我国海岸澙湖遥感监测与典型澙湖分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国海岸线绵长而蜿蜒曲折,沿岸广泛发育澙湖湿地。在自然环境演变和人为过度开发利用的作用下,特别是改革开放30多年来,人们对海岸澙湖的开发利用日渐突出,我国的澙湖湿地面积不断缩小,泥沙淤积现象严重,潮汐汊道逐渐淤塞,部分澙湖已经消失。
     目前,我国尚未对海岸澙湖进行全面的系统研究,对海岸澙湖的状况没有一个总体把握,因此,掌握我国海岸澙湖的数量与分布,摸清我国海岸澙湖的家底这项工作势在必行;研究我国澙湖的地貌学分类和各个生态演变过程阶段、掌握近年来的澙湖的变迁情况,有助于确切把握我国海岸澙湖所处的发育状况并切实做好保护措施;探讨典型澙湖的形成与演变规律、影响过程和作用机制,有助于更好的提出澙湖生态保护和修复的办法,对于合理开发和利用澙湖自然资源具有实际的意义。
     本文对全国范围内海岸澙湖进行遥感监测和变迁分析,并以博贺港为例分析典型澙湖的海岸环境变化。我国海岸澙湖主要分布在辽宁、河北、山东、广东、广西、海南和台湾等7个省(自治区),因论文工作时间与资料的限制,本文将研究范围确定为除台湾和海南以外澙湖产生发育的主要区域。文章首先对覆盖研究区域的102景遥感影像数据进行了辐射定标、暗目标法大气校正、线性对比度拉伸和几何校正等数据预处理工作,然后基于该数据结合1:50000地形图确定了澙湖的名称,进行了澙湖信息提取和变迁原因分析,最后以广东博贺港澙湖为例,研究了周边海岸环境的变迁,主要工作如下:
     (1)对我国海岸澙湖及其发育演变阶段进行了分类。提出了基于澙湖地貌学成因的遥感分类体系,将我国海岸澙湖划分为堡岛型、沙坝型、沙咀型、湾顶坝型、连岛坝型和河口型等6种地貌类型,扩展了遥感在地貌中的应用;建立了基于发育演变阶段的澙湖遥感分类体系,将海岸澙湖分为青壮期、老年期和死亡期3个发育演变过程,并以近红外、红、绿波段组合后的假彩色影像为例,从色彩、纹理、地物邻接关系等方面建立不同澙湖类型的遥感解译标志,为澙湖遥感识别和分类提供了科学依据;
     (2)利用遥感技术调查统计了我国海岸澙湖的名称、类型和数量分布并进行了变迁分析,研究结果显示,1979-2011年间研究区域共有251个澙湖,至2011年我国海岸澙湖共消失19个,无增加;
     (3)利用遥感技术调查统计了我国海岸澙湖的岸线长度和面积信息,研究了1979年、1990年、2000年和2011年的澙湖变迁,并进行了变迁原因分析,所获数据为我国海岸澙湖演化变迁研究和管理提供了数据支持,遥感技术为澙湖信息提取和分析提供了广阔的前景,在信息提取的过程中,提出了一种基于相同地理位置的图斑精度验证方法;
     (4)从自然因素和人为因素的角度分析了澙湖变迁的驱动力,并以白沙口澙湖为例从波浪、潮汐、海面变化和陆地径流等自然因素分析了澙湖的形成、发育及演变过程和趋势,从海岸工程的角度分析了口门外小澙湖的形成演变及潮汐电站对该澙湖发育的影响;
     (5)以2001年和2010年2期潮位相近的TM图像,分析了博贺港澙湖和外湖的潮滩、涨潮流三角洲的变迁;利用2000年和2009年测量的海图数据采用TIN插值方法生产了2期水下DEM数据,并进行了精度验证,提出了一种基于多期海图数据的冲淤变化量化方法,并实现了应用,应用结果合理;结合坡度、2001年土地覆盖类型和2001年植被覆盖度信息计算了博贺港周边流域范围的水土流失强度和泥沙流失量,给出了该流域范围的侵蚀模数;结合潮滩、涨潮流三角洲变迁、水下地形变化和水土流失贡献量,对博贺港周边海岸变迁进行了分析。
China has a long coast, widely developing the lagoon wetlands. Because of theevolution of the natural environment and human over exploitation, especially thereform and opening up in the last30years, the development and utilization of coastallagoons have been increasing prominently. The lagoon wetland area has beenshrinking, with the sediment accumulation, and the tidal inlets have been graduallyblocking seriously, parts of the lagoons have disappeared.
     At present, China has not been studying the coastal lagoons comprehensively andcompletely, having not understood of the status of the coastal lagoons. So that,mastering the numbers and distribution and finding out the real situation of the coastallagoons are imperative. Studying the geomorphology classification and ecologicalevolution stage of coastal lagoons and understanding the lagoon dynamics status inrecent years may help to grasp the development status of coastal lagoons and makeprotection measures. Investigating the formation, evolution, affection process anddynamics mechanism of the typical lagoon can help to propose lagoon ecologicalprotection and restoration approaches. It has practical significance to rationaldevelopment and utilization of natural resources in coastal lagoons.
     In this paper, the author monitor and analyze the coastal lagoon dynamicsnationwide using Remote Sensing imagery and then take the analysis of typicallagoon coast environmental changes of Bohe lagoon. China coastal lagoons aremainly distributed in Liaoning, Hebei, Shandong, Guangdong, Guangxi, Hainan andTaiwan provinces (or autonomous regions). Due to the paper work time and datalimitations, the scopes of the study are being determined to the major lagoondevelopment regions except Taiwan and Hainan Province. Firstly,102scenes ofimageries covered the study area are preprocessed using radiometric calibration, darktarget atmospheric correction, linear contrast stretching and geometric correction.Secondly, based on the data processed before and combined1:50000topographicmaps, the author determine the name of the lagoons, extracting lagoons position,coastline length and lagoon areas and analyzing the changing factors. In the last, thispaper take Bohe lagoon as example, studying the changes in the environmentsurrounding coast. The main work are as follows:
     (1) The paper proposes lagoon remote sensing classification system base on thesand geomorphology and classifies the coastal lagoons into6landform types: sandbarrier type, sand tsui type, bay head barrier type, tomboloof type and estuary type. It expands the application of remote sensing in geomorphology. The paper builds lagoonremote sensing classification system based on the development stages of evolution,the coastal lagoons are divided into3evolution stages of growth phase, old phase anddeath phase. Remote sensing interpretation keys of different lagoon types areestablished based on images combined with near-infrared, red and green bands withgeographic properties (color, texture and vicinity). The interpretation keys provide ascientific basis for the remote sensing identification and classification of coastallagoons.
     (2) The paper surveys China coastal lagoons names, types, numbers and thegeographic distribution, and then take the dynamics analysis. The results show thatthere were251lagoons in1979. It has disappeared19lagoons till2011. There is nonew lagoon born in the last32years.
     (3) The paper surveys China coastal lagoons coastline length and areainformation, studying the dynamics in1979,1990,2000and2011, and analyzes thedynamics. The data obtained support the researches of China lagoons evolution andmanagement. The technology of remote sensing provides the information extractionand analysis of lagoons a broad prospect. In this paper, an accuracy verificationmethod is put forward based on the polygon features in the same geographic location.
     (4) Driving causes of dynamics are analyzed in natural and anthropogenic factors.In this paper, the formation, development and evolution of White Sand Mouth lagoonare analyzed in waves, tides, sea level change and terrestrial runoff etc, and theformation and evolution of small lagoon outside the White Sand Mouth are analyzedin the view of coastal engineering.
     (5) Dynamics of the tidal flats and the flood tide delta of Bohe lagoon and outerlake are analyzed by TM data of2001and2010, the2images tidal level are in similar.Two underwater DEM data are produced by TIN interpolation method using2000and2009ocean chart data, and the accuracy of the DEM is verified. Based on remotesensing imagery, an underwater erosion and deposition quantitative method is putforward. Combined with slope, land cover types and vegetation coverage informationin2001, the intensity of soil erosion and sediment loss of Bohe surrounding basin arecalculated, and the erosion modulus of the basin is given. Combined with the changeof tidal flats and the flood tide delta, the change of underwater terrain, and the loss ofsoil and water, dynamics of Bohe surrounding coast are analyzed.
引文
[1] A’kif Al Fugura, Lawal Billa, Biswajeet Pradhan. Semi-automated procedures for shorelineextraction using single RADARSAT-1SAR image. Estuarine, Coastal and Shelf Science,2011,95:395~400
    [2] Bames R.S. K. Coastal lagoons. London: CambridgeUniversityPress,1980
    [3] Barbara J.kent, Joy Nystrom Mast. Wetland change analysis of San Dieguito Lagoon,California, USA. Wetlands,2005,25(3):1928~1994
    [4] BEHARA SATYANARAYANA, KHAIRUL AZWAN MOHAMAD,INDRA FARID IDRIS,MOHD-LOKMAN HUSAIN,FARID DAHDOUH-GUEBAS. Assessment of mangrovevegetation based on remote sensing and ground-truth measurements at Tumpat, KelantanDelta, East Coast of Peninsular Malaysia. International Journal of Remote Sensing,2011,32(6):1635~1650
    [5] Brivio, P.A., Zilioli, E. Assessing wetland changes in the Venice lagoon by means ofsatellite remote sensing data. Journal of Coastal Conservation,1996,2:23~32
    [6] Bruun P. Sea-level rise as a cause of shore erosion. Journal of Social Civil Engineering,1962,53(2):142~157
    [7] Chi Xu, Sheng Sheng, Wen Zhou, Lijuan Cui, Maosong Liu. Characterizing wetland changeat landscape scale in Jiangsu Province, China. Environ Monit Assess,2011,179:279~292
    [8] Chris McGonigle, Jonathan H. Grabowski, Craig J. Browna, Thomas C. Weber c, RoryQuinn. Detection of deep water benthic macroalgae using image-based classificationtechniques on multibeam backscatter at Cashes Ledge, Gulf of Maine, USA. Estuarine,Coastal and Shelf Science,2011,91:87~101
    [9] Christien E.Huisman, KarinR.Bryan, GiovanniCoco, B.G.Ruessink. The use of videoimagery to analyse groundwater and shoreline dynamics on adissipative beach. ContinentalShelf Research,2011,31:1728~1738
    [10] Cowell P.G. ThomB.G. Morphodynamics of coastal evolution. Carter R W G, Wbodroffe CD. Coasta evolution: Later Quaternary shoreline mophodynamics. CambridgePress,1994,33~86
    [11] Dahdouh-Guebas, F. et al. An explorative study on grapsid crab zonation in Kenyanmangroves. Wetlands Ecology and Management,2002,10(3):179~187
    [12] Daniel Rokitnicki-Wojcik, Anhua Wei, Patricia Chow-Fraser. Transferability ofobject-based rule sets for mapping coastal high marsh habitat among different regions inGeorgian Bay, Canada. Wetlands Ecol Manage,2011,19:223~236
    [13] DAVIS, R.A. Barriers of the FloridaGulf Peninsula. ln: R. A. DAVIS(ed.), Geology ofHolocene Barrier Island Systems. Springer-Verlag, NewYork,1994,167~206
    [14] Dillenburg S R, Roy P S, Cowell P J, Tomazelli L J. Influence of antecedent topography oncoastal evolution as tested by the shoreface translation-barrier model(STM). Journal ofCoastal Research,2000,16(l):71~81
    [15] Donald J P, Swift. Barrier island evolution, Middle Atlantic shelf, USA Part Ⅰ: shorefacedynamics, Mar Geo,1985,63:331~361
    [16] Donald M. kent. Applied Wetlands Science and Techology. CRC Press LLC, USA,2001
    [17] Dubois R N. How does a barrier shoreface respond to a sea-level rise. Joumal of CoastalReseareh,2002,18(2):3~5
    [18] Elena Castillo, Raúl Pereda,Julio Manuel de Luis, Raúl Medina,Javier Viguri. Sedimentgrain size estimation using airborne remote sensing, field sampling, and robust statistic.Environ Monit Assess,2011,181:431~444
    [19] F. S. Kawakubo, R. G. Morato, R. S. Nader. Luchiari. Mapping changes in coastlinegeomorphic features using Landsat TM and ETM+imagery: examples in southeasternBrazil. International Journal of Remote Sensing,2011,32(9):2547~2562
    [20] Field E, Duane B. Post-Pleistocene history of the United States inner continental shelf:significance to origin of barrier islands, Geol Soc America Bull,1976,90:628~681
    [21] Fitzgerald, D., Van Heteren, S. Classification of Paraglacial Barrier Systems: Coastal ewEngland, USA.Sedimentology,1999,46:1083~1108
    [22] G. Casal, T. Kutser, J.A. Dominguez-Gomez, etc. Mapping benthic macroalgal communitiesin the coastal zone using CHRIS-PROBA mode2images. Estuarine, Coastal and ShelfScience,2011,94:281~290
    [23] Gerhard Masselink, Guithermelessa. Barrier stratigraPhy on the Macrotidal centralQueesland costaline. Journal of coastal research,1995,11(2):25~30
    [24] Habes A. Ghrefata, Philip C. Goodellb. Land cover mapping at Alkali Flat and Lake Lucero,White Sands, New Mexico, USA using multi-temporal and multi-spectral remote sensingdata. International Journal of Applied Earth Observation and Geoinformation,2011,13:616~625
    [25] Hayes, M. O. Morphology of Sand Accumulations: An introduction to the symposium, In L.E. Croniu (Editor), Estuarine Research,1975,2:3~22
    [26] Hongyan Xi. Yuanzhi Zhang. Total suspended matter observation in the Pearl River estuaryfrom in situ and MERIS data. Environ Monit Assess,2011,177:563~574
    [27] Hubbard D K, G Oertel, D Nummedal. The role of waves and tidal currents in thedevelopment of tidal-inlet sedimentary structures and sandbody geometry: Examples fromNorth, south Carolina, and Georgia. Jour Sed Petro,1979,9(4):1073~1092
    [28] Ian Taylor Webster. Dynamic Assessment of Oceanic Connectivity in a Coastal Lagoon-theCoorong, Australia. Journal of Coastal Research,27(1):131~139
    [29] Ignacio Melendez-Pastor, Jose Navarro-Pedre o, Magaly Koch,Ignacio Gómez.Multi-resolution and temporal characterization of land-use classes in a Mediterraneanwetland with landcover fractions. International Journal of Remote Sensing,2010,5365~5389
    [30] Inman D L, Dollan R. The outer bank of North Carolina: Budget of sediment and inletdynamics along a migrating barrier island. Journal of Coastal Research,1989,5(2):193~237
    [31] Iryna Dronova, Peng Gong, Lin Wang. Object-based analysis and change detection of majorwetland cover types and their classification uncertainty during the low water period atPoyang Lake, China. Remote Sensing of Environment,2011,115:3220~3236
    [32] J. Jaenicke, S. Englhart, F. Siegert. Monitoring the effect of restoration measures inIndonesian peatlands by radar satellite imagery. Journal of Environmental Management,2011,92:630~638
    [33] Jean T. Ellis, Joseph P. Spruce, Roberta A. Swann, James C. Smoot, Kent W. Hilbert. Anassessment of coastal land-use and land-cover change from1974–2008in the vicinity ofMobile Bay, Alabama. J Coast Conserv,2011,15:139~149
    [34] John Chadwick. Integrated LIDAR and IKONOS multispectral imagery for mappingmangrove distribution and physical properties. International Journal of Remote Sensing,2011,32(21):6765~6781
    [35] John M. Kovacs, Yali Liu, Chunhua Zhang. A field based statistical approach for validatinga remotely sensed mangrove forest classification scheme. Wetlands Ecol Manage,2011,19:409~421
    [36] JOHN W. JONES, GREGORY B. DESMOND, CHARLES HENKLE,ROBERT GLOVER.An approach to regional wetland digital elevation model development using a differentialglobal positioning system and a custom-built helicopter-based surveying system.International Journal of Remote Sensing,2012,33(2):450~465
    [37] Jong S M, Paracchini M L, Bertolo F, et al. Regional assessment of soil erosion using thedistributed model SEMMED and remotely sensed data. Catana,1999,37:291~308
    [38] K. Rajitha, C. K. Mukherjee, R. Vinu Chandran, M. M.Prakash Mohan. Land-cover changedynamics and coastal aquaculture development: a case study in the East Godavari delta,Andhra Pradesh, India using multi-temporal satellite data. International Journal of RemoteSensing,2010,31(16):4423~4442
    [39] Karin Tuxen, Lisa Schile, Diana Stralberg, Stuart Siegel, Tom Parker, Michael Vasey, JohnCallaway, Maggi Kelly. Mapping changes in tidal wetland vegetation composition andpattern across a salinity gradient using high spatial resolution imagery. Wetlands EcolManage,2011,19:141~157
    [40] Kiril Manevski, Ioannis Manakos, George P. Petropoulos, Chariton Kalaitzidis.Discrimination of common Mediterranean plant species using field spectroradiometry.International Journal of Applied Earth Observation and Geoinformation2011,13:922-933
    [41] Kjerfve, B. Magill, K.E. Geographic and hydrodynamic charaeteristic of shallow coastallagoons. MarineGeology,1989,88:189~199
    [42] Laura Dingle Robertson, Dougles J.KING. Comparison of pixel-and object-basedclassification in land cover change mapping,2011,32(6):1505~1529
    [43] Leah I. Bendell&Peter C. Y. Wan. Application of aerial photography in combination withGIS for coastal management at small spatial scales: a case study of shellfish aquaculture. JCoast Conserv,2011,15:417~431
    [44] Leatherman S P. Barrier island evolution in response to searise-diseussion, Jour Sed Pet,1983,53:1026~1031
    [45] Liming Jiang, Hui Lin, Shilai Cheng. Monitoring and assessing reclamation settlement incoastal areas with advanced InSAR techniques: Macao city (China) case study.International Journal of RemoteSensing,2011,32(13):3565~3588
    [46] Luc Bertels, Rik Houthuys, Sindy Sterckx, Els Knaeps, Bart Deronde. Large-scale mappingof the riverbanks, mud flats and salt marshes of the Scheldt basin, using airborne imagingspectroscopy and LiDAR. International Journal of Remote Sensing,2011,32(10):2905~2918
    [47] Luke Omondi Olang, Peter Kundu, Thomas Bauer, Josef Fürst. Analysis of spatio-temporalland cover changes for hydrological impact assessment within the Nyando River Basin ofKenya. Environ Monit Assess,2011,179:389~401
    [48] M. O. Arnous, H. A. Aboulela, D. R. Green. Geo-environmental hazards assessment of thenorth western Gulf of Suez, Egypt. Coast Conserv,2011,15:37~50
    [49] M. Paul, A. Lefebvre, E. Manca, C.L. Amos. An acoustic method for the remotemeasurement of seagrass metrics. Estuarine, Coastal and Shelf Science,2011,93:68~79
    [50] Malty E, Hogan D V, Immirzi C P, et al. Building a new approach to the investigation andassessment of wetland ecosystem functioning. In: Global Wetlands: old World and New.Mitsch M J.(ED). Amsterdam: Elsevier Science B. V.,1994
    [51] Mariko Burgin, Daniel Clewley, Richard M. Lucas, and Mahta Moghaddam. A GeneralizedRadar Backscattering Model Based on Wave Theory for Multilayer Multispecies Vegetation.IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,2011,49(12):4832~4845
    [52] Mcbride R A, Moslow T F. Origin, evolution and distribution of shoreface sand ridges,Atlantic iner shelf, USA. Mar geol,1991,97:57~85
    [53] Melville G. Headlands and offshore islands as dominante ontrolling factors during latequaternary barrier formation in the forster-tuncury area, New South Wales. Australia.Sedimentary Geology,1984,39:243~271
    [54] Michael S. Kearney, J. C. Alexis Riter. Inter-annual variability in Delaware Bay brackishmarsh vegetation, USA. Wetlands Ecol Manage,2011,19:373~388
    [55] Miguel Luis Villarreal, Whillem J. D. Van Leeuwen, Jose Raul Romo-LEON. Mapping andmonitoring riparian vegetation distribution, structure and composition with regression treemodels and post-classification.2012,33(13):4266~4290
    [56] Mohamed O. Arnous, David R. Green. GIS and remote sensing as tools for conductinggeo-hazardsrisk assessment along Gulf of Aqaba coastal zone, Egypt. J Coast Conserv,2011,15:457~475
    [57] Moore L J, List J H, Williams S J, Stolper D. Complexities in barrier island response to sealevel rise: insights from numerical model experiments, North Carolina outer banks. Journalof Geogphysical Research,2010,115, F03004,27
    [58] Murali Krishna Gumma, Prasad S. Thenkabail, I. V. Muralikrishna, Manohar N. Velpuri,Parthasarathi T. Gangadhararao, Venkateswarlu Dheeravath, Chandrasekhar M. Biradar,Sreedhar Acharya Nalan e&Anju Gaur. Changes in agricultural cropland areas between awater-surplus year and a water-deficit year impacting food security, determined usingMODIS250m time-series data and spectral matching techniques, in the Krishna Riverbasin (India). International Journal of Remote Sensing,2011,32(12):3495~3520
    [59] N. Tibebu Kassawmar, K. Ram Mohan Rao, G. Lemlem Abraha. An integrated approach forspatio-temporal variability analysis of wetlands: a case study of Abaya and Chamo lakes,Ethiopia. Environ Monit Assess,2011,180:313~324
    [60] Nicholas Enwright, Margaret GForbes, Robert D. Doyle, Bruce Hunter, William Forbes.Using Geographic Information Systems (GIS) to Inventory Coastal Prairie Wetlands Alongthe Upper Gulf Coast, Texas. Wetlands,2011,31:687~697
    [61] Nusret Karakaya, Fatih Evrendilek. Monitoring and validating spatio-temporal dynamics ofbiogeochemical properties in Mersin Bay (Turkey) using Landsat ETM+. Environ MonitAssess,2011,181:457~464
    [62] O Brien M P. Equilibrium flow areas of inlets on sandy coasts. Journal Waterway andHarbor Division. ASCE,1969,95:43~52
    [63] O. O. Omo-Irabor,S. B. Olobaniyi, J. Akunna, V. Venus,J. M. Maina, C. Paradzayi.Mangrove vulnerability modeling in parts of Western Niger Delta, Nigeria using satelliteimages, GIS techniques and Spatial Multi-Criteria Analysis (SMCA). Environ Monit Assess,2011,178:39~51
    [64] O.R. van Lier, J.E. Lutherb, D.G. Leckiec, W.W. Bowersa. Development of large-area landcover and forest change indicators using multi-sensor Landsat imagery Application to theHumber River Basin, Canada. International Journal of Applied Earth Observation andGeoinformation,2011,13:819~829
    [65] Oertel G F. Processes of sediment exchange between tidal inlets, ebb deltas and barrierislands. Hydro-dynamics and Sediment Dynamics of Tidal Inlets. Aubrey D G and WeisherL, New York: Springer-Verlag New York Inc,1988,297~318
    [66] Paulami Sahu, Pradip K. Sikdar. Groundwater potential zoning of a per-urban wetland ofsouth Bengal Basin, India. Environ Monit Assess,2011,174:119~134
    [67] Pedro Walfir M. Souza-Filho, Waldir R. Paradella, Suzan W.P. Rodrigues, Francisco R.Costa, José C. Mura, Fabrício D. Gon alves. Discrimination of coastal wetlandenvironments in the Amazon region based on multi-polarized L-band airborne SyntheticAperture Radar imagery. Estuarine, Coastal and Shelf Science,2011,95:88~98
    [68] Pedro Walfir M. Souza-Filho, Waldir R. Paradella, Suzan W.P. Rodrigues, Francisco R.Costa, José C. Mura, Fabrício D. Gon alves. Discrimination of coastal wetlandenvironments in the Amazon region based on multi-polarized L-band airborne SyntheticAperture Radar imagery. Estuarine, Coastal and Shelf Science,2011,95:88~98
    [69] Pethick J S. Velocity Surges and Asymmetry in tidal channels. Estuarine and Coast MarineScience,1980,11(3):32~45
    [70] Plag, H.P. Late Quaternary relative sea level changes and the role of glaciation uponcontinental shelves, Terra Nova.1996,8:213~222
    [71] P.R.C.Fearns, W.Klonowski, R.C.Babcock, etc. Shallow Water Substrate Mapping usinghyperspectral remote sensing. Continental Shelf Research,2011,31:1249~1259
    [72] R. C. Frohn, B. C. Autrey, C. R. Lane, M. Reif. Segmentation and object-orientedclassification of wetlands in a karst Florida landscape using multi-season Landsat-7ETM+imagery. International Journal of Remote Sensing,2011,32(5):1469~1489
    [73] Re′gis Xharde′, Bernard F. Long, Donald L. Forbes. Short-Term Beach and ShorefaceEvolution on a Cuspate Foreland Observed with Airborne Topographic and BathymetricLIDAR. Journal of Coastal Research,2011,62:50~61
    [74] RIGGS, S.L., CLEARY, W.J., SNYDER, S.W. Influence of inherited geologic frameworkon barrier shoreface morphology and dynamies. Marine Geology,1995,126:213~234
    [75] Roy P.S., Thom B.G., Wright L.D. Holoence sequence on an embayed high-energy coast: anevolutionary model. SedimentaryGeology,1980,18:28~41
    [76] Ryan P. Powers, Geoffrey J. Hay, Gang Chen. How wetland type and area differ throughscale: A GEOBIA case study in Alberta's Boreal Plains. Remote Sensing of Environment,2012(117):135~145
    [77] S. Berbero. lu, A. Akin, P. M. Atkinson, P. J. Curran. Utilizing image texture to detectlandcover change in Mediterranean coastal wetlands. International Journal of RemoteSensing,2010,31(11):2793~2815
    [78] S. Nandy, S. P. S. Kushwaha. Study on the utility of IRS1D LISS-III data and theclassification techniques for mapping of Sunderban mangroves. Coast Conserv,2011,15:123~137
    [79] Sahagian D, Melack J(eds.). Global Wetland Distribution and Functional haracterization:Trace Gases and the Hydrologic Cycle. Report from the joint GAIM-DIS-BAHC-IGACLUCC workshop. Santa Barbara CA,16-20May,1996
    [80] Schwartz, D. Genetic control of Alcohol dehydrogenase-Acompetitive model for regulationof gene action. Genetics,1971,64:503~517
    [81] Shach Pe’eri, Bernard Long. LIDAR Technology Applied in Coastal Studies andManagement. Journal of Coastal Research,2011,62:1~5
    [82] Shepard, F.P., Gulf coast barriers. In―Recent Sediments, Northwest Gulf of Mexico‖,1960:197~220
    [83] Shishir Gaura, B.R. Chahar, Didier Graillot. Combined use of groundwater modeling andpotential zone analysis for management of groundwater. International Journal of AppliedEarth Observation and Geoinformation,2011,13:127~139
    [84] Short A D. Holocene coastal dune formation in Shouthern Autralia: A case study. Sed Geol,1988,55:121~142
    [85] Sindy Sterckx, Els Knaeps, Kevin Ruddick. Detection and correction of adjacency effectsin hyperspectral airborne data of coastal and inland waters: the use of the near infraredsimilarity spectrum. International Journal of Remote Sensing,2011,32(21):6477~6505
    [86] Sophie Fabre, Audrey Lesaignoux, Albert Olioso, Xavier Briottet. Influence of WaterContent on Spectral Reflectance of Leaves in the3-15μm Domain. IEEE GEOSCIENCEAND REMOTE SENSING LETTERS,2011,8(1):143~147
    [87] Stapor F W, Stone G W. A new depositional model for the buried4000yr Bp New Orleansbarrier: implications for sea-level fluetuations and onshore transport from a nearshore shelfsource. Marine Geoglogy,2004,204: l~18
    [88] Toe Toe Aung, Maung Maung Than, Ono Katsuhiro, Mochida Yukira. Assessing the statusof three mangrove species restored by the local community in the cyclone-affected area ofthe Ayeyarwady Delta, Myanmar. Wetlands Ecol Manage,2011,19:195~208
    [89] Vanessa Lucieer, Geoffroy Lamarche. Unsupervised fuzzy classification and object-basedimage analysis of multibeam data to map deep water substrates, Cook Strait, New Zealand.Continental Shelf Research,2011,31:1236~1247
    [90] V.Lafon et al. Spot shallow water bathymetry of a moderately turbid tidal inlet based onfield measurements. Remote Sensing of Environment,2002,81(1):136~148
    [91] Victor Klemas. Remote Sensing Techniques for Studying Coastal Ecosystems: AnOverview. Journal of Coastal Research,2011,27:2~17
    [92] Victor Klemas. Remote Sensing of Wetlands: Case Studies Comparing Practical Techniques.Journal of Coastal Research,2011,418~427
    [93] Woodroffe C D. Coast form Proees sand evolution. Carnbridge University Press,2002
    [94] Xi Zhao, Alfred Stein, Xiao-Ling Chen. Monitoring the dynamics of wetland inundation byrandom sets on multi-temporal images. Remote Sensing of Environment,2011,115:2390~2401
    [95] XianWen Dinga, XiaoFeng Li. Monitoring of the water-area variations of Lake Dongting inChina with ENVISAT ASAR images. International Journal of Applied Earth Observationand Geoinformation,2011,13:894~901
    [96] Yinlong Zhang, Dengsheng Lu, Bo Yang, Chunhua Sun, Ming Sun. Coastal wetlandvegetation classification with a Landsat Thematic Mapper image. International Jounal ofRemote Sensing,2011,32(2):545~561
    [97] Yun Du, Huai-ping Xue, Sheng-jun Wu, Feng Ling, Fei Xiao, Xian-hu Wei. Lake areachanges in the middle Yangtze region of China over the20th century. Journal ofEnvironmental Management,2011,92:1248~1255
    [98] Yves Pastol. Use of Airborne LIDAR Bathymetry for Coastal Hydrographic Surveying: TheFrench Experience. Journal of Coastal Research,2011,62:6~18
    [99] John R. Jensen.遥感数字影像处理导论.北京:机械工业出版社,2007
    [100]蔡爱智.刁龙咀海滩的发育.海洋与湖沼,1980,11(3):204~210
    [101]蔡锋,戚洪帅,夏东兴,等.华南海滩动力地貌过程.北京:海洋出版社,2008
    [102]蔡月娥,蔡爱智.山东半岛海岸渴湖的沉积环境.海洋与湖沼,1984,15(5):468~477
    [103]崔金瑞,夏东兴.山东半岛海岸地貌与波浪、潮汐特征的关系.黄渤海海洋,1992,30(3):20~25
    [104]戴志军,陈锦辉,任杰.粤西博贺沙坝——澙湖海岸及近岸海床稳定状态分析.台湾海峡,1997,26(1):1~6
    [105]高抒.潮汐汊道形态动力过程研究综述.地球科学进展,2008,23(12):1237~1248
    [106]高伟明等.渤海湾北部滨外沙坝演变的遥感分析.地理与地理信息科学,2006,22(5):41~44
    [107]耿秀山,王永吉,傅命佐.晚冰期以来山东半岛沿岸的海面变动.黄渤海海洋,1987,5(4):38~46
    [108]龚建周,夏北成.城市监管生态学与生态安全.北京:科学出版社,2008
    [109]谷东起.山东半岛澙湖湿地的发育过程及其环境退化研究——以朝阳港澙湖为例:
    [博士学位论文].青岛:中国海洋大学海洋地质系,2003
    [110]国际地质对比计划第200号项目中国工作组.中国海平面变化.北京:海洋出版社,1986
    [111]国家林业局《湿地公约》履约办公室编译.湿地公约履约指南,北京:中国林业出版,2001
    [112]国家林业局野生动植物保护司.湿地管理与研究方法,北京:中国林业出版社,2001
    [113]韩有松,孟广兰等.华北沿海中全新世高温期与高海面.中国全新世大暖期气候与环境,施雅风主编,海洋出版社,1992:121~130
    [114]贾建军,高抒.建立潮汐汊道P-A关系的沉寂动力学方法.海洋与湖沼,2005,36(3):268~276
    [115]季荣耀,罗宪林,陆永军,罗章仁.粤西博贺沙坝澙湖海岸体系形成发育与现代演变.海洋工程,2007,25(3):103~108
    [116]李从先,范代读.构造运动与中国沿岸平原的地质灾害.自然灾害学报,2002,11(1):28~33
    [117]李丛先,王平.我国沿岸全新世沙坝-澙湖体系的地层和分布.海洋通报,1993,12(l):80~85
    [118]李道高,郭永盛,姜爱霞.山东半岛南、北岸全新世海侵及古地理环境差异的初步探讨.海洋学报,1996,18(4):63~71
    [119]李凡.白沙口海岸沉积物的床面形态及层理构造.沉积学报,1983,1(3):99~109
    [120]李凡.白沙口海岸带沉积物粒度成分的Q型因子分析.海洋与湖沼,1983,14(1):44~53
    [121]李凡.白沙口海岸小泻湖的演变及沙坝澙湖海岸的成因.海洋科学,1983:12~18
    [122]李凡.白沙口海湾沉积作用.海洋科学,1984:10~16
    [123]李军,滕惠忠.海底三维可视化技术及应用.海洋测绘,2004,24(4):44~47
    [124]刘厚田.湿地的定义与类型划分.生态学杂志,1995,14(4):73~77
    [125]刘振夏,王永吉,韩树桥,夏东兴,徐孝诗.白沙口潮汐电站的地质地貌条件评价.黄渤海海洋,1987,5(3):21~26
    [126]刘振夏,夏东兴,付命佐,韩树桥.我国潮汐电站选址的地质地貌条件评价.海洋工程,1990,8(1)85~93
    [127]孟宪民.湿地与全球环境变化.地理科学,1999(5):385~391
    [128]任美愕.海平面研究的最近进展.南京大学学报(自然科学),2000,36(3):269-279
    [129]申浩,田峰敏,赵玉新.基于VoronoiCells插值的三维海底地形图生成方法.系统仿真学报,2006,18(2):444~447
    [130]田向平,李春初.澙湖潮汐通道水力特性与治理.海洋通报,2006,25(4):9~15
    [131]王玲,庄振业,刘冬雁、胡广元,王华.山东乳山市白沙滩沙坝泻湖沉积体系.海洋湖沼通报,2011,1:154~158
    [132]王庆.全新世以来山东半岛东北部沿海地区相对海面变化的地貌响应.博士学位论文,1997
    [133]王颖,朱大奎.海岸地貌学.高等教育出版社,1994:123~124
    [134]王永红,庄振业,李学伦.山东荣成湾沿岸输沙率及沙嘴的演化动态.海洋地质与第四纪地质,2000,20(4):31~35
    [135]魏合龙,庄振业.山东荣成湾月湖地区的澙湖——潮汐汊道体系.湖泊科学,1997,9(2):135~140
    [136]翁毅,蒋丽.旅游开发活动对沙坝—澙湖景观稳定性的影响分析——以广西北海银滩沙坝-澙湖景观为例.海岸工程,2008,27(1):47~55
    [137]邬伦,张晶,刘瑜.地理信息系统(原理方法和应用).北京:科学出版社,2004.2
    [138]吴桑云等.冀东澙湖系统演进与人类干预影响.海洋科学进展.2008,26(2):190~199
    [139]吴桑云,王文海.山东半岛海滩岩的特征及意义.黄渤海海洋,1995,13(1):19~23
    [140]吴志峰,王继增,全文智等.南方沿海地区城市水土流失类型及特征.生态科学,2001,20(1):75~80
    [141]夏东兴.全新世高海面何在.海洋学报,1981,3(4):601~609
    [142]夏东兴,刘振夏.中国海湾成因类型.海洋与湖沼,1990,21(2):186~190
    [143]杨会利,袁振杰,高伟明.七里海澙湖湿地演变过程及其生态环境效应分析.湿地科学,2009,7(2):118~124
    [144]尤芳湖.波浪沿岸输沙率的计算公式.海洋湖沼通报,1979,1:4~11
    [145]张登荣,赵元洪.水土流失强度遥感快速调查方法.浙江大学学报,1997,31(6):753~759
    [146]张忍顺,李坤平.黄渤海沿岸海湾-弱谷型潮汐汊道的地貌结构.黄渤海海洋,1994,12(4):1~10
    [147]张忍顺.黄渤海沿岸潮汐汊道的P-A关系.海洋工程,1995,13(2):54~61
    [148]张涛,徐晓苏,王其等.基于分形插值的三维海底地图生成算法.中国惯性技术学报,2008,16(2):171~173
    [149]赵松龄,于红军,刘敬圃.晚更新世末期陆架沙漠化环境演化模式的探讨.中国科学,1996,26(2):142~146
    [150]赵永芳,黄海军,严立文.山东半岛白沙滩及邻近海域沉积物分布与控制因素.海洋地质与第四纪地质,2008,28(4):37~42
    [151]郑团结,郭敏,于燕青.基于多源数据的海岸带DEM数据融合.海洋测绘,2008,28(1):28~31
    [152]郑宗生.长江口淤泥质潮滩高程遥感定量反演及冲淤演变分析:[博士学位论文].上海:华东师范大学自然地理系,2007
    [153]《中国海岸带水文》编写组.中国海岸带水文,海洋出版社,1995
    [154]中国海湾志编纂委员会.中国海湾志第四分册.北京:海洋出版社,1999
    [155]中国海湾志编纂委员会.中国海湾志第十分册.北京:海洋出版社,1999
    [156]庄振业.沙坝澙湖沉积体系.近代海洋地质学,1991:199~233
    [157]庄振业.泻湖沉积环境——山东半岛为例.青岛海洋大学学报,1993,23(1):52~60
    [158]庄振业,李从先.山东半岛滨外坝沙体沉积特征.海洋学报,1989,11(4):470~480
    [159]朱之葵,李慰如,张光明.白沙口潮汐电站泥沙淤积的综合治理.农田水利与水电,1990,3:32~34
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.