高速铁路桥梁动力学问题分析及控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速铁路是一个专业面极广、技术先进的系统工程,随着我国经济的迅速发展以及建设节能社会理念的提出,高速铁路建设方兴未艾。目前对桥梁结构设计采用的静态设计方法不能真实地反映高速铁路桥梁车-线-桥的动力相互作用,同时高速铁路桥梁对轨道不平顺以及桥梁变形的要求非常严格。因此,建立高速铁路桥梁动态设计的理论与方法,综合考虑车辆、轨道与桥梁之间的动力相互作用,进而采取有效的控制策略减小桥梁的动力响应是合理设计高速铁路桥梁结构的实际需要,对高速铁路桥梁技术的发展具有十分重要的理论和现实意义。
     本文在总结和吸收前人研究经验的基础上,针对高速铁路桥梁中的动力学问题以及控制策略进行研究。主要研究工作和取得的成果如下:
     1、高速铁路桥梁动力学问题主要体现在车辆-轨道-桥梁的动力相互作用方面,属于大系统动力学范畴,本文阐述了高速铁路车桥耦合动力学理论以及高速铁路桥梁的动力性能评定标准,给出了车辆、轨道和桥梁的动力学模型和方程,并指出目前广泛采用的耦合动力学分析理论由于考虑了过多的车辆自由度而难以直接应用于高速铁路桥梁振动控制。
     2、结合轮轨的高频振动特点,简化了机车模型,同时考虑到高速铁路桥梁轨枕减振的需要而强化了桥轨关系,从而建立了一种新的车辆-轨道-桥梁耦合动力学模型,构造了一种新的车-线-桥共同作用单元,利用该单元可将高速铁路桥梁的车-线-桥耦合振动分析问题转化为普通空间梁的动力有限元分析,利用MATLAB语言编制了高速铁路桥梁动力分析程序,利用该程序对我国高速铁路桥梁的32m跨径标准梁进行分析,讨论了列车速度、轨枕阻尼以及轨道不平顺对桥梁动力响应的影响。
     3、给出了各国高速铁路轨道随机不平顺的功率谱密度函数描述及多种数值模拟方法,为实现时域内车线桥耦合振动分析提供了前提。
     4、高速铁路桥梁对徐变上拱值提出了严格的限制。本文将灰色理论的GM(1,1)模型应用于混凝土梁的徐变系数和徐变上拱值的预测,结果表明该模型可以有效预测高速铁路桥梁的混凝土徐变上拱值;同时指出,在准确预测徐变上拱值的前提下,可以将大跨度预应力混凝土高速铁路桥梁的徐变上拱值纳入轨道高低不平顺进行动力学分析与评定,为突破高速铁路桥梁的跨径“瓶颈”扫清障碍。
     5、高速铁路桥梁振动系统实际上是耦合的串联系统,理论上应从大系统控制的观点出发提出振动控制策略,本文在阐述结构控制理论的数学模型基础上,研究了高速铁路桥梁的TMD和MTMD振动控制,探讨了车桥的多重共振反应及控制策略。论文还介绍了智能控制理论中的神经网络控制原理与实施步骤,提出了神经网络控制的应用设想。最后,进一步论述了振动控制一体化策略是高速铁路桥梁振动控制最为合理有效的控制策略,从而构建了实现高速铁路桥梁振动控制的技术路线与控制策略。
High-speed railway is a systematic engineering which refers to a wide range of professions and high technique. With the development of our country’s economy and the pursuing of a society which saves energy sources, high-speed railway springs up. At present, the design of bridge structure adopts the static method which cannot reflect the dynamic interaction among the vehicle, railway and bridge. Moreover, the bridge deformation and the rail irregularity are restricted strictly by high-speed railway. As a result, it’s of great importance to theorize the dynamical design of high-speed railway which considers the interaction among the vehicle, the railway and the bridge. Then effective control method can be used to minimize the dynamical reflection of the bridge. In this paper, based on the achievements in the previous works, we pay our attention on the dynamic analysis of high-speed railway bridge and its control strategy. The main work and our achievements are as follows:
     1、The main dynamic problem of high-speed railway bridge is the interaction of the vehicle, the railway and the bridge, which belongs to systematic dynamics. This paper introduces the coupling dynamic theory of vehicle and bridge and the standard assessment of bridge’s dynamic performance. Then the dynamic model and equation of the vehicle, the railway and the bridge is given in the paper. Moreover, the paper indicates that the widely-used coupling dynamic theory is difficult to be used in the vibration control of high-speed railway bridge for the reason that too much degree of freedom of the vehicle is considered.
     2、Combined with the high frequency vibration of the rail, we simplify the vehicle model. And by the consideration of the necessity of the suppression or isolation of high-speed railway bridge’s vibration, we strengthen the relation between the bridge and the rail. Then a new dynamic model is built, and a new vehicle-rail-bridge element is formulized. By the application of the new element, the coupling vibration problem of vehicle-rail-bridge is changed into the ordinary bridge’s dynamic finite-element analysis. And then we use the MATLAB language to generate the dynamic analysis program of high-speed railway bridge. Through the program we analyze the 32m-span standard beam of high-speed railway bridge, study the effect of vehicle velocity, the damping of rail bearing and rail’s irregularity on the bridge’s dynamic performance.
     3、The paper introduces the power spectrum density function(PSD) and its numerical simulation method of the rail irregularity of high-speed railway in different countries which is the premise of the coupling vibration analysis of vehicle-rail-bridge.
     4、Bridge on high-speed railway has a strict limitation on the camber by creep deformation. This paper use the GM(1,1) model in grey theory to forecast the creep coefficient and creep camber of concrete beams. And it indicates that on the bases of the precise forecasting of the creep camber, we can put the creep camber into the irregularity of the rail to proceed the dynamic analysis and assessment of long-span prestressed concrete bridge on high-speed railway, which can help to build longer span bridges on high-speed railway.
     5、The vibration system of high-speed railway bridge is in fact a coupling tandem connection system. And we must use the extensive system control attitude to present our vibration control method in theory. This paper introduces the numerical model of structure’s control theory. Based on the theory, The paper discusses TMD and MTMD vibration-control, studies the multiple resonance vibration of vehicle-bridge and its control strategy. Moreover, the paper introduces the neural network control method and its executing procedure of intelligence control theory, which may be used in bridge’s vibration control. At last, the paper generalizes that the integral vibration control is the most effective control strategy in high-speed railway bridge. Then the technique direction and control strategy of high-speed railway bridge’s vibration control come into being.
引文
[1] 钱仲候. 高速铁路概论(第二版). 北京: 中国铁道出版社,1999
    [2] 铁道部工程管理中心, 铁道科学研究院. 高速铁路技术. 北京:中国铁道出版社,2003
    [3] 钱立新. 世界高速铁路技术. 北京: 中国铁道出版社,2003
    [4] 董志洪. 高技术铁路与钢轨. 北京: 冶金工业出版社,2003
    [5] 中国铁道部. 京沪高速铁路设计暂行规定.北京:中国铁道出版社,2003
    [6] Chu K H, Garg V K, Bhatti M H. Impact in truss bridge due to freight trains. Journal of Engineering Mechanics, 1985, 111(2): 159~174
    [7] Chu K H, Garg V K, Wang T L. Impact in railway prestressed concrete bridges. Journal of Structural Engineering, 1986, 112(5): 1036~1051
    [8] Wiriyaehai A,Chu K H,Garg V K. Impact study by various bridge models. Earthquake Engineering & Structural Dynamics, 1982, 10(1): 1~45
    [9] Wiriyachai A, Chu K H, Garg V K. Bridge impact due to wheel and track irregularities. Journal of the Engineering Mechanics Division, 1982, 108(4): 648~666
    [10] Wang T L. Impact in a railway truss bridge. Computers and Structures, 1993, 49(6):1045~1054
    [11] Fang T L, Garg V K, Chu K H. Railway bridge/vehicle interaction studies with new vehicle model. Journal of Structural Engineering, 1991, 117(7): 2099~2116
    [12] Bhatti M H,Garg V K,Chu K H, Dynamic interaction between freight train and steel bridge. Journal of Dynastic systems, 1985, 107(1): 60~66
    [13] Van Bogaert. Dynamic response of trains crossing large span double-track bridges. Journal of Constructional Steel Research, 1993, 24(1): 57~74
    [14] Ivantchenko. Analytical study on dynamics interaction between vehicles arid viaducts at high speed railway. Proceedings of the Mini Conference on Vehicle System Dynamics, 2000. 119~128
    [15] Klasztorny M. Vertical vibrations of a multi-span beam steel bridge induced by a super fast passenger train. Structural Engineering and Mechanics, 2001, 12(3): 267~281
    [16] Klasztorny M: Spatial vibrations of a multi-span railway steel bridge under a train moving at high speed. Archives of Civil Engineering, 2000, 46(2): 287~311
    [17] Anderson J: Prediction of noise from railway bridges. Journal of Constructional Steel Research, 1998, 46(1): 65~66
    [18] Song M K, Choi C K. Analysis of high-speed vehicle-bridge interactions by a simplified 3Dmodel. Structural Engineering and Mechanics, 2002, 13(5): 505~532
    [19] Song M K, Noh H C, Choi C K. A new three-dimensional finite element analysis model of high-speed train-bridge interactions. Engineering Structures, 2003, 25(13): 1611~1626
    [20] Kwon H C, Kim M C, Lee I W. Vibration control of bridges under moving loads. Computers and Structures, 1998, 66(4): 473~480
    [21] Yang Y B, Lin B H. Vehicle-bridge interaction analysis by dynamic condensation method. Journal of Structural Engineering, 1995, 121(11): 1636~1643
    [22] J.P.DenHartog. Mechanical Vibration. MCGraw-Hill, NewYork, 1956
    [23] Tanabe Makoto, Yamada Yoshiaki, Wakui Hajime. Modal methods for interaction of train and bridge. Computers and Structures, 1986, 27(1): 119~127
    [24] Tanabe Makoto, Wakui Hajime. Efficient numerical method for dynamic interaction analysis of high-speed Shinkansen vehicles, rail, and bridge. Computers in Engineering. Proceedings of the International Conference and Exhibit, 1994, 2: 567~572
    [25] Asakawa Kazuo, Kawakami, Hiromichi etal. Dynamic response of steel and composite girders under high speed train. Quarterly Reports-Railway Technical Research Institute(Japan), 1983, 24(3): 121~122
    [26] Chu K H, Garg V K, Dhar C L. Railway-bridge impact:simplified train and bridge model. ASCE J Struct Div, 1979, 105(9): 1823~1844
    [27] Chu K H, Garg V K, Wiriyachai A. Dynamic interaction of railway train and bridges.
    [15] Klasztorny M. Vertical vibrations of a multi-span beam steel bridge induced by a super fast passenger train. Structural Engineering and Mechanics, 2001, 12(3): 267~281
    [16] Klasztorny M: Spatial vibrations of a multi-span railway steel bridge under a train moving at high speed. Archives of Civil Engineering, 2000, 46(2): 287~311
    [17] Anderson J: Prediction of noise from railway bridges. Journal of Constructional Steel Research, 1998, 46(1): 65~66
    [18] Song M K, Choi C K. Analysis of high-speed vehicle-bridge interactions by a simplified 3Dmodel. Structural Engineering and Mechanics, 2002, 13(5): 505~532
    [19] Song M K, Noh H C, Choi C K. A new three-dimensional finite element analysis model of high-speed train-bridge interactions. Engineering Structures, 2003, 25(13): 1611~1626
    [20] Kwon H C, Kim M C, Lee I W. Vibration control of bridges under moving loads. Computers and Structures, 1998, 66(4): 473~480
    [21] Yang Y B, Lin B H. Vehicle-bridge interaction analysis by dynamic condensation method. Journal of Structural Engineering, 1995, 121(11): 1636~1643
    [22] J.P.DenHartog. Mechanical Vibration. MCGraw-Hill, NewYork, 1956
    [23] Tanabe Makoto, Yamada Yoshiaki, Wakui Hajime. Modal methods for interaction of train and bridge. Computers and Structures, 1986, 27(1): 119~127
    [24] Tanabe Makoto, Wakui Hajime. Efficient numerical method for dynamic interaction analysis of high-speed Shinkansen vehicles, rail, and bridge. Computers in Engineering. Proceedings of the International Conference and Exhibit, 1994, 2: 567~572
    [25] Asakawa Kazuo, Kawakami, Hiromichi etal. Dynamic response of steel and composite girders under high speed train. Quarterly Reports-Railway Technical Research Institute(Japan), 1983, 24(3): 121~122
    [26] Chu K H, Garg V K, Dhar C L. Railway-bridge impact:simplified train and bridge model. ASCE J Struct Div, 1979, 105(9): 1823~1844
    [27] Chu K H, Garg V K, Wiriyachai A. Dynamic interaction of railway train and bridges.文]. 北京:北方交通大学,2002
    [42] Zhang Nan, Xia He, Guo Weiwei. Safety and serviceability analysis of high speed railway bridge under Thalys trains. Process in Safety Science and Technology Part A, 2002(3): 313~318
    [43] Xia He,Zhang Nan. Dynamic analysis of high speed railway bridge under articulated trains. Computers and Structures, 2003, 81: 246~248
    [44] 张楠,夏禾. 地震对多跨简支梁桥上列车运行安全的影响. 世界地震工程,2001, 17(4): 93~99
    [45] 汪胜,王庆波. 高速铁路双线简支梁桥空间振动响应分析. 北方交通大学学报,1998, 22(4): 31~40
    [46] 王庆波,汪胜. 高速铁路连续梁桥动力响应分析. 北方交通大学学报,1997, 21(4): 399~404
    [47] 王刚,曹雪琴. 高速铁路大跨度斜拉桥车桥动力分析. 上海铁道大学学报,2000, 21(8): 7~21
    [48] 王刚. 高速铁路三塔斜拉桥车桥动力分析. 上海铁道大学学报, 1999, 20(1): 11~15
    [49] 吴定俊,曹雪琴. 上海地区铁路桥梁基础沉降和高速铁路桥式性能比较. 上海铁道大学学报,1997, 18(4): 17~23
    [50] 吴定俊,王小松,项海帆. 高速铁路尼尔森拱桥车桥动力特性. 铁道学报,2003, 25(3): 96~100
    [51] 朱仙福,张秀荣. 高速列车轨道涡流制动的制动力分析与计算. 上海铁道大学学报,1996, 17(4): 1~8
    [52] 郭文华. 中小跨度铁路桥梁横向刚度分析: [博士学位论文]. 长沙: 长沙铁道学院,1999
    [53] 郭向荣. 高速铁路桥梁一列车时变系统振动分析: [博士学位论文]. 长沙: 长沙铁道学院,1999
    [54] 郭向荣,曾庆元. 京沪高速铁路南京长江斜拉桥方案行车临界风速分析. 铁道学报,2001, 23(5): 75~80
    [55] 郭向荣,曾庆元. 秦沈客运专线多 T 梁式桥动力特性分析模型. 中国铁道科学,2001, 22(4): 53~57
    [56] 郭向荣,曾庆元. 高速铁路结合梁桥与列车系统振动分析模型. 华中理工大学学报,2000, 28(3): 60~62
    [57] 郭向荣,刘庆艳. 高速铁路大跨度钢桥横向刚度限值分析. 中国铁道科学,2001, 22(5): 29~33
    [58] 郭向荣,曾庆元. 高速铁路多 II 形预应力混凝土梁桥动力特性及列车走行性分析. 铁道学报,2000, 22(1): 72~78
    [59] 郭向荣,曾庆元. 沈客运专线多 T 梁式桥动力特性分析模型. 中国铁道科学,2001, 22(4): 53~57
    [60] 盛兴旺,李志国,邓运清. 京沪高速铁路预应力简支箱梁结构参数优选. 铁道标准设计,2003(6): 6~9
    [61] 盛兴旺,王荣华. 高速铁路先、后张预应力混凝土简支箱梁力学效应对比分析. 中国铁道科学,2004, 25(1): 100~104
    [62] 盛兴旺,陈洪波. 秦沈客运专线硅简支箱梁支座不平整效应及其限位分析. 长沙铁道学院学报,2002, 20(2): 7~12
    [63] Yang Y B, Yau J D. Vehicle-bridge interaction element for dynamic analysis. Journal of Structural Engineering, 1997, 123(11): 1512~1518
    [64] Yang Y B, Yau J D,Hsu L C. Vibration of simple beams due to trains moving at high speeds. Engineering Structures, 1998, 19(11): 936~944
    [65] Yang Y B, Chang C H, Yau J D. Element for analyzing vehicle-bridge systems considering vehicle's pitching effect. International Journal for Numerical Methods in Engineering, 1999, 46(7): 1031~1047
    [66] Ju S H. Three-dimensional analyses of wave barriers for reduction of train-induced vibrations, 2004, 30(7): 740~748
    [67] Ju, S. H. Finite elements analyses of wave high-speed Methods in train across bridges, International propagations due to a Journal for Numerical Engineering,2002, 54(9): 1391~1408
    [68] Lin H T, Ju S H. Three-dimensional analyses of two high-speed trains crossing on a bridge, Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit, 2003, 217(2): 99~110
    [69] 顾明. 用于杨浦大桥抖振控制的 MTMD 研究. 振动工程学报, 1998, 11(1):1~8
    [70] 杨宜谦. 用调频质量阻尼器抑制铁路桥梁竖向共振的研究. 中国铁道科学,1998, 19(1): 1~18
    [71] 李建中,杨宜谦,苏木标. MTMD 抑制既有钢桥提速时发生振动的研究. 铁道学报,1999, 21(1): 81~85
    [72] 苏木标, 李建中, 梁志广. MTMD抑制铁路上承钢板梁桥横向振动试验研究. 振动与冲击,2000, 9(1): 19~24
    [73] 李国豪主编. 桥梁结构稳定与振动. 北京: 中国铁道出版社,2002
    [74] 李新平,张俊平,周福霖. 装有调谐质量吸振器的高架桥梁的减震分析. 世界地震工程, 1998, 114(2): 44~49
    [75] 龙复兴,张旭,顾平. TMD-结构系统的按规范抗震设计方法. 哈尔滨建筑大学学报, 1997, 30(3): 1~6
    [76] 李春样,熊学玉,王肇民. 结构-TMD 系统的动力特性研究. 振动与冲击, 1999,18(4): 50~56
    [77] 李春祥,熊学玉. 结构 MTMD 地震反应控制最优参数研究. 振动与冲击, 1999, 18(1): 63~67
    [78] 李春祥,刘艳霞,王肇民. 地震作用下高层钢结构 MTMD 控制参数取值及优化设计研究. 计算力学学报,2001, 15(3): 305~311
    [79] 李黎,黄尚斌,张卉. 结构振动控制中 MTMD 的基本特性研究. 工程力学,2000, 17(2): 90~96
    [80] Li C .Performance of Multiple Tuned Mass Dampers for Attenuating Undesirable oscillations of structures Under the Ground Acceleration. Earthq. Eng.Stru. Dyn.,2000(29): 405~421
    [81] 隋允康,龙连春. 智能结构最佳工作状态的多目标控制模拟. 固体力学学报, 2004, 25(2): 237~240
    [82] 隋允康,龙连春著. 智能桁架结构最优控制方法与数值模拟. 北京:科学出版社,2006
    [83] Saggere L,Kota S. Static shape control of smart structure using compliant mechanics. AIAA Journal, 1999, 37(5): 572~578
    [84] Kagawa Y, Tsuchiya T, Finite element simulation of dynamic response of piezo-electric actuators. Journal of Sound and Vibration, 1996, 191(4): 519~538
    [85] 傅志方,华宏星. 模态分析理论与应用. 上海:上海交通大学出版社,2000
    [86] 张景绘,李宁,李新民等著. 一体化振动控制—若干理论、技术问题引论. 北京:科学出版社,2005
    [87] 欧进萍著. 结构振动控制—主动、半主动和智能控制. 北京:科学出版社,2003
    [88] 练松良编著. 轨道动力学. 上海:同济大学出版社,2003
    [89] 宁贵霞,孔德艳,谢志勇. 铁路整体 PC 箱形梁的徐变效应分析. 铁道工程学报,2006, 93(3):25~28
    [90] 李义兵. 铁路客运专线桥梁设计研究. 铁道标准设计, 2006(6): 22~25
    [91] 文望青. 客运专线桥梁设计的思考. 铁道标准设计, 2005(11): 18~21
    [92] 李小珍,俞璐,强士中. 不同主梁竖曲线下大跨度斜拉桥的车桥耦合振动分析. 振动与冲击,2003, 22(2): 43~47
    [93] 周宇,许玉德,李浩然. 轨道不平顺非线性预测模型. 交通运输工程学报,2004, 4(4): 21~24
    [94] 蒋海波,罗世辉,董仲美. Blackman-Tukey 法的轨道不平顺数值模拟. 中国测试技术, 2006, 32(4): 97~100
    [95] 陈果,翟婉明,蔡成标等. 传统车辆模型与车辆一轨道耦合模型的垂向随机振动响应分析及比较. 铁道学报,1999, 21(5): 70~74
    [96] 吴定俊,李奇,高丕勤. 轨道不平顺速度项对车桥动力响应的影响分析. 同济大学学报(自然科学版),2006, 34(6): 494~500
    [97] 中南大学土木建筑学院. 预应力混凝土简支梁桥徐变变形试验研究. 秦沈客运专线桥上无碴轨道关键技术研究报告,2001
    [98] 沈玉兰. 长期跟踪观测后张法预应力混凝土梁(32m 曲梁)的跨度变形和拱度变化的报告. 铁道部科学研究院,1998
    [99] 铁道部科学研究院. 京山线沙河特大桥预应力混凝土梁提速加固的可行性研究, 1999
    [100] 铁道部科学研究院. 高速铁路无碴轨道预应力混凝土箱型简支梁徐变上拱的限值与控制, 1988
    [101] S.H. Ju, H.T. Lin. Resonance characteristics of high-speed trains passing simply supported bridges. Journal of Sound and Vibration, 2003(267): 1127~1141
    [102] A.V. Vostroukhov, A.V. Metrikine. Periodically supported beam on a visco-elastic layer as a model for dynamic analysis of a high-speed railway track International Journal of Solids and Structures, 2003(40): 5723~5752
    [103] H. Xia, N. Zhang, R. Gao. Experimental analysis of railway bridge under high-speed trains Journal of Sound and Vibration, 2005(282): 517~528
    [104] H. Xia, G. De Roeckb, N. Zhang. Experimental analysis of a high-speed railway bridge under Thalys trains Journal of Sound and Vibration, 2003(268): 103~113
    [105] Ho-Chul Kwon, Man-Cheol Kim, In-Won Lee. Vibration control of bridge under moving loads. Computer & Structure, 1998, 66(4): 473~480
    [106] J.D.Wu, Y.B.Yang. Vibration reduction for cable-stayed bridges traveled by high-speed train,Finite Elements in Analysis and Design, 2004(40): 341~358
    [107] J.F.Wang, C. C.Lin. Vibration suppression for high-speed train bridge using tuned mass dampers ,International joural of solids and structures, 2003(40): 465~491
    [108] C. C.Lin, J.F.Wang, B. L. Chen. Train-induced vibration control of high-speed railway bridges equipped with tuned mass dampers. Journal of Bridge Engineering, 2005, 10(4): 398–414
    [109] 时瑾, 魏庆朝, 范玉. 高速磁浮铁路轨道梁振动分析及控制研究. 中国安全科学学报,2003, 13(1): 76~81
    [110] 高芒芒. 高速铁路列车-线路-桥梁耦合振动及列车走行性研究: [博士学位论文]. 北京:铁道科学研究院,2001
    [111] 徐荣桥编著. 结构分析的有限元法与 MATLAB 程序设计. 北京:人民交通出版社,2006
    [112] 郭雷主编. 控制理论导论—从基本概念到研究前沿. 北京:科学出版社,2005
    [113] 邓聚龙著. 灰理论基础. 武汉:华中科技大学出版社,2002
    [114] 唐家祥,刘再华. 建筑结构基础隔震. 武汉:华中理工大学出版社,1993
    [115] 刘晶波,杜修力主编. 结构动力学. 北京:机械工业出版社,2005
    [116] 左藤吉彦著,徐涌译. 新轨道力学. 北京:中国铁道出版社,2001
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.