复元胶囊对退行性骨关节炎软骨基质降解的防治研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     研究体现补益肝肾与化瘀通络治法的复元胶囊及其活性成分对退行性骨关节炎关节软骨基质降解的保护作用,并从uPA系统、IκBα-NF-κB信号途径的角度探讨其作用机制。
     方法
     1新西兰大白兔48只,随机分为正常组、模型组、盐酸氨基葡萄糖胶囊组及复元胶囊低、中、高剂量组6组,每组8只。采用膝关节石膏制动法结合d-半乳糖30 mg/kg/d皮下注射6周建立兔衰老骨关节炎模型,造模当日即开始治疗,正常组、模型组予生理盐水10ml,盐酸氨基葡萄糖组剂量为90 mg/kg/d,复元胶囊低、中、高剂量组剂量分别为1350 mg/kg/d,2700 mg/kg/d,5400 mg/kg/d,灌胃,1次/日,连续10周。HE染色关节软骨Mankin’s评分,免疫组化学染色法检测软骨组织中尿激酶型纤溶酶原激活物(uPA)及其特异性受体(uPAR)和抑制剂(PAI)的表达,Western检测各组软骨组织中uPA、NF-κB的表达。
     2于24孔板中培养兔软骨组织,分为空白组、20%空白血清组、TNF-α模型组、uPA抑制剂阿米洛利组、5%、10%、20%复元胶囊含药血清组共7组。除空白组,各组均加入TNF-α10 ug/L诱导软骨组织基质降解, 1 h后,按实验分组加药。采用1,9-二甲基亚甲蓝法检测各组培养上清中氨基聚糖(GAG)的含量,以评价软骨基质中蛋白多糖降解的情况。采用碱水解法检测各组培养上清中羟脯氨酸(Hyp)释放的量,以评价软骨基质中胶原降解的情况。
     3原代培养兔软骨细胞,MTT检测各组软骨细胞活性,筛选药物最佳作用浓度,分为7组:空白组、TNF-α模型组、盐酸氨基葡萄糖25 mg/m1组、20%复元胶囊含药血清组、淫羊藿苷12.5μg/ml组、三七皂苷R1 125μg/ml组、淫羊三七组(淫羊藿苷12.5μg/ml+三七皂苷125μg/ml)组, RT-PCR检测各组uPA、NF-κB(P65) mRNA的含量,EMSA检测NF-κB(P65)与DNA结合的活性,Western检测IκBα水平。
     结果
     1复元胶囊治疗兔骨关节炎10周后,各组病理Mankin’s评分分别为模型组8. 73±0. 94,盐酸氨基葡萄糖组3. 46±0.78,复元胶囊高剂量组3. 28±0. 46。结果显示复元胶囊可改善兔骨关节炎软骨病变,复元胶囊高剂量与模型组比较差异有显著性(P<0.01),与盐酸氨基葡萄糖组比较差异无显著性(P>0.05)。
     免疫组化显示uPA、uPAR及PAI阳性表达定位于软骨细胞的细胞质,呈黄色或棕黄色颗粒。模型组中uPA、uPAR及PAI阳性细胞率分别为79.61±2.78,60.55±1.35,52.33±2.87,盐酸氨基葡萄糖组为35.38±2.31 , 30.4±1.34 , 72.35±1.52 ,复元胶囊高剂量组分别为36.45±1.35,31.35±1.18,66.57±1.25,结果显示复元胶囊高剂量治疗后uPA及uPAR降低,PAI升高,与模型组比较差异有显著性(P<0.01),与盐酸氨基葡萄糖组比较差异无显著性(P>0.05)。
     Western blot检测结果,模型组uPA/GAPDH、NF-κB/GAPDH为1.13692±0.2451,0.89828±0.1650,盐酸氨基葡萄糖组为0.25147±0.0537,0.36386±0.0458,复元胶囊高剂量组为0.26003±0.0427,0.25315±0.0336,结果提示复元胶囊高剂量组能显著降低兔关节软骨中uPA、NF-κB表达,与模型组比较差异有显著性(P<0.01),复元胶囊中、高剂量组对NF-κB的抑制作用强于盐酸氨基葡萄糖组(P<0.05)。
     2复元胶囊对兔软骨组织块基质分解代谢产物GAG、Hyp的研究显示,空白组仅有微量释放,分别为1.32±0.18,0.05±0.01,TNF-α模型组则有显著释放,分别为4.76±0.39,0.89±0.07,两组比较差异有显著性(P<0.01)。uPA抑制剂阿米洛利组GAG、Hyp含量分别为1.85±0.21,0.41±0.06,20%复元胶囊含药血清组分别为2.92±0.34,0.64±0.07。结果显示,复元胶囊有一定抑制软骨基质中蛋白多糖及胶原降解的作用,20%复元胶囊含药血清组GAG、Hyp的释放较TNF-α模型组显著降低(P<0.01),但作用弱于阿米洛利(P<0.01)。
     3复元胶囊及其主要成份对兔软骨细胞实验,MTT法检测各组兔关节软骨细胞活性结果显示,复元胶囊含药血清、淫羊藿苷、三七皂苷R1、淫羊藿苷+三七皂苷R1均能促进软骨细胞增殖活性,以48 h时作用最明显,与空白组比较差异有统计学意义(P<0.01 ),复元胶囊含药血清组作用最强,优于阳性对照盐酸氨基葡萄糖组(p<0.05)。
     RT-PCR实验显示,空白组uPA、NF-κB(p65)mRNA表达量分别为0.225±0.016,0.202±0.014,TNF-α模型组为0.429±0.018,0.463±0.021,较空白组明显升高(P<0.01)。盐酸氨基葡萄糖组、复元胶囊含药血清组、淫羊藿苷组、三七皂苷R1组、淫羊藿苷+三七皂苷R1组uPA mRNA的表达分别为0242±0.019,0.254±0.012,0.273±0.013,0.247±0.015,0.236±0.014 ; NF-κB ( p65 ) mRNA的表达分别为0.243±0.017 ,0.229±0.012,0.281±0.011,0.262±0.015,0.232±0.014。结果表明,各实验用药组都能显著降低uPA、NF-κB(P65) mRNA水平,与TNF-α模型组比较有显著差异(P<0.01),但各给药组间无明显差异(P>0. 05)。
     EMSA实验检测NF-κB(p65)与DNA的结合活性结果显示,空白组结合电泳条带光密度A值为47.72±8.19 , TNF-α模型组为141.25±31.83,较空白组显著升高(P<0.01)。盐酸氨基葡萄糖组、复元胶囊含药血清组、淫羊藿苷组、三七皂苷R1组、淫羊藿苷+三七皂苷R1组分别为84.28±19.04、52.85±11.42、86.66±35.23、91.15±28.67、71.47±10.57,反映各药物组细胞内NF-κB(p65)与DNA的结合活性均不同程度下降,与TNF-α模型组比较差异有统计学意义(P<0.01),其中复元胶囊含药血清组作用最强,淫羊藿苷+三七皂苷R1组显示协同效应,均优于阳性对照盐酸氨基葡萄糖组(P<0.01),复元胶囊含药血清组作用优于淫羊藿苷+三七皂苷R1组(P<0.01)。
     Western blot检测各组IκBα的表达,空白组IκBα表达量为0.348±0.025,TNF-α模型组为0.374±0.032,与空白组无显著差异(P>0.05)。盐酸氨基葡萄糖组、复元胶囊含药血清组、淫羊藿苷组、三七皂苷R1组、淫羊藿苷+三七皂苷R1组IκBα的表达分别为0.739±0.028,0.763±0.021,0.824±0.035,0.793±0.024,0.832±0.023,与模型组比较明显升高(P<0.01)。各中药组与盐酸氨基葡萄糖组比较差异无显著性(P>0.05)。
     结论
     1复元胶囊可明显改善兔骨关节病理改变,降低Mankin’s评分。复元胶囊能显著降低兔关节软骨中uPA、uPAR、NF-κB的表达,明显升高PAI的表达。提示复元胶囊可能通过调控uPA系统对骨关节炎发挥防治作用。
     2复元胶囊含药血清对兔软骨组织块GAG、Hyp有明显下调作用,表明复元胶囊具有一定抑制软骨基质中蛋白多糖及胶原降解的作用。
     3复元胶囊及其主要成份淫羊藿苷、三七皂苷R1均能促进软骨细胞增殖活性,显著降低uPA、NF-κB(P65) mRNA水平,降低NF-κB(p65)与DNA的结合活性,升高细胞内IκBα水平。提示复元胶囊及其主要成份可能通过升高IκBα水平,降低NF-κB (P65)的活性,从而降低uPA的表达,保护软骨细胞免受炎症因子的损伤。
Objective
     To study the protective effects of FuYuan capsule and its two main active ingredients, which introduced the therapy of nourishing liver and kidney also resolving stasis and dredging collaterals, on the extracellular matrix of osteoarthritis. To illuMinate its molecular mechanism through the urokinase-type plasminogen activator (uPA)systerm and IκBα-NF-κB signaling pathway.
     Methods
     1 Forty-eight New Zealand rabbits were divided into 6 groups randomly, 8 rabbits in each group : normol group and model group(saline10ml/d),Glucosamine hydrochloride (90mg/kg/d), Fyc low dose group(1350 mg/kg/d),middle dose group (2700 mg/kg/d) and high dose group (5400 mg/kg/d).Rabbit osteoarthritis model was induced by combined treatment of D-galactose injection in dose of 30mg/kg/d and plaster immobilization,for 6周eeks . Rabbits were treated according to grouping at the same day of modeling, gavage , daily , for 10周eeks. Morphology of cartilage were detected by light microscope and HE staining.Then cartilage sections were analyzed by immunohistochemistry to test uPA,uPAR and PAI. The expresss of uPA、NF-κB were analyzed by Western blotting .
     2 Rabbit cartilage tissues were cultured in 24 well comboplate , divided into blank group, 20% blank seruM group, TNF-αmodel group(10 ug / L,1h), uPA inhibitor amiloride group 0.5mmol / L, 5%, 10%, 20% Fyc containing seruM groups. Except the blank group, each group was stimulated by TNF-α(10 ug / L,1h) to induce the cartilage matrix degradation. Then disposed according to grouping. glycosaminoglycan(GAG) that had been released into the mediuM were measured by 1,9-dimethylmethylene blue method to evaluate the extent of proteoglycan degradation. Hydroxyproline that had been released into the mediuM were measured by alkali hydrolyzation method to evaluate the extent of collagen degradation.
     3 Rabbit cartilage cells were cultured for experimentation and its activity were detected by MTT. According to the result of MTT, 7 groups were divided: blank group, TNF-αmodel group, Glucosamine hydrochloride (25 mg/m1) group,20% FuYuan capsule seruM containing group,Icariin group (12.5μg/ml),arasaponin R1 group (125μg/ml),Icariin (12.5μg/ml) combined arasaponin R1 (125μg/ml) group. The content of uPA, NF-κB(p65) mRNA were determined by reverse transcription polymerase chain reaction (RT-PCR). The activities of NF-κB(P65) combined DNA were determined by electrophoretic mobility shift assays (EMSA). IκBαwere detected by Western blotting.
     Results
     1 After treatment of OA model 10 weeks, analyse Mankin’s score of each group. Model group was 8.73±0. 94, Glucosamine hydrochloride group was 3.46±0.78, Fyc high administration was 3.28±0.46. Fyc high administration could markedly decrease the pathological damage. There were significant differences in Mankin’s score among high dose FuYuan capsule and model group (P<0.01), not worse than the Glucosamine hydrochloride group(P>0. 05).
     Immunohistochemical staining indicated that the expression intensities and positive cell ratio of uPA, uPAR and PAI increased in OA group 79.61±2.78 , 60.55±1.35 , 52.33±2.87 compared with the model group(P<0.01), while FuYuan capsule treatment could reduce uPA 36.45±1.35 and uPAR 31.35±1.18 expression with the best effect in high dose group(P<0.01). PAI 66.57±1.25 decreased after FuYuan capsule treatment( P<0.01 ) . Not worse than the Glucosamine hydrochloride group 35.38±2.31,30.4±1.34,72.35±1.52(P>0.05).
     Western blot test results show that the uPA/GAPDH, NF-κB/GAPDH in model group were 1.13692±0.2451,0.89828±0.1650,which in glucosamine hydrochloride group were 0.25147±0.0537,0.36386±0.0458, in Fuyuan capsule group of high-dose were 0.26003±0.0427,0.25315±0.0336. These results indicate that the expresssion of uPA、NF-κB were reduce significantly after high dose FuYuan capsule treatment(P<0.01). The inhibiting effect to NF-κB in middle and high dose FuYuan capsule is better than the Glucosamine hydrochloride group(P<0. 05)。
     2 The study of rabbit cartilage tissue matrix degradation metabolites GAG, Hyp shows that blank group were 1.32±0.18,0.05±0.01,TNF-αmodel group were 4.76±0.39, 0.89±0.07, increased significantly than blank group (P <0.01). The contents of GAG and Hyp in uPA inhibitor amiloride group were 4.69±0.30,0.41±0.06, in glucosamine hydrochloride group were 3.15±0.59,0.72±0.13, which in 20% FuYuan capsule containing seruM group were 2.92±0.34, 0.64±0.07, all significantly decrease compared with the model group (P <0.01). The results suggest that FuYuan capsule could inhibite the cartilage matrix proteoglycan and collagen degradati in osteoarthritis chondrocytes.
     3 MTT showed that FuYuan capsule, icariin ,arasaponin R1 ,icariin and arasaponin R1 could significantly promote proliferation of cartilage cells in 48h compared with blank control group (P<0.01). FuYuan capsule group were better than the glucosamine hydrochloride group(P<0.05).
     RT-PCR showed that uPA, NF-κB(p65)mRNA expression in blank group were 0.225±0.016,0.202±0.014,while in TNF-αgroup were 0.429±0.018,0.463±0.021 which increased significantly compared with blank group(P<0.01)The uPA, mRNA expression of above remedy groups were 0242±0.019,0.254±0.012,0.273±0.013,0.247±0.015,0.236±0.014, NF-κB(p65)mRNA were 0.243±0.017,0.229±0.012,0.281±0.011,0.262±0.015,0.232±0.014 which indicate that the expresssion of uPA, NF-κB(p65)mRNA were reduced significantly than the TNF-αgroup(P<0.01). There were no significant difference among each remedy group.(P>0. 05).
     EMSA to evaluate the binding activity between NF-κB(p65)and DNA showed that absorbance value in blank group were 47.72±8.19, while in TNF-αgroup were 141.25±31.83,which increased significantly when compared with blank group(P<0.01).The absorbance value in remedy groups were 84.28±19.04,52.85±11.42,86.66±35.23,91.15±28.67,71.47±10.57 respectively,which indicate that FuYuan capsule containing seruM group has the best effect, compared with the TNF-αgroup and Icariin combined arasaponin R1 group(P<0.01). Icariin combined arasaponin R1 group show synergistic effect, compared with the TNF-αgroup(P<0.01).
     Western Blotting was performed to evaluate the extent of IκBα. There was no significant difference between TNF-αgroup and blank group(P>0.05). While glucosamine hydrochloride, Fyc, icariin, arasaponin R1, and icariin combined with arasaponin R1 group could significantly increase the extent of IκBα, which respectively reached 0.739±0.028,0.763±0.021,0.824±0.035,0.793±0.024,0.832±0.023, than TNF-αgroup 0.374±0.032(P<0. 05 or P<0.01),but no significant difference among all treatment groups(P>0. 05).
     Conclusions
     1 Fuyuan capsule can significantly improve pathological changes in OA rabbit model and lower Mankin’s ' s score. FuYuan capsule could reduce the expression of uPA and uPAR while increase PAI in cartilage cells of experimental osteoarthritis of rabbits, which maybe potential mechanisms underlying the effect of FuYuan capsule for OA.
     2 FuYuan capsule containing seruM can significantly decrease the expression of GAG and Hyp in rabbit cartilage tissue. FuYuan capsule could inhibite the degradation of collagen and proteoglycan in the cartilage matrix.
     3 FuYuan capsule and its two main active ingredients, icariin and arasaponin R1 could protect chondrocytes from damage through increasing the express of IκBα, inhibiting the NF-κB(P65) activity,and then reducing the expresssion of uPA.
引文
[1] Bierma-Zeinstra SM,Verhagen AP. Osteoarthritis subpopulations and implications for clinical trial design. Arthritis Res Ther,2011,13(2):213.
    [2] Howes F,Buchbinder R,Winzenberg TB. Opioids for osteoarthritis? Weighing benefits and risks:A Cochrane Musculoskeletal Group review.J Fam Pract, 2011,60(4):206-12.
    [3] Weathers E, Creedon R. The impact of osteoarthritis on psychological well being. Br J Nurs,2011,20(4):243-6.
    [4] Hui C, Salmon L, Maeno S, et al. Five-year comparison of oxidized zirconiuM and cobalt-chromiuM femoral components in total knee arthroplasty:a randomized controlled trial.J Bone Joint Surg Am,2011,93(7):624-30.
    [5] Abraham AM,Goff I,Pearce MS,et al. Reliability and validity of ultrasound imaging of features of knee osteoarthritis in the community. BMC Musculoskelet Disord,2011,12(1):70.
    [6] Pareek A,Gupta AK,Chandurkar NB,et al. Zaltoprofen, a noninferior alternative to diclofenac for the treatment of primary knee osteoarthritis -a comparative evaluation of efficacy and safety in a 4-week, multicentric, randomized, double-blind, double-duMmy trial. Expert Opin Pharmacother,2011,12(7):1007-15.
    [7] Dell'accio F,Vincent TL. Joint surface defects: clinical course and cellular response in spontaneous and experimental lesions. Eur Cell Mater,2010,20:210-7.
    [8] Bertrand J,Cromme C,UMlauf D,et al. Molecular mechanisms of cartilage remodelling in osteoarthritis. Int J Biochem Cell Biol,2010,42(10):1594-601.
    [9] Tang YL,Zhu GQ,Hu L,et al. Effects of intra-articular administration of sodium hyaluronate on plasminogen activatet or system in temporomandibular joints with osteoarthritis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod,2010,109(4):541-7.
    [10] Cope AP,Charles P,Plant D,et al. Functional autoantibodies against serpin E2 in rheuMatoid arthritis. Arthritis RheuM,2010,62(1):93-104.
    [11] Belcher C,Fawthrop F,Bunning R,et al. Plasminogen activators and their inhibitors in synovial fluids from normal,osteoarthritis,and rheumatoid arthritis knees. Ann Rheum Dis,1996,55(4):230-6.
    [12] Chu SC,Yang SF,Lue KH,et al. Urokinase-type plasminogen activator, receptor,and inhibitor correlating with gelatinase-B (MMP-9) contribute to inflammation in gouty arthritis of the knee. J RheuMatol,2006,33(2):311-7.
    [13] Cheng CC,Chen YH,Chang WL,et al. Phytoestrogen bavachin mediates anti-inflammation targeting Ikappa B kinase-I kappaB alpha-NF-kappaB signaling pathway in chondrocytes in vitro. Eur J Pharmacol,2010,636(1-3):181-8.
    [14] Canas N , Gorina R , Planas AM , et al. Chondroitin sulfate inhibits lipopolysaccharide-induced inflammation in rat astrocytes by preventing nuclear factor kappa B activation. Neuroscience,2010,167(3):872-9.
    [15] Diehl P,Hantke B,Hennig M,et al. protein expression of MMP-13, uPA, and PAI-1 in pseudocapsular and interface tissue around implants of loose artificial hip joints and in osteoarthritis. Int J Mol Med,2004,13(5):711-5.
    [16] Wang P , Zhu F,Lee NH,et al. Shear-induced interleukin-6 synthesis in chondrocytes:roles of E prostanoid (EP) 2 and EP3 in cAMP/protein kinase A- and PI3-K/Akt-dependent NF-kappaB activation. J Biol Chem , 2010 , 285(32) :24793-804.
    [17] Marcu KB,Otero M,Olivotto E,NF-kappaB signaling:multiple angles to target OA. Curr Drug Targets,2010,11(5):599-613.
    [18] Rasheed Z , Anbazhagan AN , Akhtar N , et al. Green tea polyphenol epigallocatechin-3-gallate inhibits advanced glycation end product-induced expression of tuMor necrosis factor-alpha and matrix metalloproteinase-13 in huMan chondrocytes. Arthritis Res,2009,11(3):R71.
    [19] Madhavan S,Anghelina M,Sjostrom D,et al. Biome chanical signals suppress TAK1 activation to inhibit NF-kappaB transcriptional activation infibrochondrocytes. J Immunol,2007,179(9):6246-54.
    [20] Ichikawa H,Aggarwal BB. Guggulsterone inhibits osteoclastogenesis induced by receptor activator of nuclear factor-kappaB ligand and by tuMor cells by suppressing nuclear factor-kappaB activation. Clin Cancer Res,2006,12(2):662-8.
    [21] Ahmed S,Wang N,Hafeez BB,et al. Punica granatuM L. extract inhibits IL-1beta-induced expression of matrix metalloproteinases by inhibiting the activation of MAP kinases and NF-kappaB in huMan chondrocytes in vitro. J Nutr, 2005,135(9):2096-102.
    [22] Shishodia S,Aggarwal BB. Guggulsterone inhibits NF-kappaB and IkappaBalpha kinase activation,suppresses expression of anti-apoptotic gene products,and enhances apoptosis. J Biol Chem,2004,279(45):47148-58.
    [23] Frondoza CG,Sohrabi A,Polotsky A,et al. An in vitro screening assay for inhibitors of proinflammatory mediators in herbal extracts using huMan synoviocyte cultures.In Vitro Cell Dev Biol Anim,2004,40(3-4):95-101.
    [24] Singh R , Ahmed S , Islam N , et al. Epigallocatechin-3-gallate inhibits interleukin-1beta-induced expression of nitric oxide synthase and production of nitric oxide in huMan chondrocytes:suppression of nuclear factor kappaB activation by degradation of the inhibitor of nuclear factor kappaB. Arthritis RheuM,2002,46(8):2079-86.
    [25]刘峻承,鲁丽.膝关节骨关节炎中医证候研究进展.中国现代药物应用,2009,3(20):190-191.
    [26]江艳,李荣亨,曹文富.骨关节炎中药治疗研究进展.实用中医药杂志, 2007, 23 (5):336-337.
    [27]巫桁锞,李荣亨,钟玉.复元胶囊对兔膝骨关节炎滑膜形态影响的实验研究.中国中医急症,2010,19(5):823-824,829.
    [28]胡文兴,李荣亨.复元胶囊含药血清对软骨细胞增殖与合成代谢的影响.中国中医基础医学杂志,2008,14(4):275-279.
    [29]牟方政,李荣亨,张文亮,等.复元胶囊对衰老性骨关节炎模型兔血清氧自由基代谢及血液流变学的影响.中国老年学杂志,2010,30(12):3679-3682.
    [30]周小莉,李荣亨.复元胶囊对硝普钠诱导的软骨细胞凋亡与细胞周期作用的实验研究.中国药房,2010,21(39):3661-3663.
    [31]刘婵娟,李荣亨,杨俊卿.复元胶囊的毒理学研究.重庆医科大学学报,2009, 34(7):916-919.
    [32]钟玉,周昌渝,李荣亨.复元胶囊对实验性骨关节炎MMP11、TIMP1及TIMP2的影响.中国老年学杂志,2007,7 (19)∶1 877-1881.
    [33]钟玉,李荣亨,周小莉,等.复元胶囊对实验性兔骨关节炎白介素1及转化生长因子β2的调节作用.重庆医科大学学报,2007,32 (8 )∶8 56-861.
    [34]周小莉,李荣亨,胡文兴.复元胶囊对膝骨关节炎模型血清软骨寡聚基质蛋白的影响.中国老年学杂志,2009,29(2):178-180.
    [35]周小莉,李荣亨,钟玉.复元胶囊对实验性骨关节炎软骨细胞凋亡和P53、caspase-3 mRNA表达的影响.中药药理与临床,2008,24(5):48-51.
    [36]周小莉,李荣亨.复元胶囊对软骨细胞凋亡细胞外信号调节蛋白激酶1/2信号通路的作用研究.中国老年学杂志,2008,28(4):329-331.
    [37]梁晓芳,李荣亨,唐静.复元胶囊抑制骨关节炎大鼠软骨及血清白细胞介素-6的实验研究.时珍国医国药,2010,21(4):854-856.
    [38]唐静,李荣亨,周小莉.复元胶囊对实验性大鼠骨关节炎软骨中TNF-α和VEGF的影响.时珍国医国药,2010,21(6):1374-1376.
    [39]巫桁锞,李荣亨,钟玉.复元胶囊对兔膝骨关节炎滑膜IL- 1 MMP- 13及iNOS表达的影响.重庆医科大学学报,35(7):1004-1009.
    [40]江艳,李荣亨.复元胶囊对膝骨关节炎患者血清MMP -3和TIMP -1表达变化的影响.西南国防医药,2010,20(9 ):934-936.
    [41] Tochigi Y,Vaseenon T,Heiner AD,et al.Instability dependency of osteoarthritis development in a rabbit model of graded anterior cruciate ligament transection.J Bone Joint Surg Am,2011,93(7):640-7.
    [42] Sassi N,Laadhar L,Driss M,et al. The role of the Notch pathway in healthy and osteoarthritic articular cartilage:from experimental models to ex vivo studies. Arthritis Res Ther,2011,13(2):208.
    [43] Mao GX,Deng HB,Yuan LG,et al.protective role of salidroside against aging in amouse model induced by D-galactose.Biomed Environ Sci,2010 ,23(2):161-6.
    [44]伍筱梅,张雪林.医用臭氧关节腔内注射对骨关节炎的作用和安全性的实验研究及影像学观察.南方医科大学2005级博士学位论文.
    [45] UMemoto Y,Oka T,Inoue T,et al. Imaging of a rat osteoarthritis model using (18)F-fluoride positron emission tomography. Ann Nucl Med,2010,24(9):663-9.
    [46] Chen D,Zhang Z,Cao J,et al. Effect of glucosamine hydrochloride capsules on articular cartilage of rabbit knee joint in osteoarthritis. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi,2010,24(3):287-91.
    [47] Busso N,Péclat V,So A,et al. Plasminogen activation in synovial tissues: differences between normal,osteoarthritis,and rheuMatoid arthritis joints. Ann RheuM Dis,1997,56(9):550-7.
    [48] Heinecke LF,Grzanna MW,Au AY,et al. Inhibition of cyclooxygenase-2 expression and prostaglandin E2 production in chondrocytes by avocado soybean unsaponifiables and epigallocatechin gallate. Osteoarthritis Cartilage,2010,18(2):220-7.
    [49] Waldburger JM,Boyle DL,Pavlov VA,et al. Acetylcholine regulation of synoviocyte cytokine expression by the alpha7 nicotinic receptor. Arthritis RheuM,2008,58(11):3439-49.
    [50] Chockalingam PS,Varadarajan U,Sheldon R,et al. Involvement of protein kinase Czeta in interleukin-1beta induction of ADAMTS-4 and type 2 nitric oxide synthase via NF-kappaB signaling in primary huMan osteoarthritic chondrocytes. Arthritis RheuM,2007,56(12):4074-83.
    [51] Roman-Blas JA,Stokes DG,Jimenez SA. Modulation of TGF-beta signaling by proinflammatory cytokines in articular chondrocytes. Osteoarthritis Cartilage,2007,15(12):1367-77.
    [52] Jiang D,Zou J,Huang L,et al. Efficacy of intra-articular injection of celecoxib in a rabbit model of osteoarthritis. Int J Mol Sci,2010,11(10):4106-13.
    [53] Lin MN,Liu XX,Wang SL,et al. Effect of OA kneepad on apoptosis genes Bcl-2 and p53 expression in articular cartilage cells of experimental kneeosteoarthritis.Zhongguo Gu Shang,2009,22(9):688-91.
    [54] Ji J,Dai J,Shi D,et al. Association of genetic and mechanical factors with age of onset of knee osteoarthritis. Zhonghua Yi Xue Yi Chuan Xue Za Zhi,2010,27(6):672-4.
    [55] Yudoh K,Karasawa R. Statin prevents chondrocyte aging and degeneration of articular cartilage in osteoarthritis (OA). Aging (Albany NY),2010,2(12):990-8.
    [56] Bonifacio A,Beleites C,Vittur F,et al. Chemical imaging of articular cartilage sections with Raman mapping,employing uni- and multi-variate methods for data analysis. Analyst,2010,135(12):3193-204.
    [57] Berger MJ,Doherty TJ. Sarcopenia:prevalence,mechanisms,and functional consequences. Interdiscip Top Gerontol,2010,37:94-114.
    [58] Toghraie FS,Chenari N,Gholipour MA,et al. Treatment of osteoarthritis with infrapatellar fat pad derived mesenchymal stem cells in Rabbit. Knee,2011 ,18(2):71-5.
    [59] Lingaraj K,Poh CK,Wang W. Vascular endothelial growth factor (VEGF) is expressed during articular cartilage growth and re-expressed in osteoarthritis. Ann Acad Med Singapore,2010,39(5):399-403.
    [60] Caramés B,Taniguchi N,Otsuki S,et al. Autophagy is a protective mechanism in normal cartilage , and its aging-related loss is linked with cell death and osteoarthritis.Arthritis RheuM,2010 ,62(3):791-801.
    [61] Gurkan I,Ranganathan A,Yang X,et al. Modification of osteoarthritis in the guinea pig with pulsed low-intensity ultrasound treatment. Osteoarthritis Cartilage,2010,18(5):724-33.
    [62] Banerjee P,McLean CR. Femoroacetabular impingement:a review of diagnosis and management. Curr Rev Musculoskelet Med,2011,4(1):23-32.
    [63] Kalichman L , Li L , Hunter DJ , et al. Association between computed tomography-evaluated luMbar lordosis and features of spinal degeneration,evaluated in supine position. Spine J,2011,11(4):308-15.
    [64] Bhutta MA,Shah VB. Fracture of the femoral alignment stem of a hip resurfacingarthroplasty. A case report. Acta Orthop Belg,2011,77(1):128-31.
    [65] BerenbauM F. Osteoarthritis year 2010 in review: pharmacological therapies. Osteoarthritis Cartilage, 2011,19(4):361-5.
    [66] Lim H , Kim HP. Matrix metalloproteinase-13 expression in IL-1β-treated chondrocytes by activation of the p38 MAPK/c-Fos/AP-1 and JAK/STAT pathways. Arch Pharm Res,2011,34(1):109-17.
    [67] Gupta AK,Acharya K,Sancheti PS,et al. A double-blind, randomized, multicentric,placebo-controlled clinical trial of antarth,a phytomedicine,in the treatment of osteoarthritis. Indian J Pharmacol,2011,43(1):69-72.
    [68] Prieto-Alhambra D,Javaid MK,Judge A,et al. Fracture risk before and after total hip replacement in patients with osteoarthritis:Potential benefits of bisphosphonate use. Arthritis RheuM,2011,63(4):992-1001.
    [69] Phitak T,Pothacharoen P,Kongtawelert P. Comparison of glucose derivatives effects on cartilage degradation. BMC Musculoskelet Disord,2010,11:162.
    [70] Naito K,Watari T,Furuhata A,et al. Evaluation of the effect of glucosamine on an experimental rat osteoarthritis model. Life Sci,2010,86(13-14):538-43.
    [71] Tuliakov VA,Zupanets IA. The influence of paracetamol on the parameters of connective tissue metabolism during experimental osteoarthrosis. Eksp Klin Farmakol,2009 72(5):50-5.
    [72] Black C,Clar C,Henderson R,et al. The clinical effectiveness of glucosamine and chondroitin supplements in slowing or arresting progression of osteoarthritis of the knee:a systematic review and economic evaluation. Health Technol Assess,2009,13(52):1-148.
    [73] Vangsness CT Jr,Spiker W,Erickson J. A review of evidence-based medicine for glucosamine and chondroitin sulfate use in knee osteoarthritis. Arthroscopy,2009, 25(1):86-94.
    [74] Uitterlinden EJ,Koevoet JL,Verkoelen CF,et al. Glucosamine increases hyaluronic acid production in huMan osteoarthritic synoviuM explants. BMC Musculoskelet Disord,2008,11(9):120.
    [75] Meulyzer M,Vachon P,Beaudry F,et al. Joint inflammation increases glucosamine levels attained in synovial fluid following oral administration of glucosamine hydrochloride. Osteoarthritis Cartilage,2009,17(2):228-34.
    [76] Kawasaki T,Kurosawa H,Ikeda H,et al. Additive effects of glucosamine or risedronate for the treatment of osteoarthritis of the knee combined with home exercise:a prospective randomized 18-month trial. J Bone Miner Metab,2008,26(3):279-87.
    [77] van den Boom R,van der Harst MR,Brommer H,et al. Relationship between synovial fluid levels of glycosaminoglycans,hydroxyproline and general MMP activity and the presence and severity of articular cartilage change on the proximal articular surface of P1. Equine Vet J.,2005,37(1):19-25.
    [78] Ingram KR,Wann AK,Wingate RM,et al. Signal pathways regulating hyaluronan secretion into static and cycled synovial joints of rabbits. J Physiol,2009,587(Pt 17):4361-76.
    [79] Tattersall AL,Wilkins RJ. Effects of hexosamines and omega-3/omega-6 fatty acids on pH regulation by interleukin 1-treated isolated bovine articular chondrocytes. Pflugers Arch,2008,456(3):501-6.
    [80] Yusuff KB,Balogun O. Physicians' prescribing of anti-hypertensive combinations in a tertiary care setting in southwestern Nigeria. J Pharm Pharm Sci,2005,8(2):235-42.
    [81] SuMmers GC,Merrill A,Sharif M,et al. Swelling of articular cartilage depends on the integrity of adjacent cartilage and bone. Biorheology,2008,45(3-4):365-74.
    [82] Jo H,Park JS,Kim EM,et al. The in vitro effects of dehydroepiandrosterone on huMan osteoarthritic chondrocytes. Osteoarthritis Cartilage,2003,11(8):585-94.
    [83] Kery V,OrlovskáM,StancíkováM,et al. Urinary glycosaminoglycan excretion in rheuMatic diseases. Clin Chem,1992,38(6):841-6.
    [84]吴银松,胡蕴玉.辛伐他汀对骨关节炎软骨保护作用的实验研究.第四军医大学2007年博士毕业论文.
    [85] Bao JP,Chen WP,Feng J,et al. Variation patterns of two degradation enzymesystems in articular cartilage in different stages of osteoarthritis:regulation by dehydroepiandrosterone. Clin Chim Acta,2009,408(1-2):1-7.
    [86] Zhu G,Tang Y,Liang X,et al. Role of hypoxia-inducible factor-1 alpha in the regulation of plasminogen activator activity in rat knee joint chondrocytes. Osteoarthritis Cartilage, 2009 , 17(11):1494-502.
    [87] Lavigne P,Benderdour M,Lajeunesse D,et al. Subchondral and trabecular bone metabolism regulation in canine experimental knee osteoarthritis. Osteoarthritis Cartilage, 2005 ,13(4):310-7.
    [88] Lajeunesse D. The role of bone in the treatment of osteoarthritis. Osteoarthritis Cartilage,2004,12 Suppl A:S34-8.
    [89] Lajeunesse D,Delalandre A,Martel-Pelletier J,et al. Hyaluronic acid reverses the abnormal synthetic activity of huMan osteoarthritic subchondral bone osteoblasts. Bone, 2003, 33(4):703-10.
    [90] Wang WC,Wang Y,Sun CJ. Expression of urokinase-type plasminogen activator and its receptor protein in synovial tissues from osteoarthritis. Hunan Yi Ke Da Xue Xue Bao,2001 , 26(3):257-60.
    [91] Pelletier JP,Lajeunesse D,Jovanovic DV,et al. Carprofen simultaneously reduces progression of morphological changes in cartilage and subchondral bone in experimental dog osteoarthritis. J RheuMatol, 2000, 27(12):2893-902.
    [92] Tamura N,Uzuki M,MatsuMoto F,et al. Expression of urokinase-type plasminogen activator (uPA) and uPA receptor (uPAR) plays a role in destruction of joint tissue in rapidly destructive coxarthropathy (RDC). RyuMachi, 2001, 41(5):851-7.
    [93] Schwab W,Gavlik JM,Beichler T,et al. Expression of the urokinase-type plasminogen activator receptor in huMan articular chondrocytes:association with caveolin and beta 1-integrin. Histochem Cell Biol, 2001, 115(4):317-23.
    [94] Massicotte F,Lajeunesse D,Benderdour M,et al. Can altered production of interleukin-1beta,interleukin-6,transforming growth factor-beta and prostaglandin E(2) by isolated huMan subchondral osteoblasts identify two subgroups of osteoarthritic patients. Osteoarthritis Cartilage, 2002, 10(6):491-500.
    [95] Zhang B,Hu J,Man C,et al. Effect of intra-articular administration of interleukin 1 receptor antagonist on cartilage repair in temporomandibular joint. J Craniofac Surg, 2011 , 22(2):711-4.
    [96] Lapaj L,Markuszewski J,Wierusz-Koz?owska M. Current views on the pathogenesis of osteoarthritis. Chir Narzadow Ruchu Ortop Pol, 2010, 75(4):248-60.
    [97] Pupek-Musialik D,Musialik K,Hen K. Obesity-a challenge for modern ortopedy. Chir Narzadow Ruchu Ortop Pol, 2010, 75(4):236-41.
    [98] De Andres MC,Imagawa K,Hashimoto K,et al. Suppressors of cytokine signalling (SOCS) are reduced in osteoarthritis. Biochem Biophys Res Commun, 2011, 407(1):54-9.
    [99] Altman RD,Smith HS. Opioid therapy for osteoarthritis and chronic low back pain.Postgrad Med,2010,122(6):87-97.
    [100] Ohara H,Iida H,Ito K,et al. Effects of pro-Hyp,a collagen hydrolysate-derived peptide,on hyaluronic acid synthesis using in vitro cultured synoviuM cells and oral ingestion of collagen hydrolysates in a guinea pig model of osteoarthritis. Biosci Biotechnol Biochem, 2010, 74(10):2096-9.
    [101] Nakatani S,Mano H,Sampei C,et al. Chondroprotective effect of the bioactive peptide prolyl-hydroxyproline in mouse articular cartilage in vitro and in vivo. Osteoarthritis Cartilage, 2009 , 17(12):1620-7.
    [102] Jonsson H,Elíasson GJ,Jónsson A,et al. High hand joint mobility is associated with radiological CMC1 osteoarthritis:the AGES-Reykjavik study. Osteoarthritis Cartilage, 2009 , 17(5):592-5.
    [103] Goldring MB,Otero M,PluMb DA,et al. Roles of inflammatory and anabolic cytokines in cartilage metabolism:signals and multiple effectors converge upon MMP-13 regulation in osteoarthritis. Eur Cell Mater, 2011, 24(21):202-20.
    [104] Claassen H,Steffen R,Hassenpflug J,et al. 17β-estradiol reduces expression of MMP-1,-3,and -13 in huMan primary articular chondrocytes from female patients cultured in a three dimensional alginate system. Cell Tissue Res, 2010 , 342(2):283-93.
    [105] Sverdrup FM,Yates MP,Vickery LE,et al. protein geranylgeranylation controls collagenase expression in osteoarthritic cartilage. Osteoarthritis Cartilage, 2010, 18(7):948-55.
    [106] Hojo H,Yano F,Ohba S,et al. Identification of oxytetracycline as a chondrogenic compound using a cell-based screening system. J Bone Miner Metab, 2010 , 28(6):627-33.
    [107] Zhang L,Yang M,Yang D,et al. Molecular interactions of MMP-13 C-terminal domain with chondrocyte proteins. Connect Tissue Res, 2010 , 51(3):230-9.
    [108] Mawatari T,Lindsey DP,Harris AH,et al. Effects of tensile strain and fluid flow on osteoarthritic huMan chondrocyte metabolism in vitro. J Orthop Res,2010,28(7):907-13.
    [109] Ahmed N,Taylor DW,Wunder J,et al. Passaged huMan chondrocytes accuMulate extracellular matrix when induced by bovine chondrocytes. J Tissue Eng Regen Med,2010,4(3):233-41.
    [110] Gabay O,Sanchez C,Salvat C,et al. Stigmasterol:a phytosterol with potential anti-osteoarthritic properties. Osteoarthritis Cartilage, 2010, 18(1):106-16.
    [111] Liang HJ,Tsai CL,Chen PQ,et al. Oxidative injury induced by synthetic huMic acid polymer and monomer in cultured rabbit articular chondrocytes. Life Sci, 1999, 65(11):1163-73.
    [112] So JS,Song MK,Kwon HK,et al. Lactobacillus casei enhances type II collagen/glucosamine-mediated suppression of inflammatory responses in experimental osteoarthritis. Life Sci, 2011, 88(7-8):358-66.
    [113] Goh FG,Piccinini AM,Krausgruber T,et al. Transcriptional regulation of the endogenous danger signal tenascin-C:a novel autocrine loop in inflammation.J Immunol, 2010, 184(5):2655-62.
    [114] Liu J , Du J , Yang S , Qiu X , et al. The effects of PDTC on interleukin-1beta-induced nitric oxide production in chondrocytes.J Huazhong Univ Sci Technolog Med Sci, 2009, 29(3):300-3.
    [115] Kim HA,Yeo Y,Kim WU,et al. Phase 2 enzyme inducer sulphoraphane blocksmatrix metalloproteinase production in articular chondrocytes. RheuMatology (Oxford), 2009, 48(8):932-8.
    [116] Klatt AR, Zech D, Kühn G,et al. Discoidin domain receptor 2 mediates the collagen II-dependent release of interleukin-6 in primary huMan chondrocytes. J Pathol, 2009 , 218(2):241-7.
    [117] Chen LX,Lin L,Wang HJ,et al. Suppression of early experimental osteoarthritis by in vivo delivery of the adenoviral vector-mediated NF-kappaBp65-specific siRNA. Osteoarthritis Cartilage, 2008, 16(2):174-84.
    [118] Lianxu C,Hongti J,Changlong Y. NF-kappaBp65-specific siRNA inhibits expression of genes of COX-2,NOS-2 and MMP-9 in rat IL-1beta-induced and TNF-alpha-induced chondrocytes.Osteoarthritis Cartilage, 2006, 14(4):367-76.
    [119] Rosa SC,Judas F,Lopes MC,et al. Nitric oxide synthase isoforms and NF-kappaB activity in normal and osteoarthritic huMan chondrocytes:regulation by inducible nitric oxide. Nitric Oxide,2008, 19(3):276-83.
    [120] Guillén MI,Megías J,Clérigues V,et al. The CO-releasing molecule CORM-2 is a novel regulator of the inflammatory process in osteoarthritic chondrocytes.RheuMatology (Oxford),2008,47(9):1323-8.
    [121] Shakibaei M , Csaki C , Nebrich S , et al. Resveratrol suppresses interleukin-1beta-induced inflammatory signaling and apoptosis in huMan articular chondrocytes:potential for use as a novel nutraceutical for the treatment of osteoarthritis. Biochem Pharmacol, 2008, 76(11):1426-39.
    [122] Shakibaei M,John T,Schulze-Tanzil G,et al. Suppression of NF-kappaB activation by curcuMin leads to inhibition of expression of cyclo-oxygenase-2 and matrix metalloproteinase-9 in huMan articular chondrocytes:Implications for the treatment of osteoarthritis. Biochem Pharmacol,2007,73(9):1434-45.
    [123] So JS,Song MK,Kwon HK,et al. Lactobacillus casei enhances type II collagen/glucosamine-mediated suppression of inflammatory responses in experimental osteoarthritis.Life Sci,2011,88(7-8):358-66.
    [124] Li X,Wu G, Wu M, Chen W, et al.In vitro study of inhibitory millimeterwave treatment effects on the TNF-α-induced NF-κB signal transduction pathway.Int J Mol Med,2011,27(1):71-8.
    [125] Manning K,Rachakonda PS,Rai MF et al. Co-expression of insulin-like growth factor-1 and interleukin-4 in an in vitro inflammatory model.Cytokine,2010,50(3):297-305.
    [126] R?sler S,Haase T,Claassen H,et al.Trefoil factor 3 is induced during degenerative and inflammatory joint disease,activates matrix metalloproteinases, and enhances apoptosis of articular cartilage chondrocytes.Arthritis RheuM, 2010, 62(3):815-25.
    [127] Gabay O,Sanchez C,Salvat C,et al.Stigmasterol:a phytosterol with potential anti-osteoarthritic properties. Osteoarthritis Cartilage, 2010,18(1):106-16.
    [128] Sakthithasan P,Salter DM,et al. Dynamic compression alters NFkappaB activation and IkappaB-alpha expression in IL-1beta-stimulated chondrocyte/agarose constructs. Inflamm Res, 2010,59(1):41-52.
    [129] Klatt AR,Paul-Klausch B,Klinger G,et al. A critical role for collagen II in cartilage matrix degradation:collagen II induces pro-inflammatory cytokines and MMPs in primary huMan chondrocytes.J Orthop Res, 2009, 27(1):65-70.
    [130] Guillén MI,Megías J,Clérigues V,et al. The CO-releasing molecule CORM-2 is a novel regulator of the inflammatory process in osteoarthritic chondrocytes.RheuMatology (Oxford),2008,47(9):1323-8.
    [131] Lu HT,Liang YC,Sheu MT,et al. Disease-modifying effects of glucosamine HCl involving regulation of metalloproteinases and chemokines activated by interleukin-1beta in huMan primary synovial fibroblasts. J Cell Biochem, 2008, 104(1):38-50.
    [132]武密山,赵素芝,李恩,等.淫羊藿总黄酮及其含药血清对成骨细胞增殖及功能表达的影响.中国药理学通报,2009,25(5):613-616.
    [133]王静,李建平,张跃文,等.淫羊藿药理学研究进展.中国药业,2009,18(8):60-61.
    [134]贾亮亮,袁丁,王洪武,等.淫羊藿苷药理作用的研究进展.现代生物医学进展,2010,10 (20):3976-3979.
    [135]张喜平,齐丽丽,刘达人,等.三七及其有效成分的药理作用研究现状[J].医学研究杂志,2007,36(4):96-98.
    [136]周家明,叶祖光,崔秀明,等.三七皂苷R1、R2和人参皂苷Rb1药效学研究.中成药,2010,32(9):1494-1497.
    [1]徐卫东,吴岳嵩,张春才,等.骨关节炎的诊断与治疗[M].上海:第二军医大学出版社,2004: 132.
    [2]Feeley BT,Gallo RA,Sherman S,et al. Management of osteoarthritis of the knee in the active patient. J Am Acad Orthop Surg,2010,18(7):406-16.
    [3]Simonsen AB,Jorgensen A,Laursen MB,et al. Clinical, radiological and arthroscopic graduation of knee osteoarthritis. Ugeskr Laeger,2011,173(13):956-958.
    [4]Wang P,Zhu F,Lee NH,et al. Shear-induced interleukin-6 synthesis in chondrocytes:roles of E prostanoid (EP) 2 and EP3 in cAMP/protein kinase A- and PI3-K/Akt-dependent NF-kappaB activation. J Biol Chem, 2010,285(32):24793-804.
    [5]Marcu KB, Otero M, Olivotto E. NF-kappaB signaling: multiple angles to target OA. Curr Drug Targets,2010 , 11(5):599-613.
    [6]Rasheed Z , Anbazhagan AN , Akhtar N , et al. Green tea polyphenol epigallocatechin-3-gallate inhibits advanced glycation end product-induced expression of tuMor necrosis factor-alpha and matrix metalloproteinase-13 in huMan chondrocytes. Arthritis Res, 2009,11(3):R71.
    [7]Madhavan S,Anghelina M,Sjostrom D,et al. Biome chanical signals suppress TAK1 activation to inhibit NF-kappaB transcriptional activation in fibrochondrocytes. J Immunol,2007 ,179(9):6246-54.
    [8]Bao JP,Chen WP,Feng J,et al.Variation patterns of two degradation enzyme systems in articular cartilage in different stages of osteoarthritis : regulation by dehydroepiandrosterone. Clin Chim Acta,2009,408(1-2):1-7.
    [9]Sienczyk M,Oleksyszyn J. Irreversible inhibition of serine proteases - design and in vivo activity of diaryl alpha-aminophosphonate derivatives. Curr Med Chem,2009,16(13):1673-87.
    [10]Chu SC, Yang SF, Lue KH, et al. Urokinase-type plasminogen activator, receptor , and inhibitor correlating with gelatinase-B (MMP-9) contribute to inflammation in gouty arthritis of the knee. J RheuMatol, 2006,33(2):311-7.
    [11]Lavigne P,Benderdour M,Lajeunesse D,et al. Subchondral and trabecular bone metabolism regulation in canine experimental knee osteoarthritis. Osteoarthritis Cartilage,2005,13(4):310-7.
    [12]Wang WC,Wang Y,Sun CJ. Expression of urokinase-type plasminogen activator and its receptor protein in synovial tissues from osteoarthritis. Hunan Yi Ke Da Xue Xue Bao,2001,26(3):257-60.
    [13]Tamura N, Uzuki M, MatsuMoto F, et al.Expression of urokinase-type plasminogen activator (uPA) and uPA receptor (uPAR) plays a role in destruction of joint tissue in rapidly destructive coxarthropathy (RDC). RyuMachi. 2001,41(5):851-7.
    [14] Bertrand J,Cromme C,UMlauf D,et al. Molecular mechanisms of cartilage remodelling in osteoarthritis. Int J Biochem Cell Biol,2010,42(10):1594-601.
    [15]Blaney Davidson EN,Remst DF,et al. Increase in ALK1/ALK5 ratio as a cause for elevated MMP-13 expression in osteoarthritis in huMans and mice. J Immunol,2009,182(12):7937-45.
    [16]Chandran P , Pai M , Blomme EA , et al. Pharmacological modulation of movement-evoked pain in a rat model of osteoarthritis. Eur J Pharmacol, 2009,613(1-3):39-45.
    [17]Li X,Pai A,BluMenkrantz G,et al. Spatial distribution and relationship of T1rho and T2 relaxation times in knee cartilage with osteoarthritis. Magn Reson Med,2009,61(6):1310-8.
    [18]Ling SM,Patel DD,Garnero P. SeruM protein signatures detect early radiographic osteoarthritis. Osteoarthritis Cartilage,2009,17(1):43-8.
    [19]Tang YL,Zhu GQ, Hu L, et al. Effects of intra-articular administration of sodiuM hyaluronate on plasminogen activator system in temporomandibular joints withosteoarthritis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod,2010,109(4):541-7.
    [20]Maciejewska-Rodrigues H,Al-Shamisi M,Hemmatazad H, et al. Functional autoantibodies against serpin E2 in rheuMatoid arthritis. Jüngel A. Arthritis RheuM,2010,62(1):93-104.
    [21]Schwab W,Schulze-Tanzil G,Mobasheri A,et al.Interleukin-1beta induced expression of the urokinase-type plasminogen activator receptor and its co-localization with MMPs in huMan articular chondrocytes. Histol Histopathol,2004,19(1):105-12.
    [22]Zhou JG, Guo XL, Yuan GH, et al. Membrane and cytoplasmic expression of urokinase-type plasminogen activator receptor in synovial tissues of rheuMatoid arthritis patients. Zhonghua Nei Ke Za Zhi, 2007,46(2):131-4.
    [23]Pai V,Pai V,Wright S. Differences in outcome between Maori and Caucasian patients undergoing total joint arthroplasty for osteoarthritis. J Orthop Surg (Hong Kong),2010,18(2):195-7.
    [24]Fransès RE, McWilliams DF, Mapp PI, et al. Osteochondral angiogenesis and increased protease inhibitor expression in OA. Osteoarthritis Cartilage,2010,18(4):563-71.
    [25]Yeh CC, Chang HI,Chiang JK, et al. Regulation of plasminogen activator inhibitor 1 expression in huMan osteoarthritic chondrocytes by fluid shear stress: role of protein kinase Calpha. Arthritis RheuM,2009, 60(8):2350-61.
    [26]Zhu G,Tang Y,Liang X, et al. Role of hypoxia-inducible factor-1 alpha in the regulation of plasminogen activator activity in rat knee joint chondrocytes. Osteoarthritis Cartilage,2009,17(11):1494-502.
    [27]Lavigne P,Benderdour M,Lajeunesse D,et al. Subchondral and trabecular bone metabolism regulation in canine experimental knee osteoarthritis. Osteoarthritis Cartilage,2005 13(4):310-7.
    [28]Lajeunesse D. The role of bone in the treatment of osteoarthritis. Osteoarthritis Cartilage,2004,S34-8.
    [29]Lajeunesse D,Delalandre A,Martel-Pelletier J,et al. Hyaluronic acid reverses the abnormal synthetic activity of huMan osteoarthritic subchondral bone osteoblasts. Bone,2003,33(4):703-10.
    [30]Diehl P,Hantke B,Hennig M,et al. protein expression of MMP-13, uPA, and PAI-1 in pseudocapsular and interface tissue around implants of loose artificial hip joints and in osteoarthritis. Int J Mol Med, 2004, 13(5):711-5.
    [31]Pelletier JP,Lajeunesse D,Jovanovic DV,et al. Carprofen simultaneously reduces progression of morphological changes in cartilage and subchondral bone in experimental dog osteoarthritis. J RheuMatol,2000,27(12):2893-902.
    [32]Pelletier JP,Mineau F,Fernandes J,et al. Two NSAIDs,nimesulide and naproxen,can reduce the synthesis of urokinase and IL-6周hile increasing PAI-1,in huMan OA synovial fibroblasts. Clin Exp RheuMatol, 1997,15(4):393-8.
    [33]Gotoh H,Yamada H,Yoshihara Y,et al. Levels of matrix metalloproteinase-3 and urokinase-type plasminogen activator in knee synovial fluids from patients with rheuMatoid arthritis and osteoarthritis. RyuMachi,1997,37(1):3-8.
    [34]Shi Q,Lajeunesse D, Reboul P, et al. Metabolic activity of osteoblasts from periprosthetic trabecular bone in failed total hip arthroplasties and osteoarthritis as markers of osteolysis and loosening. J RheuMatol,2002 ,29(7):1437-45.
    [35]Massicotte F,Lajeunesse D,Benderdour M, et al. Can altered production of interleukin-1beta,interleukin-6,transforming growth factor-beta and prostaglandin E(2) by isolated huMan subchondral osteoblasts identify two subgroups of osteoarthritic patients. Osteoarthritis Cartilage,2002,10(6):491-500.
    [36]Lajeunesse D,Martel-Pelletier J,Fernandes JC,et al. Treatment with licofelone prevents abnormal subchondral bone cell metabolism in experimental dog osteoarthritis. Ann RheuM Dis,2004,63(1):78-83.
    [37]Pelletier JP,Lajeunesse D,Reboul P,et al. Diacerein reduces the excess synthesis of bone remodeling factors by huMan osteoblast cells from osteoarthritic subchondral bone. J RheuMatol,2001,28(4):814-24.
    [38]Radha KS,Madhyastha HK,Nakajima Y,et a1. Emodin upregulates urokinase plasminogen activator,plasminogen activator inhibitor-1 and promotes wound healing in huMan fibroblasts.Vascul Pharmacol,2008,48 (4-6): 184-90.
    [39]Cicek M,Fukuyama R, Cicek MS, et a1.BRMS1 contributes to the negative regulation of uPA gene expression through recruitment of HDAC1 to the NF-kappaB binding site of the uPA promoter. Clin Exp Metastasis,2009, 26(3):229-37.
    [40]Cheng CC,Chen YH,Chang WL,et al. Phytoestrogen bavachin mediates anti-inflammation targeting Ikappa B kinase-I kappaB alpha-NF-kappaB signaling pathway in chondrocytes in vitro. Eur J Pharmacol, 2010, 636(1-3):181-8.
    [41]Canas N , Gorina R , Planas AM , et al. Chondroitin sulfate inhibits lipopolysaccharide-induced inflammation in rat astrocytes by preventing nuclear factor kappa B activation. Neuroscience,2010, 167(3):872-9.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.