宁芜矿集区凹山玢岩型铁矿床成矿作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
凹山铁矿床位于长江中下游多金属成矿带宁芜矿集区,是一个典型的玢岩型铁矿床,成矿过程具有多阶段的特征。本次研究工作,通过详细的野外地质调查研究和室内的实验分析研究,对矿床的成矿演化过程进行了详细的研究和探讨。
     凹山铁矿床主要矿石矿物磁铁矿的形成划分为4个世代,分别为浸染状磁铁矿,角砾状磁铁矿,粗粒脉状磁铁矿和伟晶状磁铁矿,它们是四个成矿阶段的产物。其中隐爆作用诱发了大规模铁沉淀,并为成矿提供了空间。
     各成矿阶段磁铁矿电子探针和LA-ICP-MS原位分析表明,随着成矿作用的演化,磁铁矿主量元素中Ti、Mn、V含量变化微弱,Al、Mg含量增高;微量元素中Ga、Sn及高场强元素Zr、Hf、Nd、Ta含量变化较小;从角砾状矿石到伟晶状矿石Co含量逐渐增高、Sc含量逐渐降低。在成矿过程中磁铁矿具有同源连续演化的特征,铁质来源于岩浆演化后期,受不混溶作用影响而形成富铁流体。
     对成矿各阶段磁铁矿、磷灰石、石英的氢氧同位素特征测试,以及伟晶状磁铁矿化阶段中磷灰石的流体包裹体形成温度的测量,并结合前人工作得出,成矿过程中流体成分不断变化,早期为岩浆水,随着成矿作用的演化大气水逐渐加入。
     赋矿围岩辉石闪长玢岩和穿切矿体发育的花岗闪长斑岩锆石U-Pb年代学研究得出,他们的成岩年龄分别为131.7Ma和126.1Ma。利用成岩成矿地质关系,约束凹山铁矿床的成矿年代阈值为131-126Ma,矿床形成于大王山组火山作用晚期,受区域岩石圈伸展和减薄作用的影响,处于区域拉张环境中。
     辉石闪长玢岩和花岗闪长斑岩的主量元素、微量元素、稀土元素、Sr-Nd同位素以及锆石微量元素和Hf同位素的研究表明,花岗闪长斑岩与赋矿围岩即辉石闪长玢岩具有相似的源区特征。岩浆岩的形成源于富集地幔并在其上升就位过程中混染了壳源物质,其中花岗闪长斑岩混染了更多的壳源物质。
     花岗闪长斑岩形成时代相似于区域中与铜金矿化有关的娘娘山组火山岩。锆石Ce(Ⅳ)/Ce(Ⅲ)比值大多低于100,δEu>0.4,具有部分斑岩型铜矿床赋矿岩体特征,成矿潜力需进一步研究。
     宁芜矿集区中矿床成矿系统研究得出,玢岩型铁矿床的成矿过程具有极大的相似性,经历浸染状矿化→角砾状矿石(或矿浆充填)→网脉状矿石(磷质逐渐沉淀形成大量的磷灰石),差别于在这个过程中受不同的成矿环境的影响,铁质在不同的成矿阶段富集并形成了不同的脉石矿物。铁矿化与其之后发育的铜金矿化存在怎样的成因联系尚未揭示,对铜金矿床的找寻仍需要深入的科学研究和地质勘探工作。
Washan iron deposit is located in the Ningwu ore district, Middle-Lower YangtzeRiver polymetallic ore Belt(MLYRB), East China. It is a typical porphyry-type irondeposit, with a multi-stage ore-forming process, and displays the iron mineralizationevolution of the Washan ore field. Based on the detailed field geological investigationand indoor experimental analysis, a detailed evolution of mineralization has beencarried out.
     The magnetite formation of the Washan deposit is divided into four stages,namely, disseminated magnetite, magnetite in breccia, coarse-grained vein magnetiteand pegmatitic vein magnetite. The cryptoexplosion induced large-scale ironprecipitation, and provides space for the mineralization.
     In situ electron microprobe and LA-ICP-MS analysis of the magnetite fromWashan iron deposit show that with the evolution of mineralization, the contents of Ti,Mn, V in magnetite are consistent; the Al and Mg contents increased; the contents ofGa, Sn and high field strength elements(Zr, Hf, Nd, Ta)change in a small range;from magnetite in breccia to pegmatitic vein magnetite, Co content graduallyincreased and Sc decreased gradually. The compositions of magnetite in variousstages indicate that the process of magnetite mineralization has a continuous evolutionwith a similar source. The iron derived from the late of magmatic evolution, and isenriched to be iron-rich fluid by the effect of immiscibility.
     Hydrogen and oxygen isotope characteristics of the mineralization various stagesof magnetite, apatite and quartz, and the homogenize temperature of apatite inpegmatitic vein magnetite ore indicate that during the mineralization process, the fliudcomposition was changed, combined with previous studies. The ore-forming fliud wasmainly of magmatic water, and then the meteoric water gradually added.
     The zircon U-Pb ages of the host rock(gabbrodiorite porphyrite)and the rockstock(granodiorite porphyry), which cut across the ore body, are 131.7±0.7Ma and126.1±0.5Ma respectly. According to the relationship between petrogenesis andmineralization, the ages of mineralization of Washan iron deposit is in the 131.7 ~126.1Ma. It belongs to the Early Cretaceous in the Dawangshan cycle. This ironmineralization is proposed to occur in an extensional tectonic regime, possiblyinduced by lithospheric thinning.
     The characteristics of major elements, trace elements, rare earth elements, Sr-Ndisotopic of the gabbrodiorite porphyrite and granodiorite porphyry with their zircontrace element and Hf isotope features have shown that the two type rocks have thesimilar source. The formation of magmatic rocks derived from enriched mantle andthe crust material was involved in the magma during ascent process. The granodioriteporphyry was involved more.
     In the late stage of volcanic activity, hydrothermal vein-type copper and/or golddeposits occurred in part of the Ningwu ore district, which are considered to beclosely related with the Niangniangshan Formation. The ages of the granodioriteporphyry is similar to that of the volcanic rocks of the Niangniangshan cycle. The Ce(Ⅳ)/Ce(Ⅲ)ratios of zircons in granodiorite porphyry are mostly less than 100,which is different(much more lower)with the one of the pluton(>300)accosiated with copper porphyry deposit, but theδEu values(>0.4). Therefore,further research is needed to study the possibility that granodioritic stocks are relatedto copper and/or gold mineralization.
     By the metallogenic system study, we infer that the porphyry iron mineralizationsin different typical deposits(i.e. Washan deposit, Meishan deposit, Gushan depositand Gaocun deposit)have a great similarity, experiencing disseminated magnetitemineralization - magnetite in breccia mineralization - coarse-grained vein magnetitemineralization - pegmatitic vein magnetite mineralization with the different of themainly mineralization in different stage be the effect of the different metallogenicenvironment. The relationship between iron and copper(gold)mineralizations isstill unrevealed. It needs further study and exploration to improve our understanding.
引文
[1] Ballard J R, Palin J M, Campbell I H. Relative oxidation states of magmas inferred from Ce(Ⅳ) /Ce (Ⅲ) in zircon: application to porphyry copper deposits of northern Chile. Contrib.Mineral. Petrol., 2002, 144: 347-364
    [2] Barth M G, McDonough W F, Rudnick R L. Tracking the budget of Nb and Ta in thecontinental crust. Chemical Geology, 2000, 165(3-4): 197-213
    [3] Barton M D, Johnson D A. Evaporitic-source model for igneous- related Fe oxide-(REE-Cu-Au-U)mineralization. Geology, 1996, 24(3): 259-262
    [4] Belousova E A, Griffin W L, O’Reilly S Y, Fisher N I. Igneous zircon: trace elementcomposition as an indicator of source rock type. Contrib. Mineral. Petrol. 2002, 143: 602-622
    [5] Belousova E A, Griffin W L, Pearson N J. Trace element composition and catholuminescenceproperties of southern African kimberlitic zircons. Mineral. Mag. , 1998, 62: 355-366
    [6] Blevin P L, Chappell B W. The role of magma sources, oxidation states and fractionation indetermining the granite metallogeny of eastern Australia. Transactions of the Royal Society ofEdinburgh: Earth Science, 1992, 83: 305-316
    [7] Blundy J, Wood B. Prediction of crystal-melt partition coefficients from elastic moduli.Nature, 1994, 372: 452-454
    [8] Bogaerts M, Schmidt MW. Experiments on silicate melt immiscibility in the systemFe2SiO4-KAlSi3O8-SiO2-CaO-MgO-TiO2-P2O5and implications for natural magmas.Contributions to Mineralogy and Petrology, 2006, 152: 257-274
    [9] Bookstrom A. Magmatic features of iron ores of the Kiruna type in Chile and Sweden: oretextures and magnetite geochemistry-a discussion. Economic Geology, 1995, 90: 469-475
    [10] Bookstron A A. The magnetite deposits of El Romeral, Chile. Economic Geology, 1977, 72:1101-1130
    [11] Boynton W V. Cosmochemistry of the rare earth elements: meteorite studies. In: HendersonP (eds). Rare Earth Element Geochemistry. Amsterdam-Oxford-New York-Tokyo: Elsevier,1984, 63-114
    [12] Candela P A. Controls on ore metal ratios in granite-related ore systems: An experimentaland computational approach. Transactions of the Royal Society of Edinburgh: Earth Science,1992, 83: 317-326
    [13] Carrew MJ. Controls on Cu-Au mineralisation and Fe oxide metasomatism in the EasternFold Belt, N.W. Queensland, Australia. A Dissertation for the degree of Doctor of Philosophy,James Cook University, 2004, 1-308
    [14] Chauvel C, and Blichert-Toft J. A hafnium isotope and trace element perspective on meltingof the depleted mantle. Earth and Planetary Science Letters, 2001, 190: 137-151
    [15] Cliff R A, Rickard D, Blake K. Isotope systematics of the Kiruna magnetite ores, Sweden:part 1, age of the ore. Economic Geology, 1990, 85: 1770-1776
    [16] Cook NJ, Ciobanu CL, Mao JW. Textural control on gold distribution in As-free pyrite fromthe Dongping, Huangtuliang and Hougou gold deposits, North China Craton (Hebei Province,China). Chemical Geology, 2009, 264(1-4): 101-121
    [17] Deer WA, Howie RA, Zussman J. An introduction to rock-forming minerals, 2nd edn.Longman, Harlow, Wiley, New York, 1992. 1-696
    [18] Dupuis C, Beaudoin G. Discriminant diagrams for iron oxide trace element fingerprinting ofmineral deposit types. Miner Deposita, 2011. Doi: 10.1007/s00126-011-0334-y
    [19] Eide EA. A model for the tectonic history of HP and UHPM regions in east-central China.In: Coleman RG and Wang X. (eds.). Ultrahigh Pressure Metamorphism. New York:Cambridge University Press, 1995, 391-426
    [20] Einaudi M T, Meinert LD, Newberry RJ. Skarn deposits. Economic Geology 75thAnniversiary Volume, 1981: 317-391
    [21] Elhlou S,Belousova E,Griffin W L et al. Trace element and isotopic composition of GJ-redzircon standard by laser ablation. Geochim Cosmochim Acta, 2006, suppl: A158
    [22] Foley S F, Peccerillo A. Potassic and ultrapotassic magmas and their origin. Lithos, 1992,28: 181-185
    [23] Frietsch R. Petrology of the Kurravaara area, northeast of Kiruna, northern Sweden.Sveriges geologiska unders kning, 1979, 1-82
    [24] Frietsch R. On the magmatic origin of iron ores of the Kiruna type. Economic Geology.1978, 73: 478-485
    [25] Geijer P. The iron ores of the Kiruna type: geographical distribution, geological charactersand origin. Sveriges geologiska unders kning, 1931. 1-39
    [26] Graham C M, Harmon R S, Sheppard S M F. Experimental hydrogen isotope studies:hydrogen isotope exchange between amphibole and water. American Mineralogist, 1984, 69:128-138
    [27] Gray AL. Solid sample introduction by laser ablation for inductively coupled plasma sourcemass spectrometry. Analyst, 1985, 110: 551-556
    [28] Green T H, Pearson N J. An experimental study of Nb and Ta partitioning between Ti-richminerals and silicate liquids at high pressure and temperature. Geochimica et CosmochimicaActa, 1987, 51(1): 55-62
    [29] Green T H. Significance of Nb/Ta as an indicator of geochemical processes in thecrust-mantle system. Chemical Geology, 1995, 120(3-4): 347-359
    [30] Griffin W L, Belousova E A, Shee S R et al. Archean crustal evolution in the northernYilgarn Craton: U-Pb and Hf-isotope evidence from detrital zircons. Precambrian Research,2004, 131: 231-282
    [31] Griffin W L, Wang X, Jackson S E et al. Zircon geochemistry and magma mixing, SE China:in situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, 2002, 61:237-269
    [32] Hamelin C, Dosso L, Hanan B et al. Sr-Nd-Hf isotopes along the Pacific Antarctic Ridgefrom 41 to 53°S. Geophysical Research Letters, 2010, 37: L10303, doi:10.1029/2010GL042979
    [33] Hanyu T, Tatsumi Y, Nakai S. A contribution of slab-melts to the formation of high-Mgandesite magmas; Hf isotopic evidence from SW Japan. Geophysical Research Letters, 2002,29(22): 2051, doi:10.1029/2002GL015856
    [34] Hedenquist J W, Lowenstern J B. The role of magmas in the formation of hydrothermal oredeposits. Nature, 1994, 370: 519-527
    [35] Hilderband R S. Kiruna-type Deposits: Their origin and relationship to intermediatesubvolcanic plutons in the Great Bear magmatic zone, Northwest Canada. Economic Geology.1986, 81: 640-659
    [36] Hitzman M W, Oreskes N, Einaudi M T. Geological characteristics and tectonic setting ofProterozoic iron oxide (Cu-U-Au-REE) deposits. Precambrian Research, 1992, 58, 241-287
    [37] Hoskin P W O, Black L P. Metamorphic zircon formation by solid-state recrystallization ofprotolith igneous zircon. Journal of Metamorphic Geology, 2000, 18(4): 423-439
    [38] Hoskin P W O, Ireland T R. Rare earth element chemistry of zircon and it saves as aprovenance indicator. Geology, 2000, 28: 627- 630
    [39] Hoskin P W O, Schaltegger U. The Composition of Zircon and igneous and metamorphicpetrogenesis. Reviews in Mineralogy & Geochemistry, 2003, 53: 27-62
    [40] Hou T, Zhang ZC, Kusky T. Gushan magnetite-apatite deposit in the Ningwu basin,Lower Yangtze River Valley, SE China: hydrothermal or Kiruna-type?. Ore Geology Reviews,2011. Doi: 10.1016/j.oregeorev. 2011.09.014
    [41] Hou T, Zhang Z C, Encarnacion J et al. Geochemistry of Late Mesozoic dioritic porphyriesassociated with Kiruna-style and stratabound carbonate-hosted Zhonggu iron ores,Middle-Lower Yangtze Valley, Eastern China: Constraints on petrogenesis and iron sources.Lithos, 2010, 119: 330-334
    [42] Jahn B M, Wu F Y, Lo C H et al. Crust-mantle interaction induced by deep subduction ofthe continental crust: geochemical and Sr-Nd isotopic evidence from post-collisionalmafic-ultramafic intrusions of the northern Dabie complex, central China. Chemical Geology,1999, 157, 119-146
    [43] Koglin N, Frimmel H E, Minter W E L et al. Trace-element characteristics of differentpyrite types in Mesoarchaean to Palaeoproterozoic placer deposits. Mineralium Deposita,2010, 45(3): 259-280
    [44] Li J W, Deng X D, Zhou M F et al. Laser ablation ICP-MS titanite U-Th-Pb dating ofhydrothermal ore deposits: A case study of the Tonglushan Cu-Fe-Au skarn deposit, SE HubeiProvince, China. Chemical Geology, 2010, 270:56-67
    [45] Li X H, Li W X, Wang X C et al. SIMS U-Pb zircon geochronology of porphyryCu-Au-(Mo) deposits in the Yangtze River Metallogenic Belt, eastern China: Magmaticresponse to early Cretaceous Lithospheric extension. Lithos, 2010, 119: 427-438
    [46] Li X H. Cretaceous magmatism and lithospheric extension in Southeast China. Journal ofAsian Earth Sciences, 2000, 18(3): 293-305
    [47] Liang H Y, Camplell H I, Allen C et al. Zircon Ce4+/Ce3+ratios and ages for Yulongore-bearing porphyries in eastern Tibet. Mineralium Deposita, 2006, 41: 152-159
    [48] Lin J L, Zhang W Y, Fuller M. Preliminary Phanerozoic polar wander paths for the Northand South China blocks. Nature, 1985, 313: 444-449
    [49] Lindsley D H. The crystal chemistry and structure of oxide minerals as exemplified by theFe-Ti oxides, in Rumble III, D., ed., Oxide Minerals, 3, Reviews in Mineralogy, MineralogicalSociety of America, 1976. L1-L60
    [50] Liu Y S, Gao S, Hu Z C et al. Continental and oceanic crust recycling-inducedmelt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes andtrace elements in zircons from mantle xenoliths. Journal of Petrology, 2010, 51: 537-571
    [51] Mao J W, Wang Y T, Lehmann B et al. Molybdenite Re-Os and albite40Ar/39Ar dating ofCu-Au-Mo and magnetite porphyry systems in the Yangtze River valley and metallogenicimplications. Ore Geology Reviews, 2006, 29(3-4): 307-324
    [52] Mao J W, Xie G Q, Duan C et al. A tectono-genetic model for porphyry-skarn-strataboundCu-Au-Mo-Fe and magnetite-apatite deposits along the Middle-Lower Yangtze River Valley,Eastern China. Ore Geology Reviews, 2011, 43(1): 294-314
    [53] Mark G, Foster D R W. Magmatic-hydrothermal albite-actinolite-apatite-rich rocks fromthe Cloncurry district, NW Queensland, Austrialia. Lithos, 2000, 51: 223-245
    [54] Meinert L D. Skarn zonation and fluid evolution in the Groundhog Mine, Central miningdistrict, New Mexico. Economic Geology, 1987, 82: 523-545
    [55] Meschede M. A method to discriminating between different types of mid-ocean ridgebasalts and continental tholeiite with the Nb-Zr-Y diagram. Chemical Geology, 1986, 56:207-218
    [56] Meschede M. A method to discriminating between different types of mid-ocean ridgebasalts and continental tholeiite with the Nb-Zr-Y diagram. Chemical Geology, 1986, 56:207-218
    [57] Morrison G W. Characteristics and tectonic setting of the shoshonite rock association,Lithos, 1980, 13: 97-108
    [58] Muller D, Groves D L. Potassic igneous rocks and associated gold-copper mineralization.Berlin: Springer-Verlag, 1995. 1-210
    [59] Münker C, W rner G, Yogodzinski G M et al. Behaviour of high field strength elements insubduction zones: constraints from Kamtchatka-Aleutian arc lavas. Earth and PlanetaryScience Letters, 2004, 224: 275-293
    [60] Nadoll P. Geochemistry of magnetite from hydrothermal ore deposits and host rocks - Casestudies from the Proterozoic Belt Supergroup, Cu-Mo-porphyry + skarn and Climax-Modeposits in the western United States. A Dissertation for the degree of Doctor of Philosophy,University of Auckland, 2009. 1-238
    [61] Nadoll P, Koenig AE. LA-ICP-MS of magnetite: methods and reference materials. Journalof Analytical Atomic Spectrometry, 2011, 26(9): 1872-1877
    [62] Nasdala L, Hofmeister W, Norberg N et al. Zircon M257 - a homogeneous natural referencematerial for the ion microprobe U-Pb analysis of zircon. Geostandards and GeoanalyticalResearch, 2008, 32(3): 247-265
    [63] Nebel O, Vroon P Z, van Westrenen W et al. The effect of sediment recycling in subductionzones on the Hf isotope character of new arc crust, Banda arc, Indonesia. Earth and PlanetaryScience Letters, 2011, 303: 240-250
    [64] Nielsen R L, Beard J S. Magnetite-melt HFSE partitioning. Chemical Geology, 164: 21-34
    [65] Nielsen R L, Forsythe L M, Gallahan W E et al. 1994. Major- and trace-elementmagnetite-melt equilibria. Chemical Geology, 2000, 117: 167-191
    [66] Nowell G M, Kempton P D, Noble S R et al. High precision Hf isotope measurements ofMORB and OIB bythermal ionisation mass spectrometry: insights into the depleted mantle,Chemical Geology, 1998, 149: 211-233
    [67] Nystrom J O, Henriquez F. Magmatic features of iron ores of the Kiruna type in Chile andSweden: ore textures and magnetite geochemistry. Economic Geology, 1994, 89: 820-839
    [68] Nystrom J O. Apatite iron ores of the Kiruna field, northern Sweden: Magmatic textures andcarbonatitic affinity. Geologiska Foreningens Stockhom Forhandlingar (GFF), 1985, 107:133-141
    [69] Parak T. Rare earths in the apatite iron ores of Lapland and some data about the Sr, Th andU content of these ores. Economic Geology, 1973, 68: 210-221
    [70] Parak T. The origin of the Kiruna iron ores. Sveriges geologiska unders kning, 1975a.1-209
    [71] Parak T. Kiruna iron ores are not "intrusivemagmatic ores of the Kiruna type". EconomicGeology, 1975b, 70: 1242-1258
    [72] Parak T. Phosphorus in different types of ore, sulfide in the iron deposit and the type andorigin of ores at Kiruna. Economic Geology, 1985, 80: 646-665
    [73] Patchett P J. Hafnium isotope results from mid-ocean ridges and Kerguelen. Lithos, 1983,16: 47-51
    [74] Patchett P J, Tatsumoto M. Hafnium isotope variation in oceanic basalts, Geophys. Res.Lett. , 1980, 7: 1077-1080.
    [75] Pearce J A, Norry M J. Petrogenetic Implications of Ti, Zr, Y, and Nb Variations in VolcanicRocks. Contributions to Mineralogy and Petrology, 1979, 69: 33-47
    [76] Philpotts A R. Origin of certain iron-titanium oxide and apatite rocks. Economic Geology,1967, 62(3): 303-315
    [77] Roedder E. Fliud inclusion: review in mineralogy. Mineralogical Society of America, 1984.1-644
    [78] Romer R L, Martinsson O, Perdahl J A. Geochronology of the Kiruna iron ores andhydrothermal alteration. Economic Geology, 1987, 89: 1249-1261
    [79] Rudyard F, Perdahl J A. Rare earth elements in apatite and magnetite in Kiruna-type ironores and some other iron ore types. Ore Geology Reviews, 1995, 9: 489-510
    [80] Rusk B, Oliver N, Brown A et al. Barren magnetite breccias in the Cloncurry region,Australia; comparisons to IOCG deposits. In: Williams et al. (eds) Smart science forexploration and mining, Proc 10th Biennial Meeting, Townsville, 2009. 656-658
    [81] Salters V J M. The generation of mid-ocean ridge basalts from the Hf and Nd isotopeperspective. Earth and Planetary Science Letters, 1996, 141: 109-123
    [82] Salters V J M, Hart S R. The mantle sources of ocean ridges, islands and arcs:the Hf-isotope connection. Earth and Planetary Science Letters, 1991, 104: 364-380
    [83] Salters V J M, White W M. Hf isotope constraints on mantle evolution. Chemical Geology,1998, 145: 447-460
    [84] Shmulovich K I, Landwehr D, Simon K, et al. Stable isotope fractionation between liquidand vaper in water-salt systems up to 600℃. Chemical Geology, 1999, 157: 343-354
    [85] Siebel W, Chen F K. Zircon Hf isotope perspective on the origin of granitic rocks fromeastern Bavaria, SW Bohemian Massif. International Journal of Earth Sciences, 2010, 99:993-1005
    [86] Sillitoe RH, Burrows DR. New field evidence bearing on the origin of the El Lacomagnetite deposit, Northern Chile. Economic Geology, 2002, 97: 1101-1109
    [87] Singoyi B, Danyushevsky L, Davidson G J et al. Determination of trace elements inmagnetites from hydrothermal deposits using the LA ICP-MS technique. SEG KeystoneConference, Denver, USA: CD-ROM, 2006
    [88] Skiold T, Cliff R A. Sm-Nd and U-Pb dating of early Proterozoic mafic felsic volcanism innorthernmost Sweden. Precambrian Research, 1984, 26: 1-13
    [89] Sláma J, Kosler J, Condon D J et al. Plesovice zircon - A new natural reference material forU-Pb and Hf isotopic microanalysis. Chemical Geology, 2008, 249(1-2): 1-35
    [90] Smith M, Gleeson S A. Constraints on the source and evolution of mineralising fluids in theNorrbotten Fe oxide-Cu-Au province, Sweden. In Mao, J W, Bierlein Frank P., eds. MineralDeposit Research: Meeting the Global Challenge. Springer Berlin Heidelberg, 2005. 825-828
    [91] Smith M P, Storey C D, Jeffries T E et al. In Situ U-Pb and Trace Element Analysis ofAccessory Minerals in the Kiruna District, Norrbotten, Sweden: New Constraints on theTiming and Origin of Mineralization. Journal of Petrology, 2009, 50(11): 2063-2094
    [92] Soderlund U, Patchett P J, Vervoort J D et al. The176Lu decay constant determined byLu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth and PlanetaryScience Letters, 2004, 219: 311-324
    [93] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes. In Saunders A D, Norry, M J (Eds.),Magmatism in the Ocean Basins. Geological Society Special Publication, 1989. 313-345
    [94] Sun W D, Ding X, Hu Y H et al. The goldeng transformation of the Cretaceous platesubduction in the west Pacific. Earth and Planet Science Letter, 2007, 262(3-4): 533-542
    [95] Xie G Q, Mao J W, Li R L et al. Geochemistry and Nd-Sr isotopic studies of Late Mesozoicgranitoids in the southeastern Hubei Province, Middle-Lower Yangtze River belt, EasternChina: Petrogenesis and tectonic setting. Lithos, 2008, 104(1-4):216-230
    [96] Yu J J, Mao J W.40Ar-39Ar dating of albite and phlogopite from porphyry iron deposits inthe Ningwu basin in east-central China and its significance. Acta Geologica Sinica (Englishedition), 2004, 78(2): 435-442
    [97] Yu J J, Zhang Q, Mao J W et al. Geochemistry of apatite from the apatite-rich iron depositsin the Ningwu Region, East Central China. Acta Geologyical Sinica, 2007, 81(4): 637-648
    [98] Yu JJ, Mao JW, Zhang CQ. The possible contribution of a mantle-derived fluid to theNingwu porphyry iron deposits-Evidence from carbon and strontium isotopes of apatites.Progress in Natural Science, 2008, 18(2): 167-172
    [99] Zhai Y S, Xiong Y Y, Yao S Z et al. Metallogeny of copper and iron deposits in the EasternYangtze Craton, east-central China. Ore Geology Reviews, 1996, 11: 229-248
    [100] Zhang S B, Zheng Y F, Wu Y B et al. Zircon isotope evidence for≥3.5 Ga continental crustin the Yangtze craton of China. Precambrian Research, 2006, 146: 16-34
    [101] Zhao X, Coe R. Paleomagnetic constraints on the collision and rotation of North and SouthChina. Nature, 1987, 327: 141-144
    [102] Zheng Y F. Oxygen isotope fractionations involving apatites: Application topaleotemperature determination. Chemical Geology, 1996, 127: 177-187
    [103] Zhou T F, Fan Y, Yuan F et al. Geochronology and significance of volcanic rocks in theNing-Wu basin of China. Science in China (Series D), 2011, 54(2): 185-196
    [104] Zhu G, Niu M L, Xie C L et al. Sinistral to Normal Faulting along the Tan-Lu Fault Zone:Evidence for Geodynamic Switching of the East China Continental Margin. The Journal ofgeology, 2010, 118(3): 277-293
    [105] Zindler A, Hart S R. Chemical dynamics. Annual Review of Earth and Planetary ScienceLetters, 1986, 14, 493-571
    [106]常印佛,刘湘培,吴昌言.长江中下游地区铜铁成矿带.北京:地质出版社,1991.1-379
    [107]陈光远,孙岱生,殷辉安.成因矿物学与找矿矿物学.重庆:重庆出版社,1987.1-874
    [108]陈上达,刘聪,陈志贵.娘娘山碱性火山-侵入岩特征及成岩定量模拟.岩石矿物学杂志,1992,11(4):306-316
    [109]陈毓川,盛继福,艾永德.梅山铁矿——一个矿浆热液矿床.中国地质科学院院报矿床地质研究所分刊.1981,2(1):26-48
    [110]陈毓川,张荣华,盛继福,等.玢岩铁矿矿化蚀变作用及成矿机理.中国地质科学院矿床地质研究所所刊.1982,2(1):1-24
    [111]邓晋福,叶德隆,赵海岭,等.下扬子地区火山作用深部过程盆地形成.武汉:中国地质大学出版社,1992.1-184
    [112]董树文,张岳桥,龙长兴,等.中国侏罗纪构造变革与燕山运动新诠释.地质学报,2007,81(11):1449-1461
    [113]段超,李延河,袁顺达,等.宁芜矿集区凹山铁矿床磁铁矿元素地球化学特征及其对成矿作用的制约.岩石学报,2012,28(1):243-257
    [114]段超,毛景文,李延河,等.宁芜盆地凹山铁矿床辉长闪长玢岩和花岗闪长斑岩的锆石U-Pb年龄及其地质意义.地质学报,2011,85(7):1159-1171
    [115]范裕,周涛发,袁峰,等.安徽庐江-枞阳地区A型花岗岩的LA-ICP-MS定年及其地质意义.岩石学报, 2008,24(8): 1715-1724
    [116]范裕,周涛发,袁峰,等.宁芜盆地闪长玢岩的形成时代及对成矿的指示意义.岩石学报,2010,26(9):2715-2728
    [117]高道明,赵云佳.玢岩铁矿再认识.安徽地质,2008,18(3):164-168
    [118]韩吟文,马振东,张宏飞,等.地球化学.北京:地球化学,2003.1-370
    [119]侯可军,李延河,田有荣. LA-MC-ICP-MS锆石微区原位U-Pb定年技术.矿床地质,2009,28(4):481-492
    [120]侯可军,袁顺达.宁芜盆地火山-次火山岩的锆石U-Pb年龄、Hf同位素组成及其地质意义.岩石学报,2010,26(3):888-902
    [121]侯可军. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用.岩石学报,2007,23(10):2595-2604
    [122]侯通,张招崇,杜杨松.宁芜南段钟姑矿田的深部矿浆-热液系统.地学前缘,2010,17(1):186-194
    [123]胡明月,何红蓼,詹秀春,等.基体归一定量技术在激光烧蚀等离子体质谱法锆石原位多元素分析中的应用.分析化学,2008,36(7):947-983
    [124]胡文瑄.宁芜和庐枞地区陆相火山喷气沉积-热液叠加改造型铁硫矿床.北京:地质出版社,1991.1-142
    [125]贾泽荣,詹秀春,何红蓼,等.激光烧蚀-等离子体质谱结合归一定量方法原位线扫描检测石榴石多种元素.分析化学,2009,37(5):653-658
    [126]姜波,徐嘉炜.一个中生代的拉分盆地——宁芜盆地的形成与演化.地质科学,1989,(4):314-322
    [127]李秉伦,谢奕汉,王英兰.根据矿物中包裹体的研究对玢岩铁矿的认识.矿床地质,1983,(2):25-32
    [128]李秉伦,谢奕汉.宁芜地区宁芜型铁矿的成因,分类和成矿模式.中国科学(B辑),1984,(1):80-86
    [129]李厚民,王瑞江,肖克炎,等.我国铁矿找矿潜力分析.矿物学报,2009,S1:537-538
    [130]李九玲,张桂兰,苏良赫.与矿浆成矿有关的FeO-Ca5(PO4)3F-NaAlSiO4-CaMgSi2O6四元体系模拟实验研究.中国地质科学院矿床地质研究所所刊,1986,(2):198-204
    [131]李荫清,魏家秀,周兴汉,等.某玢岩铁矿床中气液包裹体特征和成矿温度.地质学报,1979,(1):50-60
    [132]梁华英,谢应雯,张玉泉.富钾碱性岩体形成演化对铜矿成矿制约——以马厂箐铜矿为例.自然科学进展,2004,4(1):116-120
    [133]林师整.磁铁矿矿物化学、成因及演化的探讨.矿物学报,1982,(3):166-174
    [134]林新多.岩浆-热液过渡型矿床.武汉:中国地质大学出版社,1999.1-139
    [135]刘洪,邱检生,罗清华,等.安徽庐枞中生代富钾火山岩成因的地球化学制约.地球化学,2002,31(2):129-140
    [136]刘绍峰.宁芜地区凹山和吉山玢岩铁矿床特征和成因.中国地质大学(北京)硕士学位论文,2009.1-59
    [137]卢冰,胡受奚,蔺雨时.宁芜型铁矿床成因和成矿模式的探讨.矿床地质,1990,9(1):13- 24
    [138]卢焕章,范宏瑞,倪培,等.流体包裹体.北京:科学出版社,2004.1-487
    [139]吕庆田,侯增谦,杨竹森,等.长江中下游地区的底侵作用及动力学演化模式:来自地球物理资料的约束.中国科学(D辑),2004,34(9):783-794
    [140]罗茂澄,王立强,冷秋锋,等.邦铺钼(铜)矿床二长花岗斑岩、黑云二长花岗岩锆石Hf同位素和Ce4+/Ce3+比值.矿床地质,2011,30(2):266-278
    [141]马芳,蒋少涌,姜耀辉,等.宁芜地区玢岩铁矿Pb同位素研究.地质学报, 2006a,80(2):279-286
    [142]马芳,蒋少涌,姜耀辉,等.宁芜盆地凹山和东山铁矿床流体包裹体和氢氧同位素研究.岩石学报, 2006b,22(10):2581-2589
    [143]马芳,蒋少涌,薛怀民.宁芜盆地凹山和东山铁矿床中阳起石的激光40Ar-39A r年代学研究.矿床地质,2010,29(2):283-289
    [144]马钢集团南山矿业有限责任公司.安徽省马鞍山市凹山铁矿床资源储量核实报告(内部资料),2009,1-97
    [145]毛建仁,苏郁香,陈三元,等.长江中下游中酸性侵入岩与成矿.北京:地质出版社,1990.1-191
    [146]毛景文,Stein H,杜安道,等.长江中下游地区铜金(钼)矿Re-Os年龄测定及其对成矿作用的指示.地质学报,2004,78(1):121-132
    [147]毛景文,段超,刘佳林,等.陆相火山-侵入岩有关的铁多金属矿成矿作用及矿床模型——以长江中下游为例.岩石学报,2012,28(1):1-14
    [148]毛景文,邵拥军,谢桂青,等.长江中下游成矿带铜陵矿集区铜多金属矿床模型.矿床地质,2009,28(2):109-119
    [149]毛景文,谢桂青,张作衡,等.中国北方中生代大规模成矿作用的期次及其地球动力学背景.岩石学报,2005,21(1):169-188
    [150]宁芜研究项目编写小组. 1978.宁芜玢岩铁矿.北京:地质出版社,1-196
    [151]潘兆橹.结晶学与矿物学(下册).北京:地质出版社,1984.1-274
    [152]戚建中,刘红樱,姜耀辉.中国东部燕山期俯冲走滑体制及其对成矿定位的控制.火山地质与矿产,2000,21(4):244-265
    [153]邱家骧,王人镜,王方正,等.长江下游中生代火山岩岩石化学特征及成因分析.地球科学,1981,6(1):170-182
    [154]邱检生,张晓琳,胡建,等.鲁西碳酸岩中磷灰石的原位激光探针分析及其成岩意义.岩石学报,2009,25(11):2855-2865
    [155]宋学信,陈毓川,盛继福.论火山-浅成矿浆矿床.地质学报.1981,55(1):41-54
    [156]唐永成,吴言昌,储国正,等.安徽沿江地区铜金多金属矿床地质.北京:地质出版社,1998.1-351
    [157]陶奎元,毛建仁,杨祝良,等.中国东南部中生代岩石构造组合和复合动力学过程的记录.地学前缘,1998,5(4):183-190
    [158]涂伟,杜杨松,李顺庭,等.宁芜盆地蒋庙橄榄辉长岩的岩相学和矿物学特征及其构造意义.矿物岩石,2010,30(1)47-52
    [159]王德滋,任启江,邱检生,等.中国东部橄榄安粗岩省的火山岩特征及其成矿作用.地质学报,1996,70(1):23-34
    [160]王奎仁.地球与宇宙成因矿物学.合肥:安徽教育出版社,1989.1-544
    [161]王强,许继峰,赵振华,等.安徽铜陵地区燕山期侵入岩的成因及其对深部动力学过程的制约.中国科学(D辑),2003,33(4):323-334
    [162]王强,赵振华,熊小林,等.底侵玄武质下地壳的熔融:来自安徽沙溪adakite质富钠石英闪长玢岩的证据.地球化学,2001,30(4):353-362
    [163]王元龙,张旗,王焰.宁芜火山岩的地球化学特征及其意义.岩石学报,2001,17(4):565-575
    [164]王跃,朱祥坤.宁芜盆地凹山、陶村铁矿床的Fe同位素初步研究.矿物岩石地球化学通报,2011,30(增刊):510-511
    [165]吴福元,李献华,郑永飞,等.Lu-Hf同位素体系及其岩石学应用.岩石学报,2007,23(2):185-220
    [166]吴利仁,齐进英,王听渡,等.中国东部中生代火山岩.地质学报,1982,56(3):223-234
    [167]吴利仁.我国东部中生代陆相火山岩宁芜型铁矿形成的基本原理.地质与勘探,1978,(6):1-8
    [168]吴明安,汪青松,郑光文,等.安徽庐江泥河铁矿的发现及意义.地质学报,2011,85(5):802-809
    [169]向缉熙.凹山、大东山铁矿床的地质特征.地质论评,1959,19(5):195-200
    [170]肖克炎,娄德波,阴江宁,等.中国铁矿资源潜力定量分析.地质通报,2011,30(5):650-660
    [171]谢桂青,李瑞玲,蒋国豪,等.鄂东南地区晚中生代侵入岩的地球化学和成因及对岩石圈减薄时限的制约.岩石学报,2008,24(8):1703-1714
    [172]谢桂青,毛景文,李瑞玲,等.鄂东南地区Cu-Au-Mo-(W)矿床的成矿时代及其成矿动力学背景探讨:辉钼矿Re-Os同位素年龄.矿床地质,2006a,25(1):43-52
    [173]谢桂青,毛景文,李瑞玲,等.长江中下游鄂东南地区大寺组火山岩SHRIMP定年及其意义.科学通报,2006b,51(19):2283-2291
    [174]辛洪波,曲晓明.西藏冈底斯斑岩铜矿带含矿岩体的相对氧化状态:来自锆石Ce (Ⅳ)/Ce (Ⅲ)比值的约束.矿物学报,2008,28(2):152-160
    [175]邢凤鸣,徐祥.安徽扬子岩浆岩带与成矿.合肥:安徽人民出版社,1999.1-170
    [176]邢凤鸣.宁芜地区中生代岩浆岩的成因-岩石学与Nd、Sr、Pb同位素证据.岩石矿物学杂志,1996,15(2): 126-137
    [177]徐国风,邵洁涟.磁铁矿的标型特征及其实际意义.地质与勘探,1979,(3):30-37
    [178]徐祥,邢凤鸣.安徽沿江地区中生代基性岩稀土元素地球化学特征.安徽地质,1999,9(2):81-89
    [179]许继峰,王强,徐义刚,等.宁镇地区中生代安基山中酸性侵入岩的地球化学:亏损重稀土和钇的岩浆产生的限制.岩石学报,2001,17(4):576-584
    [180]薛怀民,董树文,马芳.长江中下游地区庐(江)-枞(阳)和宁(南京)-芜(湖)盆地内与成矿有关潜火山岩的SHRIMP锆石U-Pb年龄.岩石学报,2010a,2(69):2653-2664
    [181]薛怀民,董树文,马芳.安徽庐枞火山岩盆地橄榄玄粗岩系的地球化学特征及其对下扬子地区晚中生代岩石圈减薄机制的约束.地质学报,2010b,84(5):664-681
    [182]薛怀民,陶奎元.宁芜地区中生代火山岩系列的新认识及其地质意义.江苏地质,1989,(4):9-14
    [183]闫峻,俞永飞,陈江峰.宁芜地区娘娘山组火山岩Rb-Sr同位素定年及其意义.地质论评. 2009,55(1):121-125
    [184]冶金工业部情报标准研究所.国外火山岩型富铁矿,1977.1-182
    [185]余金杰,毛景文.宁芜玢岩铁矿磷灰石的稀土元素特征.矿床地质,2002,21(1):65-73
    [186]余金杰.宁芜地区凹山和太山铁矿床中磷灰石Sr同位素特征及意义.地质论评,2003,49(3):272-277
    [187]袁峰,周涛发,范裕,等.庐枞盆地中生代火山岩的起源、演化和形成背景.岩石学报,2008,24(8):1691-1702
    [188]袁继海,詹秀春,樊兴涛,等.硫化物矿物中痕量元素的激光剥蚀—电感耦合等离子体质谱微区分析进展.岩矿测试,2011,30(2):121-130
    [189]袁家铮.梅山铁矿矿石类型及成因-高温实验结果探讨.现代地质,1990,4(4):77-84
    [190]袁家铮,张峰,殷纯嘏,等.梅山铁矿矿浆成因的系统探讨.现代地质,1997,11(2):170-175
    [191]袁顺达,侯可军,刘敏.安徽宁芜地区铁氧化物-磷灰石矿床中金云母Ar-Ar定年及其地球动力学意义.岩石学报,2010,26(3):797-808
    [192]翟裕生,姚书振,林新多,等.1992.长江中下游地区铁铜(金)成矿规律.北京:地质出版社,1-235
    [193]张乐骏,周涛发,范裕,等.宁芜盆地陶村铁矿床磷灰石的LA-ICP-MS研究.地质学报,2011,85(5):834-848
    [194]张旗,简平,刘敦一,等.宁芜火山岩的锆石SHRIMP定年及其意义.中国科学(D辑),2003,33(4):309-314
    [195]张旗,王焰,钱青,等.中国东部燕山期埃达克岩的特征及其构造-成矿意义.岩石学报,2001,17(2):236-244
    [196]张荣华,胡书敏,王军,等.长江中下游典型火山岩区水-岩相互作用.北京:中国大地出版社,2002.1-175
    [197]张荣华.长江中下游玢岩铁矿围岩蚀变的地球化学分带形成机理.地质学报,1980,(1):70-85
    [198]张少兵,郑永飞.扬子陆核的生长和再造:锆石U-Pb年龄和Hf同位素研究.岩石学报,2007,23(2):393-1015
    [199]章邦桐,张富生,倪琦生,等.安庐石英正长岩带的地质和地球化学特征及成因探讨.岩石学报,1988,4(3):1-12
    [200]赵一鸣,吴良士,白鸽,等.中国主要金属矿床成矿规律.北京:地质出版社,2004.1-411
    [201]赵玉琛.宁芜火山岩型铜金矿类型和成因探讨.黄金,1994,15(11):13-19
    [202]赵玉琛.宁芜火山岩区隐爆角砾岩体地质特征及其控矿性.中国区域地质,1990,(3):249-254
    [203]赵玉琛和陆明.宁芜碱性火山岩地质特征及开发应用探讨.非金属矿,1994,99(3):7-10
    [204]郑永飞.化学地球动力学.北京:科学出版社,1999.1-392
    [205]中国科学院地球化学研究所.宁芜型铁矿床形成机理.北京:科学出版社,1987.1-152
    [206]周涛发,范裕,袁锋.长江中下游成矿带成岩成矿作用研究进展.岩石学报,2008a,24(8): 1665-1678
    [207]周涛发,范裕,袁峰,等.安徽庐枞(庐江-枞阳)盆地火山岩的年代学及其意义.中国科学(D辑),2008b,38(11):1342-1353
    [208]周涛发,张乐骏,袁峰,等.安徽铜陵新桥Cu-Au-S矿床黄铁矿微量元素LA-ICP-MS原位测定及其对矿床成因的制约.地学前缘,2010,17(2):306-319
    [209]朱光,刘国生,牛漫兰,等.郯庐断裂带的平移运动与成因.地质通报,2003,22(3):200-207
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.