无线传感器网络激光主动供能关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线传感器网络是新一代的传感器网络,由部署在监测区域内大量的低成本微型传感器节点组成,通过无线通信方式形成的一种多跳自组织网络。无线传感器网络是21世纪高技术领域的四大支柱产业之一,具有可快速部署、可自组织、隐蔽性强和高容错性等优点,在军事、环境监测、医疗护理、工业等领域有着广泛的应用,其应用和发展将会给人类生活和生产的各个领域带来深远的影响。但是能源问题影响了无线传感器网络的性能和生存时间,是限制无线传感器网络应用和发展的关键问题。因此解决无线传感器网络的能源问题,延长其生存时间具有重要的经济和社会价值。
     研究人员提出的能量管理策略在一定程度上延长了无线传感器网络的生存时间,但是没能从根本上解决能源问题。随着自供能技术的提出,无线传感器网络的生存时间得到提高,但是对于一些没有环境能或是环境能很弱的场合,自供能技术的应用受到了限制,为此本文提出了无线传感器网络激光主动供能的方法。该方法利用激光进行远距离传能,在工作地点将集中的光能转换为分散的具有一定均匀性的空间光场,同时给多个无线传感器节点供能。该方法能够使无线传感器网络工作在大型地下油库和煤矿等没有环境能的高危场所,扩展了无线传感器网络的应用范围。本论文分析了无线传感器网络激光主动供能的光学模型,讨论了其特性;分析了硅太阳能电池的光电模型,在此基础上提出了利用纳米孔阵列薄膜提高太阳能电池性能的方法,并建立了纳米孔阵列增强型太阳能电池的光学模型;设计了基于激光主动供能的微功耗能量采集系统;在实验上验证了激光主动供能的可行性,验证了纳米孔阵列薄膜对太阳能电池性能的提高,验证了所设计的能量采集系统的原理和性能,具体内容包括:
     1)利用大气物理学中大气的吸收模型,分析计算了不同波长激光在大气中的传输特性,计算结果表明可见光激光和近红外激光在大气中的传输损耗较少,其中1064nm激光在进行远距离传输时能量损失最小。
     2)提出了两类将单点激光转换为空间光场的方法:激光激励荧光片法和激光-漫反射体法。分析了这两类方法的光学特性,计算了不同方法的效率和光场均匀性。其中激光激励荧光片的光场均匀性较好,但效率比较低;激光-漫反射体方法的效率较高,但光场均匀性较差。设计了两种能够提高激光利用率的光学结构,并对这两种光学结构进行了分析比较。
     3)由于激光主动供能得到的空间光场的光照度比较弱,因此本文分析了不同硅太阳能电池的弱光响应特性,并根据不同的激光波长选用不同的硅太阳能电池。同时设计了激光主动供能网络,该网络提高了激光主动供能的供能面积。
     4)太阳能电池的性能对整个供能系统的性能有着重要的影响,本文在分析太阳能电池光电模型的基础上提出利用纳米孔阵列薄膜作为太阳能电池增透膜来提高太阳能电池的转换效率。并利用严格耦合波理论分析了纳米孔阵列薄膜的光学特性,建立了纳米孔阵列增强型太阳能电池的光学模型,优化了纳米孔阵列薄膜的光学结构。纳米孔阵列薄膜的最优结构参数为:周期a=500nm,填充率f=0.2,厚度t=110nm。
     5)分析了商用太阳能电池无线节点的结构,在此基础上设计了基于激光主动供能的能量采集系统和无线传感节点。利用电压反馈法追踪太阳能电池的最佳工作点,提高了太阳能电池的充电效率,同时设计了低功耗的控制电路,实现了能量采集系统的高效低功耗。
     6)搭建了激光激励荧光片供能系统并测试了该系统的性能;搭建了激光-漫反射体供能系统并测试了该系统的性能。验证了所提出的激光主动供能系统的原理和可行性。
     7)利用微纳加工方法,在Φ200μm Si探测器的增透膜上制作了不同周期的纳米孔阵列,并搭建了相应的测试系统,实验结果表明:阵列周期为500nm时,器件的性能提高最为明显:短路电流在400nm-1100nm波段提高约为6%,在400nm-600nm波段提高约为15%;开路电压提高约为2%,纳米孔阵列薄膜能够很好的提高光伏器件的转换效率。
     8)加工调试了所设计的能量采集电路,测试了其性能,该电路能够在激光主动供能光照条件下(50-100μW/cm~2)很好的工作。加工了基于该能量采集电路的无线传感节点,在实际应用中,该节点能够进行准确的测量。
As a new generation sensor network, wireless sensor network is a sort of multi-hop and self-organizing network, consisted of many low-cost micro sensor nodes displaced within the detection area, in the form of wireless communication. Wireless sensor network is one of the four high-tech fundamental industries with merits such as fast distribution, self-organization, strong hidden and high fault tolerance, and is widely utilized in domains of military, environment detection, medical nursery, industry and so on. The development and application of wireless sensor network will provide profound effects for fields of human life and production. However, energy issue, which affects wireless sensor network’s function and longevity, is the key problem that restrains the development and application of wireless sensor network. Therefore, it deserves significant economic and social value to solve the energy issue of wireless sensor network and lengthen its longevity.
     Researchers proposed a series of energy management strategies which just lengthened wireless sensor network’s longevity to a certain extent but didn’t radically settle down the energy problem. The longevity of wireless sensor network has been lengthened after self-power supply technology was proposed. However, in situations of no environment energy or low environment energy, the application of self-power supply technology is limited. On base of that, the dissertation proposed the method of wireless sensor network active laser energy supply. This method makes full use of laser to transmit energy wirelessly, by transforming the focused light energy into dispersed and well-distributed space light field in working sites to supply energy to multi-node wireless sensor. This method enables wireless sensor network to perform in high-risk places with no environment energy such as large-scale underground oil depots and coal mines, which extends the application domain of wireless sensor network. In this dissertation, the optical model of wireless sensor network laser active-power supply is established and its features are analyzed; the Si solar cell’s opto-electronic model is analyzed, on base of which the method of utilizing nano-hole array film to improve solar cell’s function is proposed and the optical model is set up; the micro energy depletion collecting system on base of laser’s active power supply is designed; in the experiment the feasibility of laser’s active power supply is tested and verified and the improvement of nano hole array film on solar energy battery’s function is also tested and verified, and the principle and performance of the designed energy collecting system is also tested and verified. The specific details include:
     1) Set up the physics model of laser transmission in the atmosphere according to Atmospheric Physics, analytically calculate the transmission performance of laser with different wavelength; the calculations indicate the transmission losses of visible laser and near-infrared laser in the atmosphere are less, and the transmission power loss of 1064nm laser is the least in far-distance transmission.
     2) Brought up forward two methods of transforming single-point laser into space light field: laser excitation phosphor and laser - diffuse reflector. Analyzed the optical properties of the two methods and calculated their efficiency and light field uniformity. Among the two methods, laser excitation phosphor is better in light field uniformity, but lower in efficiency; laser-whiteboard method is higher in efficiency but worse in light field uniformity. Designed and analytically compared two optical structures which can improve laser utilization.
     3) For the illumination intensity of the space light field from laser active-power supply was weak, the article mainly analyzed different Si solar cell’s low light response property and chose various Si solar cells in accordance with various laser wavelengths. Thus, the laser active power supply network, which enlarged the acreage of power supply, was designed.
     4) Since solar cell’s property is of criminal importance in the whole power supply system, the dissertation put forward taking nano-hole array film as solar cell’s antireflection coating to improve solar cell’s transmission efficiency on base of analysis of solar cell’s optical model. In addition, the dissertation analyzed the optical property of nano-hole array film in principle of Rigorous Coupled-wave theory, established the optical model of nano-hole array transparent film solar cell and optimized the optical structure of nano-hole array film. The optimized structure parameters of nano-hole array film are: period a=500nm, filling fraction f=0.2, thickness t=110nm.
     5) The dissertation analyzed commercial solar cell wireless nodes’structure, on base of which the power harvesting system and wireless nodes of laser active-power supply are designed. The voltage feedback method of tracking solar cell’s optimized working point enhanced solar cell’s charge efficiency. Meanwhile, the low power loss control circuit was designed, which realized high efficiency and low power loss in the power harvesting system.
     6) Two power supply systems were set up and their properties were tested, i.e. laser excitation phosphor power supply system and laser-whiteboard power supply system.
     7) In micro-nano processing method, various periods’nano-hole arrays were fabricated on the transparent film ofΦ200μm Si detector and the corresponding testing system was set up. The results suggested that devices’property was improved obviously in 500nm period; the improvement was about 6% when short circuit electric current was in 400nm-1100nm wavelength and about 15% in the 400nm-600nm wavelength; the open circuit voltage’s improvement was about 2%; the nano-hole array film could well enhance Photovoltaic devices’transmission efficiency.
     8) The designed power harvesting electric circuit was processed and debugged and its property was tested; it proved that the circuit could work well in condition of laser active-power supply illumination (50-100μW/cm2). Wireless nodes based on this power harvesting circuit was processed and practically measured with perfect results.
引文
[1] Akyildiz I.F, Su W.L, Sankarasubramaniam Y, Cayirci E. A survey on sensor networks [J]. IEEE Communications Magazine, 2002, 40(8): 102-114.
    [2] Akyildiz I. F, Melodia T, Chowdhury K.R. A survey on wireless multimedia sensor networks [J]. Computer Networks, 2007, 51(4): 921-960.
    [3] Yick J, Mukherjee B, Ghosal D. Wireless sensor network survey [J]. Computer Networks, 2008, 52(12): 2992-2330.
    [4] Vidyasagar Potdar, Atif Sharif. Applications of Wireless Sensor Networks in Pharmaceutical Industry [C], in Proceedings of the IEEE 23rd International Conference on Advanced Information Networking and Applications AINA, UK, 2009, 636-641.
    [5] Buratti C, Conti A, Dardari D, Verdone R. An Overview onWireless Sensor Networks Technology and Evolution [J], Sensors, 2009, 9(9): 6869-6896.
    [6]孙利民等.无线传感器网络[M].北京:清华大学出版社, 2005.
    [7] Ong J, You Y.Z, Mills-Beale J, Tan E.L, Pereles B, Ghee K. A wireless, passive embedded sensor for real-time monitoring of water content in civil engineering materials [J]. IEEE Sensors J. 2008, 8(12): 2053–2058.
    [8] Lee D.S, Lee, Y.D, Chung W.Y, Myllyla R. Vital sign monitoring system with life emergency event detection using wireless sensor network [C]. In Proceedings of IEEE Conference on Sensors, Daegu, Korea, 2006. 16.
    [9] Hao Q, Brady D.J, Guenther B.D, Burchett J.B, Shankar M, Feller S. Human tracking with wireless distributed pyroelectric sensors [J]. IEEE Sensors J. 2006, 6(6): 1683–1696.
    [10] Lucchi M, Giorgetti A, Chiani M. Cooperative Diversity in Wireless Sensor Networks [C]. In Proceedings of WPMC’05, Aalborg, Denmark, 2005:1738–1742.
    [11] Tony Q.S.Q, Dardari D, Win M.Z. Energy efficiency of dense wireless sensor networks: To cooperateor not to cooperate [J]. IEEE J. Select. Areas Commun. 2007, 25(2): 459–470.
    [12] Toriumi S, Sei Y, Shinichi H. Energy-efficient Event Detection in 3D Wireless Sensor Networks [C]. In Proceedings of IEEE IFIP Wireless Days, Dubai, United Arab Emirates, 2008.
    [13] 10 Emerging Technologies that will Change the World [P]. Technol. Rev., 2003, 106(1):33-49.
    [14] Byrne J.A. 21 Ideas for 21st Century [J]. Business Week, 1999, 8:78-167.
    [15] Business Week Online, Tech wave2: The sensor revolution [EB/01],http://www.businessweek.com/magazine/content/03_34/b3846622.htm.
    [16]肖俊芳.无线传感器网络的若干关键技术研究[D].上海交通大学博士论文. 2009.
    [17]崔莉,菊海玲,苗勇.无线出感器网络研究进展[J].计算机研究与发展, 2005, 42(1): 163-174.
    [18] CEC AN/USG-2(V) Cooperative Engagement Transmission Processing Set [EB/01], http://www.globalsecurity.org/military/systems/ship/systems/cec.htm.
    [19] AN/GSQ-187 Remote Battlefield Sensor System (REMBASS) [EB/01], http://www.fas.org/man/dod-101/sys/land/rembass.htm.
    [20] Tactical Remote Sensor System (TRSS) [EB/01], http://www.globalsecurity.org/intell/library/reports/2001/compendium/trss.htm.
    [21] Kumar S, Shepherd D. SensIT: sensor information technology for the warfighter, Information Fusion– INFFUS [J] 2001,
    [22] University of Callifornia at Los Angeles. WINS: Wireless integrated network sensors [EB/01], http://www.janet.ucla.edtt/WINS/biblio.htm.
    [23] SMART DUST-Autonomous sensing and communication in a cubic millimeter [EB/01]. http://robtics.eecs.berkeley.edu/~pister/SmartDust/.
    [24] http://www.seaweb.org/home.php.
    [25] M-Adaptive Multi-domain Power aware Sensors [EB/01], http://www-mtl.mit.edu/researchgroups/icsystems/uamps/.
    [26]国务院,国家中长期科学与技术发展规划纲要[EB/01],http://news.sina.com.cn/.
    [27] Hussain M.A.; khan P.; Kwak kyung Sup. WSN research activities for military application [C], 11th International Conference on Advanced Communication Technology, Phoenix Park, South Korea, 2009, 271-4.
    [28]毛晓峰,杨珉,毛迪林.无线传感器网络应用综述[J].计算机应用与软件, 2008, 25(3): 179-181.
    [29]司海飞,杨忠,王珺.无线传感器网络研究现状与应用[J].机电工程. 2011, 28(1): 16-20.
    [30]王宣丹.无线传感器网络综述.ppt. 2007.
    [31] Hussain, M.A.; khan, P.; Kwak kyung Sup. WSN research activities for military application [C]. 11th International Conference on Advanced Communication Technology, Phoenix Park, South Korea, 2009.
    [32]李志刚.无线传感器网络在军事上的应用[J].电子对抗, 2010, 2: 32-35.
    [33]樊莉,肖坤.无线传感器网络的军事应用研究[J].网络安全技术与应用, 2007, 10: 58-60.
    [34]何自强.网络中心战——美军作战新理论[J].国际电子战, 6: 18-19.
    [35] Moghaddam M, Entekhabi D, Goykhman Y, Li K, Liu M, Mahajan A, Nayyar A, Shuman D,Teneketzis D. A wireless soil moisture smart sensor web using physics-based optimal control: Concept and initial demonstrations [J]. Institute of Electrical and Electronics Engineers. 2010, 12: 522-535.
    [36] http://www.defence.org.cn/article-1-42278.html.
    [37] http://www.cetin.net.cn/cetin2/servlet/cetin/action/HtmlDocumentAction;jsessionid=9988215FA88909344DCF4E98D51789DB?baseid=108&docno=16428.
    [38] http://www.defence.org.cn/article-1-62581.html.
    [39] http://www.chengfengtech.com.
    [40] http://www.xbow.com/.
    [41] Yoo SE, Kim JE, Kim T, Ahn S, Sung J, Kim D. A(2)S: Automated agriculture system based on WSN [J]. IEEE INTERNATIONAL SYMPOSIUM ON CONSUMER ELECTRONICS. 2007: 574-578.
    [42] Li X.M, Deng Y.Y, Ding L.X. Study on precision agriculture monitoring framework based on WSN [C]. 2008 2nd International Conference on Anti-counterfeiting, Security and Identification (2008 ASID). Guiyang, China, 2008: 182-185.
    [43] Xiong SM, Wang L.M, Qu X.Q, Zhan Y.Z, Wang L.M. Application Research of WSN in Precise Agriculture Irrigation. International [C]. Conference on Environmental Science and Information Application Technology (ESIAT 2009), Wuhan, PEOPLES R CHINA, 2009: 297-300.
    [44] http://www.xbow.com/.
    [45]肖克辉,肖德琴,罗锡文.基于无线传感器网络的精细农业智能节水灌溉系统[J].农业工程学报.2010, 26(11): 170-175.
    [46] Szewczyk R, Osterweil E, Polastre J, et al. Habitat monitoring with sensor networks [J]. Communications of the ACM, 2004, 47(6): 34-40.
    [47] Tolle G, Polastre J, Szewczyk R, et al. A macroscope in the redwoods [C]. Proceeding of the 3rd international conference on embedded networked sensor systems. 2005.
    [48] Wark T, Crossman C, Hu W, et al. The design and evaluation of a mobile sensor/actuator network for autonomous animal control [C]. Proceedings of the 6th international conference on Information processing in sensor networks. 2007,4.
    [49] Yang S.C, Pan Y. The Application of the Wireless Sensor Network (WSN) in the Monitoring of Fushun Reach River in China [C]. 2010 Second International Conference on Computer and Network Technology (ICCNT 2010). Bangkok, Thailand, 2010: 331-333.
    [50] Mainwaring A, Polastre J, Szewczyk R, et al. Wireless sensor networks for habitat monitoring [C]. In the 2002 ACM International Work-shop on wireless Sensor Networks and Applications.2002.
    [51] Kottapalli V, Kiremidjian A, Lynch J, et al. Two-tiered wireless sensor network architecture for structural health monitoring [C]. SPIE 10th Annual International Symposium on Smart Structures and Materials, 2003.
    [52] Chintalapudi K, Paek J, Gnawali O, et al. Embedded Sensing of Structures: A Reality Check [J]. RTCSA 2005: 95-101.
    [53] Kim S, Pakzad S, Culler D, Demmel J, Fenves G, Glaser S, Turon M. Health Monitoring of Civil Infrastructures Using Wireless Sensor Networks [C]. In the Proceedings of the 6th International Conference on Information Processing in Sensor Networks (IPSN '07), Cambridge, MA, April 2007: 254-263.
    [54] Pakzad S.N, Kim S, Fenves G.L, Glaser S.D, Culler D.E, Demmel J.W. Multi-Purpose Wireless Accelerometers for Civil Infrastructure Monitoring [C]. In the Proceedings of the 5th International Workshop on Structural Health Monitoring (IWSHM '05), Stanford, CA, September 2005: 125-132.
    [55] Kim S. Wireless Sensor Networks for Structural Health Monitoring [D]. Master of Science in Computer Science University of California at Berkeley.
    [56] Anastasi G, Re G.L, Ortolani M. WSNs for Structural Health Monitoring of Historical Buildings [C]. In 2nd Conference on Human System Interactions, Catania, ITALY. 2009: 571-576.
    [57] Jafari R, Encarnacao A, Zahoory A, et al. Wireless sensor networks for health monitoring [J]. MobiQuitous 2005: 479-481.
    [58] Toh S.H, Do K.H, Chung W.Y, Lee S.C. Health Decision Support for Biomedical Signals Monitoring System Over a WSN [C]. In Processing of 2nd International Symposium on Electronic Commerce and Security, Nanchang, PEOPLES R CHINA, 2009.
    [59] Franceschinis M, Spirito M.A, Tomasi R, et al. Using WSN technology for industrial monitoring: a real case [C]. 2008 Second International Conference on Sensor Technologies and Applications (SENSORCOMM) Cap Esterel, France, 2008: 282-287.
    [60] Abed A.A, Ali A.A, Aslam N. Building an HMI and demo application of WSN-based industrial control systems [C]. 2010 1st International Conference on Energy, Power and Control (EPC-IQ 2010) Basrah, Iraq, 2010: 302-306.
    [61]周婵,李昕.工业无线传感器网络性能综合评价研究[J].计算机工程. 2010, 36(16): 82-84.
    [62] Chandrakasan A.P, Sheng S, Brodersen R.W. Low power digital CMOS design [J]. IEEE Journal of Solid-State Circuits, 2002, 27(4): 473-484.
    [63] Sinha A, Chandrakasan A.P, Dynamic power management in wireless sensor networks [J]. IEEE Design and Test of Computers, 2001, 18(2): 62-74.
    [64] Ye W, Heidemann J, Estrin D, An energy-efficient MAC protocol for wireless sensor networks [C]. Proceeding of twenty-first annual joint conference of the IEEE Computer and Communications Societies. IEEE, 2002: 1567-1576.
    [65] Dam T.V, Langendoen K. An adaptive energy-efficient MAC protocol for wireless sensor networks [C]. Proceedings of the 1st international conference on Embedded Networked Sensor Systems. Los Angeles, California, USA: ACM, 2003: 171-180.
    [66] Rajendran V, Obraczka K, Garcia-Luna-Aceves J.J. Energy-efficient, collision-free medium access control for wireless sensor networks [C]. Proceeding of the 1st international conference on Embedded Networked Sensor Systems. California, USA:ACM, 2003: 181-192.
    [67] Degesys J, Rose I, Patel A, et al. DESYNC:self-organizing desynchronization and TDMA on wireless sensor networks [C]. Proceedings of conference on Information Processing in Sensor Networks. Massachusetts, USA: IEEE, 2007: 11-20.
    [68] Toh C.K. Maximum battery life routing to support ubiquitous mobile computing in wireless ad hoc networks [J]. IEEE Communications Magazine, 2002, 39(6): 138-147.
    [69] Lindsey S, Sivalingam K.M, Raghavendra C.S. Power optimization in routing protocols for wireless and mobile networks [J]. Handbook of wireless networks and mobile computing, 2002: 407-423.
    [70] Li Q, Aslam J, Rus D, Online power-aware routing in wireless ad hoc networks [C]. Proceedings of the 7th annual International Conference on Mobile Computing and Networking. Rome, Italy: ACM, 2001: 97-107.
    [71] Ganesan D, Govindan R, Shenker S, et al. Highly-resilient, energy-efficient multipath routing in wireless sensor networks [J]. Mobile Computing and Communications Review, 2002, 1(2): 28-36.
    [72] Shah R, Rabaey J. Energy aware routing for low energy ad hoc sensor networks [C]. Proceedings of IEEE Wireless Communication and Networking Conference. IEEE, 2002: 350-355.
    [73] Sankar A, Liu Z. Maximum lifetime routing in wireless ad-hoc networks [C]. Proceedings of IEEE Infocom Conference, Hong Kong, 2004: 1089-1097.
    [74] Sadagopan N, Krishnamachari B. Maximizing data extraction in energy-limited sensor networks [J]. International Journal of Distributed Sensor Networks, 2005, 1(1): 123-147.
    [75] Kim H, Kwon T, Mah P. Multiple sink positioning and routing to maximize the lifetime of sensor networks [J]. IEICE Transactions on Communications, 2008, E91-B(11): 3499-3506.
    [76]李平,文玉梅.编码式谐振SAW无源无线温度传感器阵列系统[J].仪器仪表学报, 2003, 24(6): 551-554.
    [77]李平,文玉梅.声表面波谐振器型无源无线温度传感器[J].仪器仪表学报, 2003, 24(4):403-405.
    [78]李平,文玉梅.声表面波无源无线温度传感器系统研究[J].电子测量与仪器学报, 2002, 16(4): 44-49.
    [79] Ryu J, Carazo A.V, Uchino K, et al. Magnetoelectric Properties in Piezoeletric and Magnetostrictive Laminate Composites [J]. Jpn. J, Appl. Phys. Part 1, 2001, 40(8): 4948-4951.
    [80] Dong Shu-xiang, Li Jie-Fang, Dwight Viehland. Characterization of Magnetoeletric Laminate Composites Operated in longitudinal-Transverse and Transverse Transverse Modes [J]. Journal of Applied Physics, 2004, 95(5): 2625-2630.
    [81] Li P, Wen Y.M, Liu P.G, Li X.S, Jia C.B. A magnetoelectric energy harvester and management circuit for wireless sensor network [J]. SENSORS AND ACTUATORS A-PHYSICAL, 2010, 157(1): 100-106.
    [82] Li P, Wen Y, Bian L, Enhanced magnetoelectric effects in composite of piezoelectric ceramics, rare-earth iron alloys, and ultrasonic horn [J], Applied Physics Letters, 2007, 90(2): 022501–022503.
    [83]卞雷祥,文玉梅,李平.磁致伸缩材料磁弹性内耗的场依赖特性及其用于磁场传感研究[J].物理学报, 2010, 59(02): 883-892.
    [84]卞雷祥,文玉梅,李平.磁致伸缩/压电叠层复合材料磁-机-电耦合系数分析[J].物理学报, 2009, 58(06): 4205-4209.
    [85] http://www.powercastco.com/.
    [86] Curty J.P, Declercq M, Dehollain C, Joehl N. Wireless power transmission. In Design and Optimization of Passive UHF RFID Systems [M], 1st ed., New York: Springer Science+Business Media, 2007: 3-17.
    [87] White N.M, Glynne-Jones P, Beeby S. A novel thick-film piezoelectric micro-generator [J]. Smart Mater. Struct., 2001, 10: 850–852.
    [88] Konak M.J, Powlesland I.G, van der Velden S.P, Galea S.C. A self-powered discrete time piezo-elecric vibration damper [J]. SPIE—Proc. Int. Soc. Opt. Eng., 1997: 270–279.
    [89] Williams C.B, Yates R.B. Analysis of a micro-electric generator for Microsystems [C]. In Proc. Solid-State Sensors and Actuators, 1995 and Eurosensors IX. Transducers’95, 1995, 1: 369–372.
    [90] Shearwood S, Yates R.B. Development of an electromagnetic micro-generator [J]. Electron.Lett., 1997, 33: 1883–1884.
    [91] Amirtharajah R, Chandrakasan A.P. Self-powered signal processing using vibration-based power generation [J]. IEEE J. Solid State Circuits, 1998, 33: 687–695.
    [92] Li W.J, Chan G. M. H, Ching N. N. H, Leong P. H. W, Wong H. Y. Dynamical modeling and simulation of a laser-micromachined vibration-based micro power generator [J]. Int. J. Nonlinear Sci. Simulation, 2000, 1: 345–353.
    [93] Meninger S, Mur-Miranda J. O, Amirtharajah R, Chandrakasan A. P, Lang J. H. Vibration-to-electric energy conversion [J].IEEE Trans. VLSI Syst., 2001,9: 64–76.
    [94] Roundy S, Wright P. K, Pister K. S. Micro-electrostatic vibration-to-electricity converters [C]. In Proc. 2002 ASME Int. Mechan. Eng. Congress and Exposition, New Orleans, LA, Nov. 2002.
    [95] Leland E.S, Lai E.M., Wright P.K. Self-powered wireless sensor for indoor environmental monitoring [J]. 2004 Wireless Networking Symposium, 2004.
    [96] Roundy S, Wright P K, Rabaye J. A study of low level vibrations as a power source for wireless sensor nodes [J]. Comput. Commun, 2003, 26: 1131-1144.
    [97] Dapino M.J, Smith R.C, Calkins F.T, Flatau A.B. A coupled magnetomechanical model for magnetostrictive transducers and its application to Villari-effect sensors [J]. Journal of Intelligent Material Systems and Structures, 2002, 13(11):737-747.
    [98] Lei Wang, Yuan F.G. Energy harvesting by magnetostrictive material (MsM) for powering wireless sensors in SHM [J]. Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, San Diego, CA, USA, 2007, 6529: 652941-652952.
    [99] http://www.perpetuum.com/.
    [100] http://www.ferrosi.com/.
    [101] http://www.cedrat.com/.
    [102] http://www.enocean.com/en/stm-110/.
    [103] Kansal A, Hsu J, Zahedi S, Srivastava M.B. Power Management in Energy Harvesting Sensor Networks [J]. Transactions on Embedded Computing Systems, 2007, 6(4):32.
    [104] Jiang X, Polastre J, Culler D. Perpetual Environmentally Powered Sensor Networks [C]. In Fourth International Symposium on Information Processing in Sensor Networks, 2005: 463–468.
    [105] Simjee F, Chou P.H. Everlast: Long-life, Supercapacitor-operated Wireless Sensor Node [C]. In Proceedings of the 2006 International Symposium on Low Power Electronics and Design, ACM, 2006: 197–202.
    [106] Holmes A.S, Hong G, Pullen K.R, Buffard K.R. Axial-flow micro-turbine withelectromagnetic generator: design, CFD simulation, and prototype demonstration. Micro Electro Mechanical Systems [C]. 17th IEEE International Conference on. (MEMS), 2004: 568-571.
    [107] Herrault, F, Ji C.H, Kim S.H, Wu X.S, Allen, M.G. A microfluidic-electric package for power MEMS generators [C]. 2008 IEEE 21st International Conference on Micro Electro Mechanical Systems, Tucson, AZ, 2008: 112– 115.
    [108] Mateu L, Codrea C, Lucas N, Pollak M, Spies P. Energy Harvesting for Wireless Communication Systems Using Thermo-generators [C]. Proc. 21st Conference on Design of Circuits and Intergrated Systems (DCIS’2006), Barcelona, Spain, 2006.
    [109] Liu F, Phipps A, Horowitz S, Ngo K, Cattafesta L, Nishida T, Sheplak M. Acoustic energy harvesting using an electromechanical Helmholtz resonator [J]. J. Acoust. Soc. Am, 2008, 123(4): 1983-1990.
    [110] Horowitz S.B, Sheplak M, Cattafesta L.N, Nishida T. A MEMS acoustic energy harvester [J]. Journal of Micromechanics and Microengineering, 2006, 16(9): S174-S181.
    [111] Roundy S, Steingart D, Frechette L, Wright P, Rabaey J. Power Sources for Wireless Sensor Networks [J]. Computer Science, 2004, 2920: 17.
    [112] Kurs A, Karalis A, Moffatt R. Wireless Power Transfer via Strongly Coupled Magnetic Resonances [J]. Science, 2007, 317: 83-86.
    [113] Lien V, Lin H, Chuang J, Sailor M.J, Lo Y.H. A fiber-optic powered wireless sensor module made on elastomeric substrate for wearable sensors [C]. 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society San Francisco, CA, USA, 1-5 Sept. 2004.
    [114] Yugami H, Kanamori Y, Arashi H, Niino M, Moro A, Eguchi K, Okada Y, Endo A. Field experiment of laser energy transmission and laser to electric conversion [C]. 32nd Intersociety Energy Conversion Engineering Conference (IECEC-97), HONOLULU, HI, JUL 27-AUG 02, 1997.
    [115]王青圃,张行愚,刘泽金,李平.激光原理[M].济南:山东大学出版社, 2003.
    [116]宋正方.应用大气光学基础[M].北京:气象出版社, 1990: 1-123.
    [117] Kent G.S., Wright R.W.H. A Review of Laser Radar Measurements of Atmospheric Properties [J]. J. Atoms. Terrer. Phys., 1970, 32(5): 917-943.
    [118] Shibata T, et al. Measurements of Density and Temperature Profiles in the Middle Atmophere with Axef Lidar [J]. Appl. Opt., 1986, 25(5): 685-688.
    [119] Gravey M.J, Kent G.S. Raman Backscatter of Laser Radiation from Stratosphere [J]. Nature, 1974, 248(5444): 124-125.
    [120] Korb C.L, et al. Optical and Laser Remote Sensing [M], Springer-Verlag, Berlin, 1983, 120.
    [121] Shaik K.S. Atmospheric propagation effects relevant to optical communication [J]. TDA Progress Report, 1988: 180-188.
    [122]邹进上,刘长盛,刘文保.大气物理基础[M].北京:气象出版社, 1982: 293-317.
    [123]吴建辉,杨坤涛,张南洋生.核爆炸光辐射探测中的大气传输性能研究[J],应用光学, 2008, 29(5): 815-820.
    [124] ITU. Development of a weather-model for free space optical propagation [M]. ITU Document 3J/78-E. 2004.
    [125] Van H.C. Light scattering by small particles [M]. Dover Publications, Inc, 1991.
    [126]王丽黎,柯熙政,席晓莉.激光通过大气随机信道光强分布的实时显示[J].西安理工大学学报, 2005, 21(2): 196-199.
    [127]徐叙瑢,苏勉曾.发光学与发光材料[M].北京:化学工业出版社, 2004.
    [128] Liu Z.Y, Liu S, Wang K. Optical Analysis of Phosphor’s Location for High-Power Light-Emitting Diodes [J]. IEEE Transactions on devices and materials reliability, 2009, 9: 65-73.
    [129]周太明,周详,蔡伟新.光源原理与设计[M].上海:复旦大学出版社, 2006: 148-149.
    [130]许少鸿,张志三译.液体和固体的光致发光[M].北京:科学出版社, 1958: 118-119.
    [131]浦昭邦.光电测试技术[M].北京:机械工业出版社, 2005: 9-10.
    [132]王涛,王正志.微光光照强度下太阳能电池应用研究[J].光电技术应用, 2006, 21(2): 32-35.
    [133]霍维尔H.J.著,高元恺,叶奕镍译.太阳能电池[M].哈尔滨:黑龙江科学技术出版社, 1984: 44-47.
    [134]倪萌, Leung M.K, Sumathy K.太阳能电池研究的新进展[J].可再生能源, 2004, 2: 9-11.
    [135] Stupca M, Alsalhi M, AlSaud T, Almuhanna A, Nayfeh M.H. Enhancement of polycrystalline silicon solar cells using ultrathin films of silicon nanoparticle [J]. Appl. Phys. Lett., 2007, 91(6): 063107.
    [136] Pillai S, Catchpole K R, Trupke T, Green M.A. Surface plasmon enhanced silicon solar cells [J]. J. Appl. Phys., 2007, 101(9): 093105.
    [137] Hu L, Chen G. Analysis of optical absorption in silicon nanowire Arrays for photovoltaic applications [J]. Nano Lett., 2007, 7(11): 3249-52.
    [138] Han S E, Chen G. Optical Absorption Enhancement in Silicon Nanohole Arrays for Solar Photovoltaics [J]. Nano Lett., 2010, 10(3): 1012-15.
    [139] Her T H, Finlay R J, Wu C et al. Microstructuring of silicon with femtosecond laser pulses [J]. Appl. Phys. Lett., 1998, 73(12): 1673-75.
    [140]熊绍枕,朱美芳.太阳能电池基础与应用[M].北京:科学出版社, 2009: 92-111.
    [141]刘恩科,朱秉升,罗晋生.半导体物理学[M].北京:电子工业出版社, 2008: 190-192.
    [142]赵华君,赵守良,张东等.亚波长金属偏振分束光栅设计分析[J].物理学报, 2009, 58(9): 6236-07.
    [143]孔伟金,云茂金,孙欣等.基于严格耦合波理论的多层介质膜光栅特性分析[J].物理学报, 2008, 57(8): 4904-07.
    [144]鱼卫星,卢振武,王鹏等.二维表面浮雕结构的矢量衍射分析[J].光学学报, 2001, 21(8): 980-986.
    [145]俞允强.电动力学简明教程[M].北京:北京大学出版社, 1999:12.
    [146] Palik E D, Academic: Orlando, FL, Handbook of optical constants of solids 3rd ed, 1985: 531.
    [147]王岩.光伏发电系统MPPT控制方法的研究[D].华北电力大学硕士学位论文, 2007: 25-35.
    [148] Chou S.Y, Krauss P.R, Renstrom P.J. Imprint lithography with 25-nanometer resolution [J]. Science, 1996, 272(5258): 85-87.
    [149] Auzelyte V, Sigg H, Schmitt B, Solak H.H. Direct formation of ZnO nanostructures by chemical solution deposition and EUV exposure [J]. Nanotechnology, 2010, 21(21): 215302.
    [150]倪星元.纳米材料制备技术[M].北京:化学工业出版社, 2007:97.
    [151]闫永达,费维栋,胡振江,程相杰,孙涛,董申.基于单片机的AFM纳米机械性能测试系统[J].光学精密工程, 2008, 16(7): 1223-1229.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.