johnston W, Cord-Ruwisch R, Cooney MJ. Industrial control of recombinant E. coli fed-batch culture: new perspectives on traditional controlled variables [J]. Bioprocess Biosyst Eng, 2002, 25:111-120
    [100] Kim BS, Lee SC, Lee SY, et al. High cell density fed-batch cultivation of Escherichia coli using exponential feeding combined with pH-stat [J]. Bioprocess Biosyst Eng, 2004, 26:147-150
    [101] Lee J, Lee SY, Park S, et al. Control of fed-batch fermentations [J]. Biotechnol Adv, 1999, 17:29-48
    [102] Huang H, Ridgway D, Gu T, et al. Enhanced amylase production by Bacillus subtilis using a dual exponential feeding strategy [J]. Bioprocess Biosyst Eng, 2004, 27:63-69
    [103] Wong HH, Kim YC, Lee SY, et al. Effect of post-induction nutrient feeding strategies on the production of bioadhesive protein in Escherichia coli [J]. Biotechnol Bioeng, 1998, 60:271-276
    [104] Flores N, Xiao J, Berry A, et al. Pathway engineering for the production of aromatic compounds in Escherichia coli [J]. Nat Biotechnol, 1996, 14:620-623
    [105] Siddiquee KAZ, Arauzo-Bravo M, Shimizu K. Metabolic flux analysis of pykF gene knockout Escherichia coli based on 13C-labeling experiments together with measurements of enzyme activities and intracellular metabolite concentrations [J]. Appl Microbiol Biotechnol, 2004, 63:407-417
    [106] Goel A, Lee J, Domach MM, et al. Metabolic fluxes, pools, and enzyme measurements suggest a tighter coupling of energetics and biosynthetic reactions associated with reduced pyruvate kinase flux [J]. Biotechnol Bioeng, 1999, 64:129-134
    [107] Zhu T, Phalakornkule C, Koepsel RR, et al. Cell growth and by-product formation in a pyruvate kinase mutant of E. coli [J]. Biotechnol Progr, 2001, 17:624-628
    [108]李山虎,施庆国,黄翠芬,等.利用Red重组工程技术解决外源基因在大肠杆菌染色体lac操纵子中的表达[J].生物工程学报, 2008, 24:576-580
    [109]白光兴,孙志伟,莺黄, et al.利用Red重组系统对大肠杆菌ClpP基因的敲除[J].中国生物化学与分子生物学报, 2005, 21:35-38
    [110]张全,高会杰,佟明友. Red重组技术研究紧张[J].中国生物工程杂志, 2006, 26:81-86
    [111] Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products [J]. Proc Natl Acad Sci USA, 2000, 97:6640-6645
    [112] Baba T, Ara T, Hasegawa M, et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection [J]. Mol Systems Biol, 2006, 2:8
    [113] Aust A, Yun SL, Suelter CH. Pyruvate kinase from yeast (Saccharomyces cerevisiae) [J]. Meth Enzymol, 1975, 42:176-182
    [114]周景文.光滑球拟酵母中ATP的生理功能与作用机制[D]: [博士学位论文].无锡:江南大学, 2009
    [115] Liao JC, Hou SY, Chao YP. Pathway analysis, engineering, and physiological considerations for redirecting central metabolism [J]. Biotechnol Bioeng, 1996, 52:129-140
    [116] Patnaik R, Liao JC. Engineering of Escherichia coli central metabolism for aromatic production with near theoretical yield [J]. Appl Environ Microbiol, 1994, 60:3903- 3908
    [117]王云.毕赤酵母发酵生产碱性果胶酶的关键因素调控和策略研究[D]: [硕士学位论文].无锡:江南大学, 2008
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.