液粘调速离合器流体剪切传动机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液体粘性传动是流体传动领域中的一个新兴学科分支,其依靠平行旋转圆盘间隙内流体剪切力来传递转矩动力,改变摩擦副间隙即可实现输出转速的调节,在高电压、大中功率水泵及风机的流量调节系统中具有明显节能和较高性价比优势。在此前研究中,一般都忽略了科氏力影响;关于油槽所引起的动压对传动性能影响的研究内容较少。本文以液粘调速离合器中一对摩擦副间隙内流体流动为研究对象,考虑离心力、科氏力、粘度—温度特性及油槽的影响,对其传动机理开展研究,主要内容如下:
     第一章,对液粘传动技术特点及其工程应用背景进行阐述。在分析了国内外相关技术研究现状基础上,提出了本文的主要研究内容。
     第二章,对液粘调速离合器传动特性的研究。建立了一对摩擦副间隙内流体流动的简化数学模型(忽略油槽和粘度—温度特性影响),采用迭代法求解,获得了近似解析解。文章分析了科氏力、摩擦副间隙及输入压力等因素对流场速度、流量及输出转矩的影响。最后,推导出传动效率计算公式,研究了最大传动效率与摩擦副间隙的关系,并指出传递效率随着输入压力的增加而降低。
     第三章,对摩擦副间隙内流体传热现象开展研究。利用计算流体动力学软件Fluent对摩擦副间隙内流体传热进行研究(考虑粘度—温度特性的影响),发现等温边界条件下的计算结果更接近于实验结果。继而分析了摩擦副间距、输入输出转速、输入流量等因素对流场温度的影响。最后,对摩擦盘表面的局部努赛尔数Nu和平均努赛尔数Nuav进行了研究。
     第四章,分析了粘度—温度特性对传动性能的影响。利用Fluent计算出摩擦副间隙内流体压力、温度、剪应力及转矩,并将计算结果同定常粘度条件下的计算值进行比较。研究结果表明,在一定条件下,可忽略粘度—温度特性的影响;考虑粘度—温度特性时的传动效率与定常粘度时的传动效率基本一致。
     第五章,对摩擦盘表面油槽的研究。利用Fluent对摩擦盘表面加工有油槽的摩擦副间隙内流场进行研究,得到了流场压力、温度、速度、推力及粘性转矩的数值解。研究结果表明油槽引起的动压会削弱从动摩擦盘上的输出转矩。继而研究了油槽深度、数量、面积比、几何形状及油槽倾斜角对传动性能的影响,并提出了油槽设计参数的建议。
     第六章,实验验证研究。搭建了液粘调速离合器功能实验台的软、硬件系统。对一对平行摩擦盘间隙内流体压力、温度及转矩传递特性进行了实验研究。此外,对输入流体温度Ti与输出转速ω2之间的关系也进行了实验研究,发现当外负载、输入转速及摩擦副间隙等参数保持不变时,ω2与Ti之间呈近似线性单调递减函数关系。
     第七章,对全文的主要研究工作进行了总结。阐述了主要研究结论和创新点,并对课题的后续研究提出了展望。
Hydroviscous drive (HVD for short) is a new branch of fluid power transmission, in which the power is transmitted from the driving disks to the driven ones through the action of the fluid shear force in the oil friction pairs. The output speed of HVD can be regulated by adjusting the clearance between friction pairs. HVD has been widely used in the flow regulation of heavy fans and purmps in the industrial applications. It has porved to be efficient in energy-saving. In the previous works, few authors consider the effect of Coriolis force on the flow in the gap between disks in hydro-viscous drive. In addition, few researchers consider the effect of dynamic pressure caused by oil grooves on the torque transfer performance and transmission efficiency. The object of this dissertation is to explore the basic operation principle of HVD with consideration of the effects of centrifugal and Coriolis forces, viscosity-temperaute characteristics, and oil grooves. The main contents are as follows:
     In chapter 1, the technical characteristics of HVD and its engineering applications are briefly introduced. A review of HVD related technologies is presented. Then the main research contents are put forward.
     In chapter 2, the transmission characteristics of HVD are studied. A simplified mathematical model of the flow between a pair of disks in HVD is established without consideration of the effects of viscosity-temperaute characteristics and the grooves. An approximate solution to the model is obtained by means of iteration method. The effects of Coriolis force and the gap on the flow velicities, the rate of flow and viscous torque are analyzed. Then the formular of HVD's transmission efficiency is derived. The relationship between the maximum transmission efficiency and the clearance is studied. It points out that transmission efficiency decreases as input pressure increases.
     In chapter 3, the heat transfer in the gap of friction disks in HVD is investigated. The flow considering the effect of viscosity-temperaute characteristics is solved by means of computational fluid dynamics (CFD) code FLUENT. Numerical results are obtained. It is found that the numerical resulet of temperature under isothermal boundary condition is in agreement with experimental data. The effect of the factors such as the gap, input and output speed, input flow rate on the temperature distribution is analyzed. Then the local Nusselt number Nu and the average Nusselt number Nuav are investigated respectively.
     In chapter 4, the effect of viscosity-temperaute characteristics on the HVD is investigated. Numerical results of pressure, temperature, viscous stress and torque are obtained by FLUENT. The results show that the effect of viscosity-temperaute characteristics on the flow can be ignored under certain condition. The transmission efficiency considering viscosity-temperaute characteristics is almost identical to that under constant viscosity.
     In chapter 5, the effect of the oil grooves on the driven disk surface is discussed. The flow between a grooved and a flat disk is investigated by FLUNET. Numerical results related to the flow such as pressure, temperature, velocities, axial force and viscous moment are obtained. It shows that the viscous torque on the driven disk is severely weakened by the dynamic pressure caused by oil grooves. Then the effects of groove depth, grooves number, ration of the grooved area to total area, groove geometry and angle of inclination on the HVD's performance are discussed. The relevant parameters for the optimization design of groove are proposed.
     In chapter 6, experimental studies are carried out. The function test bench of HVD is developed, and the hardware and the software of the test bench are designed. The experimental studies of flow pressure, temperature and torque transfer characteristics are carried out respectively. The relationship between input flow temperature and the output speed is also investigated experimentally. The results show that output speed decreases linearly as input flow temperaute increases when the load, input speed and clearance keep constant.
     In chapter 7, the main work of this dissertation is summarized. Conclusions and innovative points are introduced. Finally, the subsequent research on the HVD is prospected.
引文
[1]杨乃乔,姜丽英.液力调速与节能[M].北京:国防工业出版社,2000.
    [2]陈宁.液体粘性传动(HVD)技术的研究[D].杭州:浙江大学,2003.
    [3]谷昭军,杨前明,许梁.液体粘性调速离合器与液力耦合器调速优缺点的分析比较[J].现代制造技术与装备,2006,(6):28-31.
    [4]刘应诚,杨乃乔.液力偶合器应用与节能技术[M].北京:化学工业出版社,2006.
    [5]赵静一,王巍.液力传动[M].北京:机械工业出版社,2007.
    [6]魏宸官,赵家象.液体粘性传动技术[M].北京:国防工业出版社,1996.
    [7]邱志荣.应用电流变技术的变速器设计[J].机电工程,2005,22(11):4-7.
    [8]魏铁华,杨晓红.电流变技术与磁流变技术[J].水利电力机械,2002,24(2):57-60.
    [9]温诗铸,田煜,孟永钢.电流变技术研究及展望[J].机械工程学报,2003,39(10):36-42.
    [10]路阳,王学昭,王凤平,潘礼庆.电流变液研究新进展[J].材料导报,2009,23(2):6-10.
    [11]吴望一.流体力学(上册)[M].北京:北京大学出版社,2004.
    [12]刘希军,周满山,张媛.液粘软起动装置在主提升带式输送机上的应用[J].煤矿机械,2005,(7):149-151.
    [13]程立,周满山,于岩,等.液黏软起动装置实现带式输送机功率平衡调节的研究[J].煤矿机械,2010,31(04):36-38.
    [14]马士龙,刘晶.液黏软起动装置在带式输送机中的应用[J].煤矿机械,2007,28(4):175-177.
    [15]胡坤,郭永存.带式输送机软起动技术的现状与展望[J].机械工程师,2006(8):26-27.
    [16]张东方,宋兴元,郑红满.带式输送机软起动装置的调速性能研究[J].煤矿机械,2008,29(4): 34-37.
    [17] Anon. Oil shear clutch[J]. Power Transmission Design,1979, (21):55-61.
    [18] LIU J K. Hydroviscous drives save energy in large-pump applications[J]. Power,1981, 125(12):79-82.
    [19] HANDLE K E. Clutch apparatus and control:USA,4250983[P].1981-02-17.
    [20] BOWER. Endless drive transmission:USA,4836362[P].1989-06-06.
    [21] BESL M L. Transmitting torque with an oil shear brake and clutch[J]. Mechanical Engineering, 1993,115(11):74-78.
    [22]彭骧,刘保宽,黄清林,王振华.液压滑差离合器减速器的应用和国产化[J].矿山机械,1995,(4):17-19.
    [23]魏宸官.一种新型可控无级调速传动装置--滑差离合器[J].工程机械,1984,(10):38-44.
    [24]魏宸官.一种新型的可控无级调速传动装置--液体粘性传动或油膜剪切离合器[J].北京工业学院学报,1985,(3):44-53.
    [25]魏宸官.大功率风机和水泵的高效节能装置--滑差离合器[J].工业技术,1986,(7):35-37.
    [26]魏宸官.高效节能装置--奥米伽离合器[J].起重运输机械,1987,(2):24-30.
    [27]蔡笃景,魏宸官.滑差离合器摩擦片间油膜厚度稳定性研究[J].车辆与动力技术,1990,(2):59-64.
    [28]蔡笃景,魏宸官.液体粘性传动的转速稳定性和控制[J].北京理工大学学报,1990,10(2):76-82.
    [29] WU X M, WEi C G, SPROSTON J L. Hydroviscous drive and some new developments[J]. Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power and Energy, 1991,205(2):123-128.
    [30]董勋,周益言.油膜调速离合器传动机理研究[J].上海交通大学学报,1991,25(1):19-28.
    [31]孙忠池,彭锡文.调速离合器控制系统分析[J].唐山工程技术学院学报,1992,(3):52-56.
    [32]孙忠池,彭锡文.调速离合器转速稳定性与控制系统设计[J].唐山工程技术学院学报,1992,(1):26-30.
    [33]张淑娥,杨再旺.调速型液体粘性离合器控制器的设计[J].电力情报,1995,(4):57-59.
    [34]侯友夫,侯俊学,张永忠.带式输送机可控起动系统动态特性的理论研究[J].中国矿业大学学报,1998,27(3):246-249.
    [35]黄晓光.大功率风机、水泵用液体粘性调速离合器控制系统的研究[D].北京:北京理工大学,2000.
    [36]花家寿,何维廉,黄宏成,等.液粘调速器的结构和理论分析[J].传动技术,2002,(2):32-38.
    [37] HUANG X G, WEI C G. Stability of oil film and output speed of hydroviscous drive affected by the pressure of cotrol oil[J]. Journal of Beijing Institute of Technology,2001,10(3): 266-271.
    [38] ZHOU M S, WEI C G, YU Y, et al. Oil film clutch in soft start of belt conveyor[J]. Journal of Beijing Institute of Technology,2002,11(2):142-145.
    [39]陈宁,魏建华,李福尚,等.电液控制系统对液体粘性传动开环转速稳定性影响的研究[J].
    热力发电,2004,(2):45-46.
    [40]郝洪涛,·马越.液粘测功系统辨识研究[J].北京理工大学学报,2005,25(1):9-12.
    [41]陈宁,邱敏秀,魏建华,等.液体粘性调速离合器专用转速调节阀研究[J].农业机械学报,2005,36(4):69-71.
    [42]陈宁,邱敏秀.液体粘性软启动装置启动平稳性研究[J].中国机械工程,2005,16(16):1471-1473.
    [43]陈宁,邱敏秀.液体粘性调速离合器摩擦副设计方法[J].农业机械学报,2007,38(7):141-143.
    [44]金钢,洪跃,陈忠.液体粘性调速离合器的稳定性分析[J].机械传动,2004,28(1):48-49.
    [45]邵威.液体粘性传动摩擦副的研究[D].杭州:浙江大学,2005.
    [46]廖鹏,王天驰,严忠胜,等.液粘调速离合器电控系统研究[J].传动技术,2006,20(1):15-19.
    [47]刘良勇.液体粘性传动控制系统的研究[D].徐州:中国矿业大学,2008.
    [48] VON KARMAN T. Uber laminare und turbulente reibung[J]. Zeitschrift fur Angewandte Mathematik und Mechanik,1921,1(4):233-252.
    [49] COCHRAN W G. The flow due to a rotating disc[J]. Mathematical Proceedings of the Cambridge Philosophical Society,1934,30(3):365-375.
    [50] MILLSAPS K, POHLHAUSEN K. Heat transfer by Laminar flow from a rotating plate[J]. Journal of the aeronautical sciences,1952, (19):120-126.
    [51] MORGAN G W, WARNER W H. On heat transfer in Laminar boundary layers at high prandtl Number[J]. Journal of the aeronautical sciences,1956, (23):937-948.
    [52] COBB E C, SAUNDERS O A. Heat transfer from a rotating disk[J]. Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences,1956,236(1206):343-351.
    [53] RILEY N. The heat transfer from a rotating disk[J]. The Quarterly Journal of Mechanics and Applied Mathematics,1964,17(3):331-349.
    [54] BATCHELOR G K. Note on a class of solutions of Navier-Stokes equations representing steady rotationally symmetric flow[J]. The Quarterly Journal of Mechanics & Applied Mathematics,1951,4(1):29-41.
    [55] STEWARTSON K. On the flow between two rotating coaxial disks[J]. Mathematical Proceedings of the Cambridge Philosophical Society,1953,49(2):333-341.
    [56]闻苏平,胡小文,王军,等.旋转圆盘系统过流速度场叠加的研究[J].工程热物理学报,2009,30(1):57-60.
    [57]潘冬远,王彤,张斌,等.封闭刚体内旋转圆盘流动的PIV测试研究[J].水动力学研究与进展A辑,2009,24(2):200-206.
    [58] LANCE G N, ROGERS M H. The axially symmetric flow of a viscous fluid between two infinite rotating disk[J]. Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences,1962,266(1324):109-121.
    [59] SOONG C Y. Prandtl number effects on mixed convection between rotating coaxial disks[J]. International Journal of Rotating Machinery,1996,2(3):161-166.
    [60] Mohammad Shanbghazani, Vahid Heidarpour, Iraj Mirzaee. Computer aided analysis of flow in a rotating single disk[J]. World Academy of Science, Engineering and Technology,2009, (58):160-163.
    [61] SERRE E, TULISZKA-SZNITKO E, BONTOUX P. Coupled numerical and theoretical study of the flow transition between a rotating and a stationary disk[J]. Physics of Fluids,2004, 16(3):688-706.
    [62] PONCET S, SCHIESTEL R, CHAUVE M P. Centrifugal flow in a rotor-stator cavity[J]. Journal of Fluids Engineering,2005,127(4):787-794.
    [63] PONCET S, CHAUVE M P, SCHIESTEL R. Batchelor versus Stewartson flow structures in a rotor-stator cavity with throughflow[J]. Physics of Fluids,2005,17(7):75110.
    [64] SIM Y S, YANG W J. Numerical study on heat transfer in laminar flow through co-rotating parallel disks[J]. International Journal of Heat and Mass Transfer,1984,27(11):1963-1970.
    [65] MOCHIZUKI S, YANG W J. Local heat-transfer performance and mechanisms in radial flow between parallel disks[J]. Journal of thermophysics,1987,1(2):112-116.
    [66] Ramesh Chandra Arora, Vijay Kumar Stokes. On the heat transfer between two rotating disks[J]. Internatioanl Journal of Heat and Mass Transfer,1972,15(11):2119-2132.
    [67]刘桦,王农.液粘传动油膜力学效应的研究[J].煤矿机械,2001,(9):26-28.
    [68]花家寿,孙广仁.应用铜基粉末冶金摩擦片的粘液传动的承载能力分析[J].传动技术,2001,(3):14-18.
    [69] LIU S Y, YAn W G. Analytical solution for laminar viscous flow in the gap between two parallel rotary disks[J]. Journal of Beijing Institute of Technology,1998,7(2):113-119.
    [70]马文琦,姜继海,曹健,等.基于变粘度和油液惯性条件下静压滑环间隙流场特性的研究[J].机械工程学报,2001,37(7):33-36.
    [71]胡志栋,姜继海.液压滑环端面油膜密封的摩擦转矩[J].吉林大学学报(工学版),2009,39(3):657-661.
    [72]廖玲玲.流体油膜剪切传动及实验研究[D].杭州:浙江大学,2006.
    [73]洪跃.液体粘性调速离合器工作机理研究与模糊控制器试制[D].上海:上海大学,2004.
    [74]洪跃,刘谨.粘性调速离合器传动机理与数值计算[J].润滑与密封,2003,(2):6-9,11.
    [75] HONG Y, LIU J, WANG Y G. Thermal analysis of frictional disk in speeding wet clutch[J], Chinese Journal of Mechanical Engineering,2004,17(1):102-106.
    [76]洪跃,刘谨,王云根.液体调速离合器中摩擦副热效应分析[J].中国工程科学,2003,5(9):55-60.
    [77]孟庆睿.液体粘性传动调速起动及其控制技术研究[D].徐州:中国矿业大学,2008.
    [78]孟庆睿,侯友夫.液体黏性调速起动瞬态过程数值模拟研究[J].摩擦学学报,2009,29(5):418-424.
    [79] MENG Q R, HOU Y F. Effect of oil film squeezing on hydro-viscous drive speed regualting start[J]. Tribology International,2010,43(11):2134-2138.
    [80] MENG Q R, HOU Y F. Mechanism of hydro-viscous soft start of belt conveyor[J]. Journal of China University of Mining & Technology,2008,18(3):459-465.
    [81] HUANG J H, QIU M X, LIAO L L, et al. Numerical simulation of flow field between frictional pairs in hydroviscous drive surface[J]. Chinese Journal of Mechanical Engineering, 2008,21(3):72-75.
    [82] YUAN Y Q, ATTIBELE P, DONG Y. CFD simulations of the flows within disengaged wet clutches of an automatic transmission[J]. SAE Paper,2003, No.2003-01-0320.
    [83] YUAN Y Q, LIU E A, J H, et al. An Improved Hydrodynamic Model for Open Wet Transmission Clutches [J].Journal of Fluids Engineering,2007,129(3):333-337.
    [84] KITABARASHI H, CHEN Y L, HIRAKI H. Analysis of the various factor affecting drag torque in multiple-plate wet clutches[J]. SAE transactions,2003,112(4); 1840-1845.
    [85] Kato Y, MURASUGI T, HIRANO H, et al. Fuel economy improvement through tribological analysis of the wet clutches and brakes of an automatic transmission[J]. Society of Automotive Engineers of Japan,1993,16(12):57-60.
    [86] HASHIMOTO H, WADA S, MURAYAMA Y. The performance of a turbulent-lubricated sliding bearing subject to centrifugal effect[J]. Transactions of the Japan Society of Mechanical Engineers.C,1984,49(446):1753-1761.
    [87] HU J B, PENG Z X, YUAN S H. Drag torque prediction model for the wet clutches[J]. Chinese Journal of Mechanical Engineering,2009,22(2):238-243.
    [88] YUAN S H, PENG Z X, JING C B. Experimental research and mathematical model of drag torque in single-plate wet clutch[J]. Chinese Journal of Mechanical Engineering,2011,24(1): 91-97.
    [89] PAYVAR P. Laminar heat transfer in the oil groove of a wet clutch[J]. International Journal of Heat and Mass Transfer,1991,34(7):1791-1798.
    [90] PAYVAR P, MAJUMDAR P. Developing flow and heat transfer in a rectangular duct with a moving wall[J]. Numerical Heat Transfer, Part A:Applications:An International Journal of Compution and Methodology,1994,26(1):17-30.
    [91] PAYVAR P. Simulation of heat transfer to flow in radial grooves of friction paris[J]. International Journal of Heat and Mass Transfer,1994,37(2):313-319.
    [92] RAZZAQUE M M, KATO T. Effects of a groove on the behavior of a squeeze film between a grooved and a plain rotating annular disk[J]. Journal of Tribology-Transactions of the Asme, 1999,121(4):808-815.
    [93] RAZZAQUE M M, KATO T. Effects of groove orientation on hydrodynamic behavior of wet clutch coolant films[J]. Journal of Tribology-Transactions of the Asme,1999,121(1):56-61.
    [94] Berger E J, SADEGHI F, KROUSGRILL C M. Finite element modeling of engagement of rough and grooved wet clutches[J]. Journal of Tribology-Transactions of the Asme,1996, 118(1):137-145.
    [95] HONG Y, LIU J, JING S L. Analysis groove characteristics of friction dishes in wet speeding clutch[J]. Engineering Sciences,2004,2(2):56-60.
    [96]刘宝运,洪跃,金士良.沟槽对湿式离合器摩擦副啮合性能的影响[J].润滑与密封,2008,33(2):90-93.
    [97] MIYAGAWA M, OGAWA M, OKANO Y, et al.. Numerical simulation of temperature and torque curve of multidisk wet clutch with radial and circumferential grooves[J]. Tribology Online,2009,4(1):17-21.
    [98] APHALE C R, SCHULTZ W W, CECCIO S L. The influence of grooves on the fully wetted and aerated flow between open clutch plates [J]. Journal of Tribology Transactions of the Asme,2010,132(1):11104.
    [99] MENG Q R, HOU Y F. Effects of friction disc surface groove on speed-regulating start[J]. Industrial Lubrication And Tribology,2009,61(6):325-331.
    [100] HUEBNER K H. A three-dimensional thermohydrodynamic analysis of sector thrust bearings[J]. ASLE Transaction,1974,17(1):62-73.
    [101]赵红梅,董毓新,马震岳.油膜温度呈三维分布的推力轴承润滑计算[J].大连理工大学学报,1994,34(5):589-594.
    [102] LAI Y G. Simulation of heat transfer characteristics of wet clutch engagement process[J]. Numerical Heat Transfer, Part A:Applications:An International Journal of Compution and Methodology,1998,33(6):583-597.
    [103]贾云海,张文明.湿式摩擦离合器摩擦片表面温升和油槽结构研究[J].中国公路学报,2007,20(5):112-116.
    [104] COPE W F. The hydrodynamical theory of film lubrication[J]. Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences,1949,197(1049): 201-217.
    [105] PINKUS O, STERNLICHT B. Theory of hydrodynamic lubrication[M]. New York:McGraw Hill,1961.
    [106]周桂如,马骥,全永昕.流体润滑理论[M].杭州:浙江大学出版社,1990.
    [107]马卫平.湿式离合器制动器纸基摩擦材料的研究[D].长沙:湖南大学,2007.
    [108]赵学端,廖其奠.粘性流体力学[M].北京:机械工业出版社,1983.
    [109] MISYURA V I. Laminar flow of an incompressible liquid between two rotating discs[J]. Fluid Dynamics,1972,7(5):860-864.
    [110]谢定裕.渐近方法-在流体力学中的应用[M].北京:友谊出版公司,1983.
    [111]王福军.计算流体动力学分析[M].北京:清华大学出版社,2007.
    [112] PATANKER S V. Numerical heat transfer and fluid flow[M]. Washington:Hemisphere, 1980.
    [113]邹华生,钟理,伍钦.流体力学与传热[M].广州:华南理工大学出版社,2004.
    [114]杨强生,浦保荣.高等传热学[M].上海:上海交通大学出版社,2004.
    [115] SCHLICHTING H. Boundary layer theory[M]. New York: McGraw-Hill,1960.
    [116]姜剑勇.液体粘性调速离合器实验系统的研制[D].杭州:浙江大学,2006.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.