辐射诱导调节性T细胞表型改变及其分子调节机制的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     电离辐射诱导机体发生急、慢性炎性反应,进而破坏机体免疫平衡,并表现为淋巴细胞中各细胞亚群的比例失衡,Treg细胞作为淋巴细胞的重要免疫调节亚群,在辐射照射后细胞数目、比例及表型的改变将直接影响机体免疫平衡,为此近年来已有学者对Treg细胞辐射敏感性方面开展了初步研究,但随着对Treg细胞研究的进一步深入,明确了许多与Treg细胞表型和功能相关的转录因子与表面分子,而这些分子的差异表达往往与炎性反应类型和所在的器官不同而不同,其中哪些因子在辐射诱导的炎性反应中发挥作用尚未见相关研究报道。
     目的
     分析不同剂量丫射线照射对淋巴细胞及其Treg亚群细胞数和细胞比例的影响,并在此基础上明确2Gyγ射线照射对Treg细胞凋亡率、增殖能力及Treg细胞表型的影响,进而分析Treg细胞凋亡与表型改变之间的关系和靶向作用于差别表达表型因子的microRNA的表达变化,探讨表型改变及其潜在作用的基因水平调控机制,为辐射诱导免疫失衡的预防与恢复治疗提供理论依据。
     方法
     1.利用不同剂量(0.25Gy,0.5Gy,0.75Gy,1Gy,2Gy和5Gy)60Coy射线全身照射小鼠,分离胸腺和脾脏中的淋巴细胞并进行计数,再利用FACS检测Treg细胞亚群的比例变化;
     2.2Gy γ射线照射离体小鼠胸腺淋巴细胞,在照后9h利用FACS检测Treg细胞及Tcon细胞中7-AAD的结合水平;
     3.2Gy γ射线全身照射小鼠,在照后1、4和10d分离胸腺和脾脏淋巴细胞,利用FACS检测Treg细胞及Tcon细胞Annexin-V和Ki-67的表达,检测Treg细胞核心转录因子FOXP3的表达,检测Treg细胞表型因子CD39、CD103等的表达,检测nTreg细胞特异性转录因子Helios的表达,检测凋亡相关因子Bcl-2、 Bax的表达;
     4.检索靶向作用于CD39的microRNAs,并利用real-time PCR对检索到的microRNAs进行扩增分析,扩增底物为从分选的CD4+T细胞中提取的RNA;
     5.分选CD4+CD25+Treg细胞,利用ATP检测试剂盒检测Treg细胞内ATP水平。
     结果
     1.小鼠受照后胸腺细胞和脾脏细胞呈剂量依赖性减少,在照后4d降至最低(F=118.08、144.01,p<0.05)。较高剂量(1-5Gy)照射后,胸腺中Treg细胞数随时间逐渐减少,而脾脏中该细胞亚群逐渐恢复;而较低剂量照射后胸腺中Treg细胞数有所增加。与0Gy组相比较,Treg细胞比例随剂量增加而增加(F胸腺=5.16、89.44、3.01,p<0.05;F脾脏=52.02、32.13、27.45,p<0.05);
     2.离体Treg细胞自然存活率低于Tcon细胞,2Gy γ射线照射后,二者存活率均减小,后者减小幅度显著(t=-14.03,p<0.05);
     3.全身受照后4d, Treg细胞凋亡率显著增加,且高于Tcon细胞;不同器官中Treg细胞凋亡率和增殖水平改变不同,一方面胸腺Treg细胞凋亡率低于脾脏,另一方面胸腺中Ki-67+Treg细胞比例在受照后1d先减小,至照后4d又增加,而脾脏中该比例先增加,至照后4d相对对照组有所恢复;
     4.受照后FOXP3+Treg细胞占CD4+T细胞的比例增加,单个细胞中FOXP3的MFI变化在胸腺中下调,在脾脏中上调,但均在受照后10d改变最为显著(t=3.22,-5.34;p<0.05);而Helios的表达相对稳定,胸腺与脾脏中的变化规律基本一致;
     5.受照后Treg细胞中CD39和CD103的表达具有显著差异,其中CD39+Treg细胞比例增加,单个Treg细胞中CD39的MFI在胸腺中上调而在脾脏中下调;CD103+Treg细胞比例变化在脾脏中先下调后上调,在胸腺中于受照后4d出现一过性上调,单个Treg细胞CD103的MFI在胸腺中下调,而在脾脏中上调;
     6.胸腺Treg细胞中Bcl-2的MFI变化无统计学意义,而Bax的MFI呈上调趋势,Bax/Bcl-2比值亦上调(t=-3.43,p<0.05);脾脏中的变化规律相反,Bcl-2的MFI持续上调,而Bax的MFI变化无统计学意义,Bax/Bcl-2比值下调t=2.40,p<0.05);单个Treg细胞中CD39的MFI变化规律与Bax/Bcl-2比值变化规律一致;
     7.利用microRNA数据库检索了靶向作用于CD39的microRNAs,检索结果有6个,然后利用real-time PCR进行扩增分析发现miR-31的表达变化与CD39的MFI变化规律基本一致。
     结论
     1.不同剂量照射对淋巴细胞及其Treg细胞亚群细胞数的影响不同,其中较高剂量诱导Treg细胞数减少,而低剂量照射诱导其增加;淋巴细胞与Treg细胞亚群之间具有不同的时间响应;
     2.离体Treg细胞对辐射具有抗性,但辐射可诱导全身照射的Treg细胞凋亡率显著增加,且辐射诱导Treg细胞凋亡率与增殖能力的改变随受照后时间和所处器官的不同而具有不同规律,表明Treg细胞的活性受所处微环境的影响显著。
     3.Bax和Bcl-2分别在胸腺和脾脏的辐射诱导Treg细胞凋亡过程中发挥主要作用,Bax/Bcl-2比值的改变可以反映Treg细胞的凋亡水平,且Bax和Bcl-2参与的Treg细胞凋亡机制中受CD39的正向调节;
     4.辐射可诱导FOXP3的表达改变,Treg细胞具有可塑性;同时辐射可诱导Treg细胞表型改变,其中CD39和CD103是辐射诱导Treg细胞表达差异的两个重要表面因子, CD103介导辐射诱导炎性反应中Treg细胞的迁移,而CD39的表达差异则主要参与Treg细胞的抗辐射诱导凋亡;
     5.CD39的表达水平变化受外在微环境的影响,也有基因水平的调节,其中miR-31对其发挥负向靶向调节作用。
Background
     Acute or chronic inflammation can be induced by ionizing radition, which will damage the immune balance. The important immune regulatory subset is Treg, its change in number, percentage or phenotype will directly influence the equilibrium. For this reason, many studies were recently carried out on radition sensitivity of Treg cells. As the studies on Treg cells were going deeply into, many transcription factors and surface molecules were revealed which were related to Treg cell phenotype and function. However there were differential expression of these proteins in different type of imflammation and infectious tissues. To reveal which protein will be play a role in radiation indueced inflammation, many studies should be carried out.
     Objective
     To analyze the influence of different dose γ-ray irradiation on the number of lymphocytes and their Treg subset, and to explicit the radiation induced changes of apoptosis, proliferation and phenotype of Treg cells. Then to further analyze the relation between apoptosis and differently expressed phenotype factor, and do the expression of microRNAs which target effect on the factor. Then disscuss the mechanism of which the phenotype factor is regulated during its transcription, which will estabilish the theoretical foundation to revover the immune imbalance induced by ionizing radiation.
     Methods
     1. Mice were administered with whole body irradiation of γ-rays at different doses, and lymphocytes were separated from thymus and spleen, then the number of total cells were counted and the percentages of CD4+T and CD4+FOXP3+CD25+Treg lymphocytes were analyzed using FCM.
     2. The lymphocytes in vitro were irradiated by2Gy γ-ray irradiation and the7-AAD combining rate of Treg and Tcon were detected using FCM in9h after exposure.
     3. The Annexin-V and Ki-67expression level of Treg and Tcon cells ex vivo were detected as well as the expression level of the transcription factor FOXP3and Helios, the surface molecules CD39and CD103, and apoptosis related proteins Bcl-2and Bax using FCM.
     4. The microRNAs target effect on CD39were retrieved through different database, the their amplification in Treg cells were analysed using real-time PCR.
     5. CD4+CD25+Treg cells were sorted and their intracellular ATP concentration were measured using ATP concentration assay kit and microplate reader.
     Results
     1. The lymphocyte numbers in thymus and spleen decreased in dose-dependent manner and reached to the minimum at4d after irradiation,(F=118.08,144.01,.P<0.05); Exposure to higher dose(more than1Gy) decreased Treg number time-dependently in thymus, however increased it in spleen; On the contrary, exposure to lower dose(less than0.75Gy) increased Treg number in thymus; Besides the percentage of Treg cells increased dose dependently(in thymus F=5.16,89.44,3.01, P<0.05; in spleen F=52.02,32.13,27.45, P<0.05).
     2. The survival rate of both Treg and Tcon cells in vitro decreased after irradiation and the latter one decreased more significantly although it was higher in control group.
     3. The Treg cell apoptosis rate increased significantly and was higher than the one of Tcon cells in4d after irradiation. The apoptosis and proliferation rate of Treg cells were different in different tissues. For proliferation, the percentage of Ki-67+Treg cells in thymus was decreased in1d and reversed in4d, however the trendency was inverse in spleen.
     4. The percentage of FOXP3+Treg cells increased after irradiation and the MFI of FOXP3in Treg cell was decreased in thymus and increase in spleen. Both striking changes were happened in10d after irradiation. Besides the expression level of Helios kept relatively stable.
     5. The CD39and CD103of Treg cells were differently expressed after irradiation. The percentage of CD39+Treg cells increased and CD39expression level of Treg cell was upregulated in thymus but inverse in spleen. The changes of the percentage of CD103+Treg cells were complicated than CD39, it was firtly increased then reverse in spleen, however there was a transient increase in thymus in4d. and CD103expression level of Treg cell was down regulated in thymus but inverse in spleen.
     6. It was Bax that its MFI significantly increased but the Bcl-2in thymus and it was reverse in spleen that the MFI of Bcl-2increased, which resulted in the ratio of Bax/Bcl-2increase in thymus and inverse in spleen.
     7. Six microRNAs were found which target effect on CD39, and the expression changing trendency of miR-31was similar with the one of CD39.
     Conclusion
     1. The cell number changes of lymphocytes and their Treg subset in dose dependent manner, and there are different time-response between lymphocytes and their Treg subsets.
     2. Treg cells in vitro were resistant to irradiation, however the apoptosis rate of the ex vivo ones increased significantly after irradiation. The proliferation rate of Treg cells induced by radiation changes in time and tissue dependent manner, which revealed that the survival of Treg cells are significantly influenced by the microenvironment.
     3. FOXP3of Treg cells expressed differently after irradiation as well as the phenotype factors CD39and CD103. The CD39is related to the radiation induced apoptosis and CD103helps Treg cells immigration.
     4. Bax and Bcl-2respectively take part in the apoptosis program of Treg cells from thymus and spleen. And CD39may play a role in the program.
     5. The expression of CD39can be regulated by genes in which miR-31may play a negative role.
引文
[1]Taylor PA, Noelle RJ, Blazar BR. CD4+CD25+ immune regulatory cells are required for induction of tolerance to alloantigen via costimulatory blockade. J Exp Med,2011,193(11):1311-1317.
    [2]Qu Y, Jin S, Zhang A, et al. Gamma-ray resistance of regulatory CD4+CD25+FOXP3+ T cells in mice. Radiat Res,2010,173(2):148-157.
    [3]Kachikwu EL, Iwamoto KS, Liao YP, et al. Radiation enhances regulatory T cell representation, Int J Radiat Oncol Biol Phys,2011,81(4):1128-1135.
    [4]Cao M, Cabrera R, Xu Y, et al.Gamma irradiation alters the phenotype and function of CD4+CD25+ regulatory T cells. Cell Biol Int,2009,33(5):565-71.
    [5]Suffia I, Reckling SK, Salay G, et al. A Role for CD103 in the Retention of CD4_CD25_ Treg and Control of Leishmania major Infection. J Immunol,2005, 174:5444-5455.
    [6]Huehn, J. et al. Developmental stage, phenotype, and migration distinguish naive-and effector/memory-like CD4+ regulatory T cells. J Exp Med.2004,199:303-313.
    [7]Venturi GM, Conway RM, Steeber DA, et al. CD25+ CD4+ regulatory T cell migration requires L-selectin expression:L-selectin transcriptional regulation balances constitutive receptor turnover. J Immunol,2007,178:291-300.
    [8]Koch MA, Tucher-Heard G, Perdue NR, et al. The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation. Nature Immunol.2009,10:595-602.
    [9]Hirota K,Yoshitomi H, Hashimoto M, et al. Preferential recruitment of CCR6-expressing Th17 cells to inflamed joints via CCL20 in rheumatoid arthritis and its animal model. J. Exp. Med.2007,204:2803-2812.
    [10]Chen Z, Laurence A, O'Shea JJ. Signal transduction pathways and transcriptional regulation in the control of Thl7 differentiation. Semin Immunol,2007,19:400-408.
    [11]Szabo SJ, Sullivan BM, Peng SL, et al. Molecular mechanisms regulating Th1 immune responses. Annu Rev Immunol,2003,21:713-758.
    [12]Ansel KM, Djuretic I, Tanasa B, et al. Regulation of Th2 differentiation and 114 locus accessibility. Annu Rev Immunol,2006,24:607-656.
    [13]Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science,2003,299(5609):1057-61.
    [14]Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol,2003,4,330-336.
    [15]Wan YY, Flavell RA. Identifying Foxp3-expressing suppressor T cells with a bicistronic reporter. Proc Natl Acad Sci USA,2005,102:5126-5131.
    [16]Fontenot JD, Rasmussen JP, Williams LM, et al. Regulatory T Cell Lineage Specification by the Forkhead Transcription Factor Foxp3. Immunity,2005, 22:329-41.
    [17]Sakaguchi S, Yamaguchi T, Nomura T, et al.Regulatory T cells and immune tolerance. Cell,2008,133:775-87.
    [18]Zheng Y, Josefowicz S, Chaudhry A, et al. Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature,2010,463:808-812.
    [19]Egawa T, Tillman RE, Naoe Y, et al. The role of the Runx transcription factors in thymocyte differentiation and in homeostasis of naive T cells. J Exp Med,2007, 204:1945-1957.
    [20]Sauer S, Bruno L, Hertweck A, et al. T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proc Natl Acad Sci U S A,2008, 105:7797-802.
    [21]Haxhinasto S, Mathis D, Benoist C. The AKT-mTOR axis regulates de novo differentiation of CD4+ Foxp3+ cells. J Exp Med,2008,205:565-574.
    [22]Zheng SG, Wang J, Horwitz DA. Cutting edge:Foxp3+ CD4+ CD25+ regulatory T cells induced by IL-2 and TGF-β are resistant to Th17 conversion by IL-6. J Immunol, 2008,180:7112-7116.
    [23]Xu L, Kitani A, Fuss I, et al. Cutting edge:regulatory T cells induce CD4+CD25-Foxp3-T cells or are self-induced to become Th17 cells in the absence of exogenous TGF-β. J Immunol,2007,178:6725-6729.
    [24]Deknuydt F, Bioley G, Valmori D, et al. IL-1β and IL-2 convert human Treg into TH17 cells. Clin Immunol,2009,131:298-307.
    [25]Chen W, Jin W, Hardegen N, et al. Conversion of peripheral CD4+CD25-naive T cells to CD4+ CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med,2003,198(12):1875-1886.
    [26]Mucida D, Kutchukhidze N, Erazo A, et al. Oral tolerance in the absence of naturally occurring Tregs. J Clin Invest,2005,115(7):1923-1933.
    [27]Wan YY, Flavell RA. Regulatory T-cell functions are subverted and converted owing to attenuated Foxp3 expression. Nature,2007,445(7129):766-770.
    [28]Rubtsov YP, Niec RE, Josefowicz S, et al. Stability of the regulatory T cell lineage in vivo. Science,2010,329(5999):1667-1671.
    [29]Jonuleit H, Schmitt E, Kakirman H, et al. Infectious tolerance:human CD25+ regulatory T cells convey suppressor activity to conventional CD4+ T helper cells. J Exp Med,2002,196(2):255-260.
    [30]Miyara M, Sakaguchi S. Natural regulatory T cells:mechanisms of suppression. Trends Mol Med,2007,13(3):87-97.
    [31]Collison LW, Workman CJ, Kuo TT, et al. the inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature,2007,405(7169):566-569.
    [32]Li XL, Menoret S, Bezie S, et al. Mechanism and localization of CD8 regulatory T cells in a heart transplant model of tolerance. J immunol,2010,185(2):823-833.
    [33]Liu H, Shalev I, Manuel J, He W, Leung E, Crookshank J, et al. The FGL2-FcgammaRIIB pathway:a novel mechanism leading to immunosuppression.Eur J Immunol,2008,38(11):3114-26.
    [34]Shalev I, Wong KM, Foerster K, Zhu Y, Chan C, Maknojia A, et al. The novel CD4+ CD25+ regulatory T cell effector molecule fibrinogen-like protein 2 contributes to the outcome of murine fulminant viral hepatitis. Hepatology,2009,49:387-97.
    [35]Campbell DJ, Kim CH, Butcher EC. Chemokines in the systemic organization of immunity. Immunol Rev,2003,195:58-71.
    [36]Sather BD, Treuting P, Perdue N, et al. Altering the distribution of Foxp3+ regulatory T cells results in tissue-specific inflammatory disease. J Exp Med,2007, 204(6):1335-1347.
    [37]Yamazaki T, Yong XO, Chung Y, et al. CCR6 regulates the migration of inflammatory and regulatory T cells. J Immunol,2008,181(12):8391-8401.
    [38]Lee JH, Kang SG, Kim CH. FoxP3+ T cells undergo conventional first switch to lymphoid tissue homing receptors in thymus but accelerated second switch to nonlymphoid tissue homing receptors in secondary lymphoid tissues. J Immunol, 2007,178(1):301-311.
    [39]Tsuji M, Komatsu N, Kawamoto S, et al. Preferential generation of follicular B helper T cells from Foxp3+ T cells in gut Peyer's patches. Science,2009,323(5920): 1488-1492.
    [40]Komatsu N, Mariotti-Ferrandiz ME, Wang Y, et al. Heterogeneity of natural Foxp3+ T cells:a committed regulatory T-cell lineage and an uncommitted minor population retaining plasticity. Proc Natl Acad Sci USA,2009,106(6):1903-1908.
    [41]Gavin MA. Rasmussen JP, Fontenot JD, et al. Foxp3-dependent programme of regulatory T-cell differentiation. Nature,2007,445:771-775.
    [42]Wang TF, Guidotti G CD39 is an Ecto-apyrase. J Biol Chem,1996, 271:9898-9901.
    [43]Mizumoto N, Kumamoto T, Robson SC, et al. CD39 is the dominant Langerhans cell-associated ecto-NTPDase:modulatory roles in inflammation and immune responsiveness. Nat Med,2002,8:358-365.
    [44]Sheth S, Bleibel W, Thukral C, et al. Heightened NTPDase-1/CD39 expression and angiogenesis in radiation proctitis. Purinergic Signal,2009,5:321-326
    [45]Marcus AJ, Broekman MJ, Droscopoulos JH, et al. Metabolic control of excessive extracellular nucleotide accumulation by CD39/ecto-nucleotidase-1: implications for ischemic vascular disease. J Pharmacol Exp Ther,2003,305:9-16
    [46]Dwyer KM, Deaglio S, Gao W, et al. CD39 and control of cellular immune responses, Purinergic Signal,2007,3(1-2):171-180.
    [47]Fletcher JM, Lonergan R, Costelloe L, et al. CD39+ Foxp3+ Regulatory T Cells Suppress Pathogenic Th17 Cells and Are Impaired in Multiple Sclerosis. The Journal of Immunology,2009,183(11):7602-7610.
    [48]Nikolova M, Carriere M, Jenabian MA, et al.CD39/Adenosine Pathway Is Involved in AIDS Progression. PLoS Pathog,2011,7(7):e1002110.
    [49]Borsellino G, Kleinewietfeld M, Di MD, et al. Expression of ectonucleotidase CD39 by Foxp3+Treg cells:hydrolysis of extracellular ATP and immune suppression. Blood,2007,110:1225-1232.
    [50]Deaglio S, Dwyer KM, Gao W, et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediated immnune suppression. J Exp Med, 2007,204:1257-1265.
    [51]Bopp T, Dehzad N, Reuter S, et al. Inhibition of cAMP degradation improves regulatory T cell-mediated suppression. J Immunol,2009,182 (7):4017-4024
    [52]Zhao J, Cao Y, Lei Z, et al. elective Depletion of CD4+CD25+Foxp3+ Regulatory T Cells by Low-Dose Cyclophosphamide Is Explained by Reduced Intracellular ATP Levels. Cancer Res,2010,70(12):4850-4858.
    [53]Zhou Q, Yan J, Putheti P, et al. Isolated CD39 Expression on CD4+ T Cells Denotes both Regulatory and Memory Populations. Am J Transplant.2009, 9(10):2303-2311.
    [54]Agace WW, Higgins JM, Sadasivan B, et al. T-lymphocyte-epithelial-cell interactions:integrin alpha(E)(CD103)beta(7), LEEP-CAM and chemokines. Curr Opin Cell Biol,2000,12 (5):563-568.
    [55]Lehmann J, Huehn J, de la Rosa M, et al. Expression of the integrin alpha Ebeta 7 identifies unique subsets of CD25+ as well as CD25- regulatory T cells. Proc Natl Acad Sci USA,2002,99 (20):13031-13036.
    [56]Allakhverdi Z, Fitzpatrick D, Boisvert A, et al. Expression of CD 103 identifies human regulatory T-cell subsets. J Allergy Clin Immunol,2006,118:1342-1349.
    [57]Banz A, Peixoto A, Pontoux C,et al. A unique subpopulation of CD4t regulatory T cells controls wasting disease, IL-10 secretion and T cell homeostasis. Eur J Immunol,2003,33:2419-2428.
    [58]Tucker CF,Nebane-Ambe DL, Chhabra A, et al. Decreased frequencies of CD4+CD25+Foxp3+cells and the potent CD 103+ subset in peripheral lymph nodes correlate with autoimmune disease predisposition in some strains of mice. Autoimmunity,2011,44(6):453-464.
    [59]McFarland RD, Douek DC, Koup RA, Picker LJ. Identification of a human recent thymic emigrant phenotype. Proc Natl Acad Sci USA,2000,97:4215-4220.
    [60]Stephens GL, Andersson J, Shevach EM. Distinct subsets of FoxP3t regulatory T cells participate in the control of immune responses. J Immunol,2007, 178:6901-6911.
    [61]Wing K, Onishi Y, Prieto-Martin P, et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science,2008,322:271-275.
    [62]Onodera T, Jang MH, Guo Z, et al. Constitutive Expression of IDO by dendritic cells of mesenteric lymph nodes:functional involvement of the CTLA-4/B7 and CCL22/CCR4 interactions. J Immunol,2009,183:5608-5614.
    [63]Tadokoro CE, Shakhar G, Shen S, et al. Regulatory T cells inhibit stable contacts between CD4+ T cells and dendritic cells in vivo. J Exp Med,2006,203(3):505-511.
    [64]Von BH. Mechanisms of suppression by suppressor T cells. Nat Immuno,2005, 6:338-344.
    [65]Flores-Borja F, Jury EC, Mauri C, et al. Defects in CTLA-4 are associated with abnormal regulatory T cell function in rheumatoid arthritis. Proc Natl Acad Sci USA, 2008,105:19396-19401.
    [66]Lundmark F, Harbo HF, Celius EG, et al. Association analysis of the LAG3 and CD4 genes in multiple sclerosis in two independent populations. J Neuro Immuol, 2007,180(1-2):193-198.
    [67]Triebel F, Jitsukawa S, Baixeras E, et al. LAG3, a nevol lymphocyte activation gene closely related to CD4. J Exp Med,1990,171(5):1393-1405.
    [68]Workman CJ, and Vignali DAA. The CD4-related mole-cule, LAG-3 (CD223), regulates the expansion of activated T cells.Eur J Immunol,2003,33:970-979.
    [69]Workman CJ, Dugger KJ, and Vignali DAA. Cutting edge:molecular analysis of the negative regulatory function of lym-phocyte activation gene-3. J Immunol,2002a, 169:5392-5395.
    [70]Workman CJ, Rice DS, Dugger KJ, et al.. Phenotypic analysis of the murine CD4-related glyco-protein, CD223 (LAG-3). Eur J Immunol,2002b,32:2255-2263.
    [71]Workman CJ, Cauley LS, Kim IJ, et al. LAG-3 (CD223) regulates the size of the expanding T cell population following antigen activation in vivo. J Immunol,2004, 172:5450-5455.
    [72]Huang CT, Workman CJ, Flies D, et al. Role of LAG-3 in Regulatory T Cells. Immunity,2004,21:503-513
    [73]Han J, Lee Y, Yeom KH, et al. the Drosha-DGCR8 complex in primary microRNA processing. Genes Dev,2004,18(24):3016-3027.
    [74]MacRae IJ, Douda JA. Ribonuclease revisited:structural insights into ribonuclease Ⅲ family enzymes. Current Opinion in Structural Biology,2007, 17(1):1-8.
    [75]Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol,2009,10(2):126-139.
    [76]Gregory RI, Yan KP, Plasterk RH, et al. The micro processor complex mediates the genesis of microRNAs. Nature,2004,432:235-40.
    [77]Zhou XY, Jeker LT, Fife BT, et al. Selective miRNA disruption in T reg cells leads to uncontrolled autoimmunity. J Exp Med,2008,205(9):1983-1991.
    [78]Liston A, Lu LF, Carroll DO, et al. Dicer-dependent microRNA pathway safeguards regulatory T cell function. J Exp Med,2008,205(9):1993-2004.
    [79]Chong MMW, Rasmussen JP, Rudensky AY, et al. The RNAseⅢ enzyme Drosha is critical in T cells for preventing lethal inflammatory disease. J Exp Med,2008, 205(9):2005-2017.
    [80]Cobb BS, Hertweck A, Smith J, et al. A role for Dicer in immune regulation. J Exp Med,2006,203(11):2519-2527.
    [81]Xiao Y, Li B, Zhou Z,et al. Histone acetyltransferase mediated regulation of FOXP3 acetylation and Treg function. Curr Opin Immunol,2010,22(5):583-591.
    [82]Fayyad-Kazan H, Rouas R, Merimi M, et al. Valproate treatment of human cord blood CD4-positive effector T cells confers on them the molecular profile (microRNA signature and FOXP3 expression) of natural regulatory CD4-positive cells through inhibition of histone deacetylase. J Biol Chem,2010,285(27):20481-20491.
    [83]Chong MMW, Rasmussen JP, Rudensky AY, et al. The RNAseⅢ enzyme Drosha is critical in T cells for preventing lethal inflammatory disease. J Exp Med,2008, 205(9):2005-2017.
    [84]Cobb BS, Hertweck A, Smith J, et al. A role for Dicer in immune regulation. J Exp Med,2006,203(11):2519-2527.
    [85]Wing K, Onishi Y, Prieto-Martin P, et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science,2008,322(5899):271-275.
    [86]Liu W, Putnam AL, Xu-Yu Z, et al. CD 127 expressioin inversely correlates with Foxp3 and suppressive function of human CD4+ Treg cells. J Exp Med,2006, 203(7):1701-1711.
    [87]Brase JC, Wuttig D, Kuner R, et al. Serum microRNAs as non-invasive biomarkers for cancer. Mol Cancer,2010,9:306.
    [88]Lu LF, Thai TH, Calado DP, et al. Foxp3-dependent microRNA155 confers competitive fitness to regulatory T cells by targeting SOCS1 protein. Immunity,2009, 30(1):80-91.
    [89]Redouane R, Hussein FK, Nabil EZ, et al. Human natural Treg microRNA signature:Role of microRNA-31 and microRNA-21 in FOXP3 expression. Eur J Immunol,2009,39(6):1-11.
    [90]Asirvatham AJ, Gregorie CJ, Hu Z, et al. MicroRNA targets in immune genes and the Dicer/Argonaute and ARE machinery components. Mol Immunol,2008, 45(7):1995-2006.
    [91]Lu LF, Boldin MP, Chaudhry A, et al. Function of miR-146a in controlling Treg cell-mediated regulation of Thl responses. Cell,2010,142(6):914-929.
    [92]Dannull J, Su Z, Rizzieri D, et al. Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J Clin Invest,2005, 115:3623-3633.
    [93]Reuben JM, Korbling M, Gao H, et al. The effect of low dose gamma irradiation on the differentiation and maturation of monocyte derived dendritic cells. J Gravit Physiol,2004, 11(2):49-52.
    [94]Rho HS, Park SS, Lee CE. Gamma irradiation up-regulates expression of B cell differentiation molecule CD23 by NF-κB activation. J Biochem Mol Biol,2004, 37(4):507-514.
    [95]Merrick A, Errington F, Milward K, et al. Immunosuppressive effects of radiation on human dendritic cells:reduced IL-12 production on activation and impairment of naive T-cell priming. British J Cancer,2005,92(8):1450-8.
    [96]Roses RE, Xu M, Koski GK, et al. Radiation therapy and too-like receptor signaling:implications for the treatment of cancer. Oncogene,2008,27(2):200-207.
    [97]Shan YX, Jin SZ, Liu XD, et al. Ionizing radiation stimulates secretion of proinflammatory cytokines:dose-response relationship, mechanisms and implications. Radiat Environ Biophys,2007,46(1):21-9.
    [98]Cao M, Cabrera R, Xu Y, et al. Hepatocellular carcinoma cell supernatants increase expansion and function of CD4+CD25+ regulatory T cells. Lab Invest,2007, 87(6):582-90.
    [99]靳巍,崔玉芳,安晓霞,等.γ射线对小鼠Thl和Th2细胞功能亚群的影响.中华放射医学与防护杂志,2007,27(2):124-128.
    [100]杜丽,马琼,崔玉芳,等.γ射线照射后小鼠CD4+CD25+调节性T细胞的变化及其意义.中华放射医学与防护杂志,2011,31(1):21-24.
    [101]孟凡旭,单玉兴,董娟聪,等.不同剂量电离辐射对小鼠脾脏调节性T细胞及TGF-β1表达的影响.吉林大学学报(医学版)2011,37(3):398-402.
    [102]Zhou XY, Jeker LT, Fife BT, et al. Selective miRNA disruption in T reg cells leads to uncontrolled autoimmunity. J Exp Med,2008,205(9):1983-1991.
    [103]Liston A, Lu LF, Carroll DO, et al. Dicer-dependent microRNA pathway safeguards regulatory T cell function. J Exp Med,2008,205(9):1993-2004.
    [104]Urashima T, Nagasawa H, Wang K, et al. Induction of apoptosis in human tumor cells after exposure to Auger electrons:comparison with gamma-ray exposure. Nucl Med Biol,2006,33(8):1055-1063.
    [105]Taibi N, Aka P, Kirsch-Volders M, et al. Radiobiological effect of 99mTechnetium-MIBI in human peripheral blood lymphocytes:ex vivo study using micronucleus/FISH assay. Cancer Lett,2006,233(1):68-78.
    [106]Park HR, Jo SK and Paik SG. The NK1.1+T cells alive in irradiated mice play an important role in a Thl/Th2 balance.Int J Radiat Biol.2006,82(3):161-170.
    [107]Bogdandi EN, Balogh A, Felgyinszki N, et al. Effects of Low-Dose Radiation on the Immune System of Mice after Total-Body Irradiation. Radiat Res,2010, 174(4):480-489.
    [108]Dainiak N. Hematologic consequenses of exposure to ionizing radiation. Exp Hematol,2002,30(6):513-528.
    [109]Zelenika D, Adams E, Humm S, et al. Regulatory T cells overexpress a subset of Th2 gene transcripts. J Immunol,2002,168(3):1069-1079.
    [110]郑辉,甄荣,涂序珉,等.辐射损伤后小鼠T细胞功能亚群及其IL-4和IFN-7的变化.中华放射医学与防护杂志.2009,29(4):386-388.
    [111]Alexander M, Karsten K, Garrett MF, et al. Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature,2007,445(22):931-935.
    [112]Aswad F, Kawamura H, Dennert G High sensitivity of CD4+CD25+ regulatory T cells to extracellular metabolites nicotinamide adenine dinucleotide and ATP:A role for P2X7 receptors. J Immunol,2005,175:3075-3083.
    [113]Aswad F, Dennert G P2X7 receptor expression levels determine lethal effects of a purine based danger signal in T lymphocytes. Cell Immunol,2006,243:58-65.
    [114]Wilkin F, Duhant X, Bruyns C, et al. The P2Y11 receptor mediates the ATP-induced maturation of human monocyte-derived dendritic cells. J Immunol, 2001,166:7172-7177.
    [115]Hanley PJ, Musset B, Renigunta V, et al. Extracellular ATP induces oscillations of intracellular Ca2+ and membrane potential and promotes transcription of IL-6 in macrophages. Proc Natl Acad Sci USA,2004,101:9479-9484.
    [116]Scholzen T, Gerdes J. The Ki-67 protein:from the known and the unknown. J Cell Physiol,2000,182 (3):311-22.
    [117]Thornton AM, Korty PE, Tran DQ, et al. Expression of Helios, an Ikaros Transcription Factor Family Member, ifferentiates Thymic-Derived from Peripherally Induced Foxp3+ T Regulatory Cells. J Immunol,2010,184:3433-3441.
    [118]Tatiana Akimoval, Ulf H. Beier2, Liqing Wang, et al. Helios Expression Is a Marker of T Cell Activation and Proliferation.Plos one,2011,6(8):e24226.
    [119]Belzacq AS, Vieira HLA, Verrier F, et al. Bcl-2 and Bax Modulate Adenine Nucleotide Translocase Activity. Cancer Research,2003,63:541-546.
    [120]Gross A, McDonnell JM, Korsmeyer SJ. Bcl-2 family members and the mitochondria in apoptosis. Genes Dev,1999,13:1988-1911.
    [121]Vander Heiden MG, Thompson CB. Bcl-2 proteins:inhibitors of apoptosis or regulators of mitochondrial homeostasis? Nat Cell Biol,1999,1:E209-E216.
    [122]Kroemer G, Reed JC. Mitochondrial control of cell death. Nat Med,2000, 6:513-519.
    [123]Martinou JC, Green DR. Breaking the mitochondrial barrier. Nat Rev Mol Cell Biol,2001,2:63-67.
    [124]Zamzami N, Kroemer G Mitochondria in apoptosis. How Pandora's box opens.Nat Rev Mol Cell Biol,2001,2:67-71.
    [125]Okorokov AL, Milner J. An ATP/ADP-dependent molecular switch regulates the stability of p53-DNA complexes. Mol Cell Biol,1999,19(11):7501-7510.
    [126]Chen RW, Chuang DM. Long Term Lithium Treatment Suppresses p53 and Bax Expression but Increases Bcl-2 Expression J Biol Chem,1999,274(10):6039-6042.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.