岩石类材料损伤局部化失稳及锚固的力学机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
岩石类材料内部微观裂隙在载荷作用下的扩展贯通,导致材料内部形成剧烈变形的局部化带,材料力学性能与整体承载能力下降,局部化带内的剧烈变形进一步发展导致材料的最终破坏。为了防止裂隙岩体的变形破坏,需采用各种锚杆(索)进行加固。由于材料的损伤局部化失稳与锚固机理极其复杂,目前仍有许多问题尚未彻底解决。本文紧密围绕材料的损伤局部化失稳与锚固机理研究中存在的主要问题,在岩石类材料损伤局部化分叉分析、应变软化模型与局部化带的特征点的对应关系、裂隙岩体的锚固止裂机理、不同形式的权函数对裂纹应力应变场的影响、非线性非局部应变梯度模型的探讨等方面进行了比较深入而系统的分析研究。论文的主要研究内容包括以下几个方面:
     1.岩石类材料在弹塑性变形过程中由于大量微观缺陷的出现而伴有显著的体积扩容与刚度的不同程度下降等非线性特征,在材料的分叉与失稳分析中,必须同时考虑弹塑性和损伤两种非线性变形特征。本文在岩石类材料的各向同性损伤假定下,在弹塑性模型的不连续局部化分叉方法中引入了损伤变量与损伤加卸载函数,考虑岩石损伤过程中的刚度退化和体积扩容所引起的泊松比增大等变化特征,通过理论推导得出了岩石类材料损伤失稳时的最大硬化模量和此时的局部化方向角,探讨了最大硬化模量与局部化方向角对岩石类材料的损伤程度和初始泊松比的依存关系,并分别在平面应力与平面应变两种条件下,对单轴拉伸压缩试件的分叉失稳问题进行了对比分析。
     2.由于试验过程中试样的力学参数及应变软化阶段特性和外载荷加载时的差异,其变形过程中应力应变状态并不相同,并且试样的变形破坏过程难于观测。本文将材料的各向同性损伤与经典的Mohr-Coulomb屈服准则相关联,将材料的各向同性损伤转化为材料粘聚力和内摩擦角的降低,确定了材料的损伤临界面。应用数值模拟手段对平面应变条件下不同初始条件时试样变形过程中特征点的应力位移变化值进行监测,分析了试样分叉与局部化带形成过程中轴向应力位移曲线、轴向-侧向位移对比曲线、剪切带网络特征及其随损伤程度、围压、泊松比变化的规律,并进一步应用非关联流动准则考虑损伤的Mohr-Coulomb理论,推导出试样的局部化方位角在不同的变形特征点随围压和损伤程度的变化规律,并与数值模拟所得到的量侧值进行了对比分析。
     3.针对工程岩体中常见的Ⅰ-Ⅱ复合裂纹,采用数值模拟手段对岩体中不同倾角的一条裂纹与两条共线裂纹的扩展机制进行了研究,从应变的角度根据裂纹尖端附近塑性区最短距离断裂准则得到了不同倾角裂纹的破裂方向、裂纹尖端的塑性区最短距离及破坏后岩桥之间的有效距离。依据预应力锚索的锚固段与自由段的受力机制不同,应用等效应变法和等效降温法施加预应力对岩体中单一锚索加固和群锚加固机理进行了有限元分析,给出了预应力锚索的锚固段与岩体的受力与变形特征,指出了应用预应力锚索加固时应该注意的问题,并结合研究了预应力锚索对裂隙岩体的锚固止裂效应,对比分析了不同倾角的两条共线裂纹的在不同锚固条件下的扩展机制。
     4.分析了非局部理论中不同形式的权函数的性质及其选取原则,给出了其影响域及其随内部长度因子变化的规律。为了消除裂纹尖端附近应力应变场的奇异性问题,应用采用不同形式权函数的非局部理论分析了Ⅰ-Ⅱ型复合裂纹尖端的应力应变场的分布影响,并与裂纹尖端附近不同方向上的局部应变进行了对比,进而探讨了基于不同权函数的非局部理论与应力强度因子K_Ⅰ与K_Ⅱ值对于裂纹尖端非局部各个应力应变分量的影响。
     5.考虑线性软化模型不能反映材料软化变形复杂性的不足,选取高斯正态分布函数作为非局部理论的权函数,同时采用指数型应力衰减模式考虑软化的非线性特征,进一步地将这种非线性非局部理论与采用Laplace算子考虑塑性应变梯度效应的塑性梯度理论相结合,建议了一种非线性非局部应变梯度模型,通过对各向同性均质杆拉伸过程的分析,确定了指数型非线性软化模型的塑性应变分布,并与线性软化模型的解答进行了对比。
The localized band with intense deformation is caused by the development and coalescence of micro-cracks in loaded rock-like geomaterials. The process of deformation of rock-like geomaterials is companied by degradation of mechanical behaviors and whole loaded capability. The farther development of intense deformation caused structural whole failure:To prevent the deformation and failure, the pre-stress anchor cable is used to reinforce jointed rock mass. However the mechanics of Instability and Reinforcement with Damage Localization is very complex and there are some issues that have not been well solved in engineering practice. An intensive study is required for consideration on mechanics of instability and reinforcement with damage localization of rock-like geomaterials. Therefore the analysis of damage bifurcation and instability of rock-like geomaterials, the relationship between strain softening model and characteristic point of localized band, mechanism of reinforcement on crack prevention of jointed rock mass, effect of non-local models with different types of functions on stress-strain field at crack tip, the bifurcation and instability of plastic softening model and its finite element implementation are mainly concerned in this dissertation. The main research and results involved in the dissertation includes the following parts.
     1. The process of deformation of rock-like geomaterials is accompanied with nonlinear features of obvious stiffness degradation and volumetric dilatancy. In analyzes of bifurcation and instability of materials the two nonlinear deformation features of elasto-plasticity and damage should be taken into consideration simultaneously. Therefore, under the condition of isotropic damage, in this paper the damage variation and damage loaded-unioaded function are taken into consideration in the analysis of discontinuous bifurcation of elastic-plastic model. The variation characteristics such as stiffness degradation and initial Poisson's ratio increasing are taken into account, then the critical hardening modulus and localized orientation angle of materials with consideration of damage degradation and volumetric dilatancy are set up through theoretical derivation. The relationship of localized orientation angle and critical hardening modulus depended on degree of damage and initial Poisson's ratio of rock is explored. Comparative analyzes are conducted to study the bifurcation of uniaxial compression-tension samples under the conditions of plane stress and plane strain.
     2. The relations of stress-strain is different in the process of deformation owing to the differences of mechanical parameters, the characteristic of the strain softening phase and load under experimental conditions. And the fracture process of samples is not easy to observe. In the paper the damage critical curved surface is derived considering the related effect of isotropic damage and degradation of cohesion and internal friction angle of Mohr-Coulomb strength law. The characteristics of axial stress-displacement curve, axial-lateral displacement curve, networks of shear bands and the change with degree of damage, confining pressure, poisson's ratio are investigated numerically by monitoring the stress-displacement values in the process of deformation of samples under plane strain and different initial conditions. Furthermore, the law of the localized orientation of samples in different deformation characteristic point with the change of confining pressure and degree of damage is derived by non-associative damage Mohr-Coulomb yield law. The localized orientation is Compared with that obtained by numerical simulation.
     3. The fracture orientation of crack of different angle, the mini-plastic zone displacement near crack tip, the effective displacement of rock-bridge between con-liner close cracks tips after fracture are derived by the rule of mini-plastic zone displacement near crack tip from strain viewpoint. A new method of equivalent pre-stress is suggested to simulate the mechanism on reinforcement of pre-stress anchor cable by finite element method. The mechanism and distortional character of consolidated segment and rock mass under single anchor cable and multi anchor cables is analyzed. Some attentions is indicated when reinforcement by pre-stress anchor cable. The mechanism of reinforcement of pre stress anchor cable on crack prevention of jointed rock mass is studied by the fracture rule of mini-plastic zone displacement. The extending mechanism of con-linear cracks of different angle is analyzed under different consolidation condition.
     4. The essential characteristics together with optimum selection of weighted functions is analysed in the non-local theory. Therefore, the influence area of the weighted functions and its dependency on internal length scale are examined for a number of commonly used types of weighted functions. To eliminate the singular of stress and strain field near crack tip, the stress and strain field in the neighborhood of the tip ofⅠ-Ⅱmixed mode crack are analyzed in compare with local strain of different orientation near crack tip by using the non-local theories based on different types of weighted functions. Furthermore, the effects of non-local theory of different types of the weighted functions and the stress intensity factor K_Ⅰand K_Ⅱon the all components of stresses and strains at the crack tip are investigated.
     5. Considering deficiency of linear softening model which cannot reproduce distortion complexity of geo-material, a nonlinear and non-local model of plastic-strain gradient is presented by incorporating the nonlinear and non-local theory with the theory of plastic strain gradient. A nonlinear and non-local model is proposed by using an exponential pattern of strain softening and weighted by Gaussian distribution function while the effect of plastic strain gradient is taken into account. The mechanical characteristics of isotropic bar under uniaxial tension are examined by the proposed model and analysis results of the proposed model are compared with those of the linear-softening model.
引文
[1] 赵锡宏,张启辉.土的剪切带试验与数值分析[M].北京:机械工业出版社,2002.9.
    [2] 中国力学学会办公室,材料和结构的不稳定性[M].北京:科学出版社,1993.
    [3] Euler L. The pressure in planes from weights that settle (Latin)[J], Novi Commun Acad Petropolit, 1774, 18: 283-329.
    [4] Poincare H. Sur l'equilbre d'une masse fluide animee' d'un mouvement de rotation[J]. Acta Mathematica, 1885, 7: 259-380.
    [5] Lyapunov M A. Problème général de la stabilité du mouvement[J], Ann Fac Sci Toulouse, 1907: 9: 203-474.
    [6] Prigogine I, Lefever R, Goldbeter A. Symmetry-breaking instabilities in biological systems[J], Nature London, 1969, 223: 913-916.
    [7] Hill R. A general theory of uniqueness and stability in elastic-plastic solids[J]. Journal of the Mechanics and Physics of Solids, 1958, 6: 236-249.
    [8] Biot M A, Mechanics of incremental deformations[M]. John Wiley & Sons, New York, 1965.
    [9] Hutchinson J W, Miles J P. Bifurcation analysis of the onset of necking in an elastic/plastic cylinder under uniaxial tension[J]. Journal of the Mechanics and Physics of Solids, 1974, 22(1): 61-71.
    [10] Hill R, Hutchison J W. Bifurcation phenomena in the plate tension test[J]. Journal of the Mechanics and Physics of Solids, 1975, 23: 239-264.
    [11] Rudnicki J W, Rice J R. Conditions for the localization of deformation in pressure-sensitive dilatant materials. Journal of the Mechanics and Physics and Solids[J]. 1975, 23:371-394.
    [12] Rice.J R, Rudnicki J W. A note on some features of the theory of localization of deformation[J]. International Journal of Solids and Structure, 1980, 16: 597-605.
    [13] Needleman A. Non-noumality and bifurcation in plane strain tension and compression[J]. Journal of the Mechanics and Physics of Solids, 1979, 27:231-254.
    [14] Chau K T, Rudnicki J W. Bifurcation of compressible pressure-sensitive materials in plane strain tension and compression[J], Journal of the Mechanics and Physics of Solids, 1990, 38(6): 231-254.
    [15] Ottosen N S, Runesson.K. Properties of Discontinuous Bifurcation Solutions in Elasto-plasticity[J]. International Journal Solids and Structure, 1991, 27(4): 401-421.
    [16] Vardoulakis I, Equilibrium bifurcation of granular earth bodies, Advances in analysis of Geotechnical instabilities, University Waterloo Press, 1978, 65-119.
    [17] Vardoulakis I. Bifurcation analysis of the triaxial test on sand sample[J], Acta mechanica 1979, 32: 35-54.
    [18] 尹光志,鲜学富.岩石在平面应变条件下剪切带的分叉分析[J].煤炭学报,1999,24(4):364-367.
    [19] 曾亚武.岩石材料变形的稳定性分析及破坏形式的分叉分析[D].武汉:武汉水利水电大学,2000.
    [20] 李国琛,耶纳.塑性大变形微结构力学[M].北京:科学出版社,1993.
    [21] 王自强,段祝平.塑性细观力学[M],北京:科学出版社,1995.
    [22] 孙红,赵锡宏.软上的损伤对剪切带形成的影响[J].同济大学学报,2001,29(3):278-282.
    [23] 张启辉,赵锡宏.主应力轴旋转对剪切带形成的影响分析[J].岩土力学,2000,21(1):32-35.
    [24] 张永强.岩土类材料损伤与非连续性分叉研究[D].西安:西安交通大学,2002.
    [25] 赵吉东,岩土工程稳定破坏的应变梯度损伤局部化分岔模型及应用[D].北京:清华大学,2002.
    [26] Cosserat E, Cosserat F. Theorie des Corps Deformables[M]. Paris: Herman et Files, 1909.
    [27] Mulhaus H B, Vardoulakis I. The Thickness of Shear Bands in Granular Materials[J]. Géotechnique, 1987, 37:271-283.
    [28] Forest S, Barbe F, Caillitaud G. Cosserat modeling of size effects in the mechanical behavior of polycrystals and multi-phase materials[J]. International Journal of solids and structure, 2000, 37: 7105-7126.
    [29] Chambon R, Caillerie D, Matsuchima T, Plastic continuum with microstructure, local second gradient theories for geomaterials: Localization studies[J]. International Journal of Solids and Structures, 2001, 38: 8503-8527,
    [30] Cerrolaza M, Sulem J, Elbies A. A cosserat non-linear finite element analysis software for blocky structures[J]. Advances in engineering software, 1999, 30: 69-83.
    [31] Eringen A C, Edenlen D G B. On nonlocal elasticity[J]. International Journal of Engineering Science, 1972, 10(3):233-248.
    [32] Eringen A C. A unified theory of thermomechanical materials[J]. International Journal of Engineering Science, 1966, 4: 179-202.
    [33] Edelen D G B. Nonlocal field theories, in Eringen A C (Eds.) continuum physics academic press, New York, 1976, 4: 96-204.
    [34] Bazant Z P. Mechanics of distributed cracking[J], Applied Mechanics Reviews, 1976, 39: 675-705.
    [35] Bazant Z P. Imbricate continuum and its variational derivation[J]. Journal of Engineering Mechanics, ASCE, 1984(a), 110: 1693-1712.
    [36] Bazant Z P. Size effect in blunt fracture: Concrete, Rock metal[J]. Journal of Engineering Mechanics, ASCE, 1984(b), 110: 518-535.
    [37] Lasry D, Belytschko T. Localization limiters in transient problems[J]. International Journal of Solids and Structures, 1988, 25(6): 581-597.
    [38] Muhlhaus H B, AifantiS E C. A variational principle for gradient plasticity[J]. International Journal of Solids and Structures, 1991, 28(7): 845-857.
    [39] Bazant Z P, Belytschko T B, Chang T P. Continuum theory for strain softening[J]. Journal of the Engineering Mechanics Division, ASCE, 1984, 110(12): 1666-1692.
    [40] Pijaudier Cabot G, Bazant Z P. Nonlocal damage theory[J]. Journal of the Engineering Mechanics Division, ASCE, 1986, 112(10): 1512-1533.
    [41] Bazant Z P, Pijaudier Cabot G. Nonlocal continuum damage localization instability and convergence[J]. Journal of Applied Mechanics, 1988, 55: 287-293.
    [42] Peerlings R H J, De Borst R, Brekelmans W A M, et al. Gradient enhanced damage for quasi-brittle materialS[J]. International Journal for Numerical Methods in Engineering, 1996, 39(19): 3391-3403.
    [43] Peerlings R H J, Geers M G D, De BorSt R, et al. A critical comparison of nonlocal and. gradient-enhanced softening continua[J]. International Journal of Solids and Structures, 2001, 38(44/45): 7723-7746.
    [44] Jirasek M, Zimermann T. Nonlocal rotating crack model with transition to scalar.damage. In: Computational Plasticity, o1.2, D.R.J. Owen, E Onate and E Hinton (Eds.), International Center for Numerical Methods in Engineering (CIMNE), 1997, 1514-1521.
    [45] Planas J, Guinea G V, Elices M. Basic issures on nonlocai models: uniaxial modeling. Report No.96-jp03, Departamento de Ciencia de Materiales, ETS de Ingenieros de Caminos, Universidad Politecnica de Madrid, Ciudad Universitariasn, 28040 Madrid, 1996, Spain.
    [46] Frantziskonis,G and Desai, C S. Elasto-plastic model with damage for strain softening geomaterials[J]. Acta Mechanica, 1987, 68:151-170.
    [47] Halm D, Dragon A. An anisotropic model of damage and frictional sliding for brittle materials[J]. European Journal of Mechanics - A/Solids, 1998, 17(3): 439-460.
    [48] Murakami S et al. Constitutive and damage evolution equations of elastic-brittle materials based on irreversible thermodynamics[J]. International Journal of Engineering Science, 1997, 39(4): 473-486.
    [49] De Borst R, Muhlans H B. Gradient-dependent plasticity: Formulation and algorithmic aspects[J]. International Journal for Numerical Methods in Engineering, 1992, 35: 521-539.
    [50] Fleck N A, Hutchinson J W. A phenomenological theory for strain gradient effects in plasticity[J]. Journal of the Mechanics and Physics of Solids, 1993, 41:1825-1857.
    [51] Go H, Hang Y, Nix W D, Hutchinson J W. Mechanism-based strain gradient plasticity-Ⅰ theory[J]. Journal of the Mechanics and Physics of Solids, 1999, 47:1239-1263.
    [52] Go H, Hang Y, Nix W D, Hutchinson J W. Mechanism-based strain gradient plasticity-Ⅱ analysis[J]. Journal of the Mechanics and Physics of Solids, 2000, 48: 99-148.
    [53] Chen S H, Wang T C. A new hardening law for strain gradient plasticity[J]. Acta materialia, 2000, 48: 3397-4005.
    [54] Chen S H, Wang T C. A new hardening law for strain gradient effects[J]. International Journal of Plasticity, 2002, 18(8): 971-995.
    [55] Fleck N A, Hutchinson J W. Strain gradient plasticity. In: Hutchinson J W, Wu T Y, eds. Applied Mechanics, New York: Academic Press, 1997, 33:295-361.
    [56] Aifantis E C. On the microstructural origin of certain inelastic models[J], Journal of Engineering Materials and Technology, 1984, 106(3): 326-330.
    [57] Acharya A, Bassani J L. On non-local flow theories that preserve the classical structure of incremental boundary value problems. In: Micromechanics of Plasticity and Damage of Multiphase Materials, IUTAM Symposium, Pads, 1995-08-29-09-01.
    [58] Engelen R A B, Geers M G D, Baaijens F P T. Non-local implicit gradient-enhanced elasto-plasticity for the modeling of softening behaviour[J], International Journal of Plasticity, 2003, 19(4): 403-433.
    [59] Geers M G D, Ubache R L J M,. Engelen R A B. Strongly non-local gradient-enhanced finite strain elasto-plasticity[J]. International Journal for Numerical Methods in Engineering, 2003, 56: 2039-2068.
    [60] Geers M G D, De Borst R, Brekelmans W A M, Peerlings R H J. Strain-based transient-gradient damage model for failure analyses[J]. Computer Methods in Applied Mechanics and Engineering, 1998, 160(1-2): 133-153.
    [61] 郑捷,姚孝新,陈融.岩石变形局部化的实验研究[J].地球物理学报,1982,26(6):554-562.
    [62] Berthaud Y, Calloch S, Collin Hild F et al. Analysis of the degradation mechanisms in composite materials through a correlation technique in white light. In: Advanced Optical Methods and Applications in Solid Mechanics, A. Lagarde (Edt,), Kluwer, Dordrecht(Pays Bas), 627-634.
    [63] Arthur J F R, Dunstan T, Assadi Q A J. Plastic deformation and failure in granular material[J], GéoteChnique, 1977, 27: 53-74.
    [64] Chuhua Han, Andrew Drescher. Shear bands in triaxial tests on dry coarse sand[J]. Soils and Foundations, 1993, 33(1): 118-132.
    [65] Scarpelli G, Wood D M. Experimental observations of shear band pattern in direct shear tests[J], IUMAT Conference on Deformation and Failure of Granular Materials, Delft, 473-484.
    [66] Desrues J, Chambon R, Mokni M, Mazerolle F. Void ratio evaluation inside shear bands in traxial sand specimens studied, by computed tomography[J]. Geotectmique, 1996, 46(3): 529-546.
    [67] Hicher P Y, Wahyudi H. Microsturctural analysis of strain localization in clay[J]. Computers and Geotechnics, 1994, 16(3): 205-222.
    [68] Finno R J, Harris W W, Mooney M A et al. Shear bands in plane strain compression of loose sand[J], Géotechnique, 1997, 47(1): 149-165.
    [69] Hettler A, Vardoulakis I. Behavior of dry sand tested in a large triaxial apparatus[J]. Géotechnique, 1984, 34: 183-198.
    [70] Haled A, Kondo D. Strain Localization in Fontainebleau Sandstone: Macroscopic and Microscopic Investigations[J]. International Journal of Rock Mechanics Mine Science & Geomechanics Abstracts. 1997, 34(3): 350-350(1).
    [71] 徐松林.岩石(大理岩)全过程和应变梯度的研究及其分岔理论分析[D].武汉:中国科学院武汉岩土力学研究所,2000.
    [72] 张东明.岩石变形局部化及失稳破坏的理论与实验研究[D],重庆:重庆大学,2004.
    [73] 潘一山.冲击地压发生和破坏过程研究[D].北京:清华大学,1999.
    [74] Hoeg K. Finite element analysis of strain-softening clay[J]. Journal of the Soil Mechanics and Foundations division, ASCE, 1972, 98: 43-58.
    [75] Lo K Y, Lee C F. Stress analysis and Slope stability in strain-softening materials[J]. Géotechnique, 1973, 23(1): 1-11.
    [76] Naghdi P M, Trapp J A. The significance of formulating plasticity theory With reference to loading surfaces in strain space[J]. International Journal of Engineering Science; 1975, 13: 785-797.
    [77] I'liushin A A, On the formulation of strain-space plasticity[J]. Journal of Engineering Mechancis, 1983, 109: 231-243.
    [78] 沈珠江.应变软化材料计算中存在的若干问题[J].江苏力学,1982,1(1):19-23.
    [79] Prevost J H, Hughes T J R. Finite-element solution of elastic-plastic boundary-value problems[J]. Journal of Applied mechanics, ASME, 1981, 48: 69-74.
    [80] Prevost J H. Short communication localization of deformations in elastic-plastic solids [J]. International Journal for Numerical and Analysis Method in Geomechanics, 1984, 8: 187-196.
    [81] De Borst R. Bifurcation in finite element models with a non-associated flow law[J]. International journal for numerical and analytical methods in geomechanics, 1988, 12(11), 99-116.
    [82] Yatomi C, Yashima A, Iizuka A, Sano I, General theory of Shear bands formation by a non-coaxial Cam-clay model[J]. Soils and Foundations, 1989, 29(3): 41-53.
    [83] Yatomi C, Yashima A, Iizuka A, Sano I. Shear bands formation numerically simulated by a non-coaxial cam-clay model[J]. Soils and Foundations; 1989, 29(4): 1-13.
    [84] Anand, Spitzig, Initiation of localized shear bands in plane strain[J]. Journal of the Mechanics and Physics of Solids. 1980, 28:113-128.
    [85] Bardet J P, Proubet J. A numerical investigation of structure of persistent shear bands in granular media[J]. GéoteChnique, 1991, 41: 599-613.
    [86] Iwashita K, Oda M. Micro-deformation mechanism of shear banding process based on modified distinct element method[J]. Powder Technology, 2000,109(1): 192-205.
    [87] Pitman E B. A Godunov method for localization in elasto-plastic granular flow[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1993, 17(6): 385-400.
    [88] Papamichos E, Vardoulakis I. Shear band formation in sand according to non-coaxial plasticity model[J]. Géotechnique, 1995, 45(4): 649-661.
    [89] Asaoka A, Noda T. Imperfection-sensitive bifurcation of Cam-clay under plane strain compression with undrained boundaries[J]. Soils and Foundations, 1995, 359(1): 83-100.
    [90] Cundall P A. Numerical experiments on localization in frictional material[J]. Ingenigeur-Archiv, 1989, 59(6): 148-159.
    [91] Hillerborg A. Analysis of one single crack, In: Wittmann F H(Ed.), Fracture Mechanics of Concrete[M], Elsevier, Amsterdam, 1983, pp. 223-249.
    [92] Pietruszezak, X Niu.On the description of localized deformation[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1993, 17: 791-805.
    [93] De Borst R, Pamin J, Schellekens J C J, Sluys L J. Instability in materials-computational aspects. In: H J Siriwardane, M M Zaman, (eds.); Computer Methods and Advances in Geomechanics[M], Balkema, Rotterdam, the Netherlands, 1994, p91-102.
    [94] 沈珠江.应变软化材料的广义孔隙压力模型[J],岩土工程学报,1997,19(3):14-21.
    [95] Prantziskonis G, Desai C S. Constitutive model with strain softening[J]. International Journal of Solids and Structures, 1987, 23(6): 733-750.
    [96] Rashid Y R. Analysis of prestressed concrete pressure vessels[J]. Nuclear Engineering and Design, 1968, 7(4): 334-344.
    [97] Bazant Z P, Kim S S. Plastic fracturing theory for concrete[J]. Journal of Engineering Mechanics, 1979, 105: 407-478.
    [98] Bazant Z P. Mechanics of fracture and progressive cracking in concrete structures. In: Sih G C and Ditommaso A (Eds.), Fracture Mechanics of Concrete[M]: Structural Application and numerical Calculation, Martinus Nijhoff Publishers, 1985.
    [99] Pietruszczak S, Morz A. Finite element analysis of deformation of strain softening materials[J]. International Journal for Numerical Methods in Engineering, 1981, 17: 327-334.
    [100] Pictruszczak S, Stolle D F E. Deformation of strain softening materials[J]. Part Ⅱ: Modeling of strain softening response Computers and Geotechnics, 1987, 4: 109-123.
    [101] Oritiz M, Leroy Y, Needleman A. finite element methods for localized failure analysis[J]. Computer methods in applied mechanics and engineering, 1987, 61: 189-214.
    [102] Pietruszczak S, Niu X. On the description of localized deformation[J]. International Journal for Numerical and Analysis Method in Geomechanics, 1993, 17: 791-805.
    [103] Belytschko J F, Englemann B E. A finite element with embedded localization zones[J]. Computer Methods in Applied Mechanics and Engineering, 1988, 59: 70-89.
    [104] Schellekens J C J, De Borst R. A nonlinear finite element approach for the analysis of model free edge delamination in composites. International Journal of Solids and Structures, 1993,30(9): 1239-1253.
    [105] Schellekens J C J, De borst R. The application of interface element and enriched or rate-dependent continua to micromechanical analyses of fracture in composites. Computational Mechanics 14, Springe-Verlag, 1994, 68-83.
    [106] Dvorkin E N, Cuitino A M, Gioia G. Finite elements with displacement interpolated embedded localization lines insentive to mesh size and distortions[J]. International Journal for Numerical Methods in Engineering, 1990,30: 541-564.
    [107] Simo J C, Oliver J. A new approach to the analysis and simulation of strain softening in solids, In: Bazant Z P, Et al.(Eds.), Fracture and damage in quasibrittle structures[M], E & F N spon, London, 1994, pp25-39.
    [108] Oliver J. Modeling strong discontinuities in solid mechanics via strain softening constitutive equations. Part I: Fundamentals, Part 2: Numerical simulation[J], International Journal for Numerical Methods in Engineering, 1996, 39: 3597-3624.
    [109] Hicks M A. An adaptive mesh study of localization in a saturated soils [J]. 9th international conference computer mechanics and Advances in geomechanics, wuhan, 1997, 1853-1858.
    [110] Zienkiewicz Q C, Huang M S, Pastor M. Localization problems in plasticity using finite elements with adaptive remeshing[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1995, 19(2): 127-148.
    [111] Zienkiewicz O C, Huang G C. A note on localization phenomena and adaptive finite-element analysis in forming processes[J]. Computer Methods in Applied Mechanics and Engineering, 1990, 6(2): 71-76.
    [112] Arghya D, Prevost J H., Loret B. Adaptive meshing for dynamic strain localization[J]. Computer Methods in Applied Mechanics and Engineering, 1996, 137(2): 285-306.
    [113] Bazant Z P and Ta-peng Chang. Non-local finite element analysis of strain-softening solids[J]. Journal of Engineering Mechanics, 1987, 113: 89-105.
    [114] Milan Jirasek. Nonlocal models for damage and fracture: Comparison of approaches[J]. International Journal of Solids and Structures, 1998, 35: 4133-4145.
    [115] Gilles Pijaudier S M, Bazant Z P. Non-local damage theory[J]. Journal of Engineering Mechanics, 1987,113:1512-1533.
    [116] Bazant Z P and Feng-Bao Lin. Non-local smeared cracking model for concrete fracture[J]. Journal of Engineering Mechanics 1988, 114: 2493-2511.
    [117] Lena Stromberg, Matti Ristinmaa. FE-formulation of a non-local plasticity theory[J]. Computer Method in Applied Mechanics and Engineering, 1996, 136: 127-144.
    [118] Bazant Z P and Peng-Bao Lin. Non-local yield limit degradation[J]. International Journal for Numerical Methods in Engineering, 1987, 26: 1805-1823.
    [119] Bazant Z P. Non-local damage theory based on micro-mechanics of crack interactions[J]. Journal of Engineering Mechanics, 1994, 120: 593-617.
    [120] De Borst R., Sluys L.J. Localization in a Cosserat continuum under static and dynamic loading conditions [J]. Computer Methods in Applied Mechanics and Engineering, 1991, 90(1): 805-827.
    [121] De Borst R. Simulation of strain localization: A reappraisal of the Cosserat continuum[J]. Engineering Computations (Swansea, Wales), 1991, 8(2): 317-332.
    [122] Coleman B D, Newman D C. Constitutive relations for elastic materials susceptible to drawing[J], Applied Mechanics Division, 1987, 85(1): 47-58.
    [123] Deborst J, Pamin J C, Schellekens J, Stuys L J. Instability in materials computational aspects. Computer Methods and Advances in Geomechanics, 1994, Sinwardane and Zaman.
    [124] Needleman A. Material rate dependence and mesh sensitivity in localization problems[J]. Computer methods in applied mechanics and engineering, 1988, 67(1): 69-85.
    [125] 李锡夔,刘泽佳,严颖.饱和多孔介质中的混合单元法和有限应变下应变局部化分析[J].力学学报,2002,15(6):668-676.
    [126] 黄茂松,钱建固,吴世明.土坝动力应变局部化与渐进破坏的自适应有限元分析[J].2001,23(3):306-310.
    [127] 张洪武,张新伟.基于广义塑性本构模型的饱和多孔介质应变局部化分析[J].岩土工程学报,2000,22(1):24-29.
    [128] 冯吉利,钟铁毅,温科伟.非局部模型与变形局部化数值模拟[J].固体力学学报,1999,20(1):16-25。
    [129] 周健,廖雄华,池永,徐建平.土的室内平面应变试验的颗粒流模拟[J].2002,30(9):1044-1050.
    [130] 王学滨,潘一山,丁秀丽,盛谦,平面应变状态下岩石剪切带网络数值模拟研究,岩土力学,2002;23(6):717-720.
    [131] 赵赤云.预应力锚索锚固的作用分析[J].北京建筑工程学院学报,1999,15(2):84-88.
    [132] 杨延毅,王慎跃.加锚节理岩体的损伤增韧止裂模型研究[J].岩土工程学报,1995,17(1):9-17.
    [133] 李宁,赵彦辉,韩煊.单锚的力学模型与数值仿真试验分析[J].西安理工大学学报.1997,13(1):6-11.
    [134] 李宁,韩煊.预应力群锚加固机理数值试验研究[J].岩土工程学报,1997,19:60-65.
    [135] 张晗旭.应用有限单元法探讨预应力岩锚的作用[J].河海大学学报,1999,27(3):26-27.
    [136] 杨延毅.岩质边坡卸荷裂隙加固锚杆的增韧止裂机制效果分析[J].水利学报,1994,6:1-9.
    [137] 李术才,陈卫忠.加锚节理岩体裂纹扩展失稳的突变模型研究[J].岩石力学与工程学报,2003,22(10):1661-1666.
    [138] 张强勇.朱维申.裂隙岩体损伤锚柱单元支护模型及其应用[J].岩土力学,1998,19(4):19~24.
    [139] 朱维申,李术才,陈卫忠著.节理岩体破坏机理和锚固效应及工程应用[J].北京:科学出版社,2002.
    [140] 陆启韶.分岔与奇异性[M].上海:上海科技教育出版社,非线性科学丛书,第二版,1997
    [141] Neilsen M K. Bifurcation in elastic-plastic materials[J]. International Journal of Solids and Structures, 1993, 30(4): 521-544.
    [142] 王学滨,潘一山,马瑾.剪切带-弹性岩体系统的稳定及失稳滑动理论研究[J].岩土工程学报,2002,24(3):360-363.
    [143] Carol I, Rizzi E, Willam K. A unified theory of elastic degradation and damage based on a loading surface[J]. International Journal of Solids and Structures, 1994, 31 (20): 2835-2865.
    [144] Carol I, Rizzi E, Willam K. An 'extended' volumetric/deviatoric formulation of anisotropic damage based on a pseudo-log rate[J]. European Journal of Mechanics-A/Solids, 2002, 21 (5): 747-772.
    [145] Ju J W. Isotropic and anisotropic damage variables in continuum damage mechanics[J]. Journal of Engineering Mechanics, ASCE, 1990, 116(2): 2764-2770.
    [146] 钱建固,黄茂松.土体应变局部化判别准则与峰值后的力学性状[J].同济大学学报,2005,33(1):11-15.
    [147] 赵锡宏,孙红,罗冠威著.损伤土力学[M].上海:同济大学出版社,2000.
    [148] 张启辉,李蓓,赵锡宏,董建国.上海粘性土剪切带形成的平面应变试验研究[J].大坝观测与土工测试,2000,24(5):40-43.
    [149] 卢允德,葛修润,蒋宇,任建喜.大理岩常规三轴压缩全过程试验和本构方程的研究[J].岩石力学与工程学报,2004,23(15):2489-2493.
    [150] 杨更社,谢定义,张长庆.岩石损伤单轴受力状态本构关系的CT识别[J],岩土力学,1997,10(2):29-32.
    [151] 马少鹏,刘善军,赵永红.数字图像灰度相关性用以描述岩石试件损伤演化的研究[J].岩石力学与工程学报,2006,25(3):590-595.
    [152] 王学滨,潘一山,于海军.考虑塑性应变率梯度的单轴压缩岩样轴向响应[J].岩土力学,2003,24(6):943-946.
    [153] 王学滨,潘一山,马瑾.FLAC3D在岩石变形局部化数值模拟中的应用[J].辽宁工程技术大学学报,2001,20(4):522-524.
    [154] 王学滨,潘一山,丁秀丽,盛谦.平面应变状态下岩石剪切带网络数值模拟研究[J].岩土力学,2002,23(6):717-720.
    [155] Terzaghi K. Stability of slopes of natural clay[A]. In: proc 1st Conf. Soil mech. Found. Eng.[C]. Harvad, 1936, 1: 161-165.
    [156] 李月.不排水剪切条件下饱和砂土变形特性及其本构模型的试验研究[M].大连,大连理工大学2004.6.
    [157] 许成顺.复杂应力条件下饱和砂土剪切特性及本构模型的试验研究[D].大连,大连理工大学,2006.3.
    [158] 李顺群.非饱和土的吸力与强度理论研究及其试验验证[D].大连:大连理工大学,2006.3.
    [159] 李兆霞.损伤力学及其应用[M].北京:科学出版社,2002.
    [160] Rice J R. Some basic stress diffusion solutions for fluidsaturated elastic porous media with compressible contents[J]. RevGeophys Space Phys, 1976, 14:227-241.
    [161] Rice J R. The localization of plastic deformation[J]. In: Koiter WTed. Theoretical and Applied Mechanics. In: 14th IUTAM Congress. NorthHolland, Amsterdam, 1976. 207-220.
    [162] Hill R. Some basic principles in the mechanics of solids without nature time[J]. Journal of Mechanics and Physics of Solids, 1959,7:209-225.
    [163] Maier G, Hueckel T. Nonassociated and coupled flow rules of elasto-plasticity for rock-like materials[J], International Journal of Rock Mechanics and Mining Sciences. 1979, 16: 77-92.
    [164] Raniecki B, Bruhns O T. Bounds to bifurcation stresses in solids with non-associated flow law at finite strain. Journal of Mechanics and Physics of Solids, 1981,29:153-172.
    [165] Mandel J. Conditions de stabilite et postulat de Drucker. In: Kravtchenko J, Sirieys PM ed. Proc IUTAM Symposium on Rheology andSoil Mechanics, Berlin: Springer-Verlag, 1964, 58-68.
    [166] 李贺.岩石断裂力学[M].重庆:重庆大学出版社,1988.8.
    [167] 尹双增.断裂判据与在混凝土工程中应用[M].北京:科学出版社,1996.10
    [168] 江见鲸.冯乃谦.混凝土力学[M].北京:中国铁道出版社,1991.
    [169] 汪懋骅.复合型断裂应变准则[J].固体力学学报,1982,11.
    [170] 预应力锚固技术[R].北京:水利部水利水电规划设计总院,1999.
    [171] 梁炯.锚固与注浆技术手册.北京:中国电力出版社,1999.9.
    [172] Bazant Z P and Lin F B. Non-local yield limit degradation[J]. International Journal for Numerical Methods in Engineering, 1988, 26(8): 1805-1823
    [173] Eringen A C, Speziale C G, Kim B S. Crack tip problem in non-local elasticity[J]. Journal of Mechanics and Physics of solids, 1977, 25(5): 339-351.
    [174] Yu-Guo Sun, Zhen-Gong Zhou. Stress field near the crack tip in nonlocal anisotropic elasticity[J]. European Journal of Mechanics A/Solids, 2004, 23:259-269
    [175] Jirasek M, Rolshoven S. Comparison of intergral-type non-local plasticity models for strain-softening materials [J]. International Journal of Engineering Science, 2003, 41 (13-14): 1553-1602.
    [176] Kroner E. Elasticity theory of materials with long-ranges cohesive forces[J]. International Journal of Solids and Structures. 1967, (3):731-742.
    [177] Vermeer P A, Brinkgreve R B J. A new effective non-local strain measure for softening plasticity[A]. In: Chambon R, Destrues J, Vardoulakis I (Eds). Localisation and Bifurcation Theory for Soils and Rocks[C], Rotterdam: Balkema, 1994, 89-100.
    [178] Stromberg L and Ristinmaa M. FE-formulation of a nonlocal plasticity theory[J]. Computer Methods in Applied Mechanics and Engineering. 1996, 136(2):127-144.
    [179] Planas J, Elices M, Guinea G V. Cohesive cracks versus nonlocal models: Closing the gap[J]. International Journal of Fracture, 1993, 63:173-187.
    [180] De Borst R and Muhlhaus H B. Gradient-dependent plasticity: formulation and algorithmic aspects[J]. International Journal for Numerical Methods in Engineering, 1992, (35):521-539.
    [181] Pamin J. Gradient-dependent plasticity in numerical simulation of localization phenomena[D]. Netherlands: TU Delft, 1994.
    [182] Simon Rolshoven, Milan Jirasek. Nonlocal formulation of softening plasticity[A]. In: H A Mang, F G Rammerstorfer, J Eberhardsteiner(Eds). Fifth World Congress on Computational Mechanics, Vienna, Austriaeds, 2002, 7: 7-12.
    [183] Askes H, Pamin J, de Borst R. Dispersion analysis and element-free galerkin-solutions of second-and fourth-order gradient-enhanced damage models[J]. International Journal for Numerical Methods in Engineering, 2000, 49(6): 811-832.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.