蒸汽引射系统凝结流动过程数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以某型上面级液体火箭发动机地面试车引射系统为研究对象,对该引射系统中的超声速环型蒸汽引射器进行了研究。首先根据一维设计理论,在没有考虑蒸汽流动过程中的凝结的条件下,得到了引射器性能的变化规律。接着建立了湿蒸汽凝结流动数值模型,并利用经典实验的结果对该模型进行了数值校验,验证了数值模型的可信度和准确性。随后对超声速环型蒸汽引射器进行了大量的数值仿真计算,得到了不同状态下凝结流场的结构,并且提出了提高引射能力的方法。最后简单讨论了超声速环型蒸汽引射器的启动特性。
     本文的研究工作完成了如下的主要内容:
     1、利用引射器的一维设计理论,编写了计算引射器性能参数的程序,探讨了在未考虑蒸汽凝结时工作参数和结构参数变化对超声速引射器性能的影响。计算结果表明:采用较高的引射马赫数、较小的引射系数和喷嘴出口气流方向角,有利于提高引射能力。混合室压缩比Em对引射器的性能有重大影响,在引射器设计过程中应慎重考虑。
     2、建立了湿蒸汽凝结流动模型,模型的计算结果与C. A. Moses和G. D. Stein实验,以及M. J. Moore实验的数据基本吻合,从而验证了模型的可信度和准确性。
     3、利用湿蒸汽凝结流动模型对超声速环型蒸汽引射器进行了大量的数值计算。结果表明:引射喷嘴流场由于蒸汽的凝结,使得出口马赫数下降,静压和静温有所提高。采用较低的引射总压和较高的引射总温,可以减少蒸汽的凝结量,提高引射能力;蒸汽的凝结使得引射系数下降,并且引射系数越小,下降的幅度越大。适当地减小收敛比?、面积比?和增大二次喉道的长径比l d ,可以提高总压恢复系数,改善引射器性能。增大引射喷嘴入口蒸汽的过热度,也可以使启动压强降低。
Taking a certain type of upper-stage liquid-propellant rocket engine ground test ejector system as the research object, the ejector system of supersonic steam annular ejector was researched in this paper. First, according to one-dimensional design theory, without considering the process of condensing steam flow conditions, the performance of ejector system was studied. Then, the numerical model for wet steam condensation flow was established, quantitative validation of which was accomplished by using the classic experiments. And the structures of flow field while condensating were obtained under different conditions, based on a large number of numerical simulations about supersonic steam annular ejector. Several methods were presented to improve ejector capabilities. Finally, the startup characteristics of the supersonic steam annular ejector were discussed briefly.
     The main contents are given as follows:
     1. Base on one-dimensional ejector design theory, the preparation of the calculation ejector performance parameters of the process, the performance of supersonic ejector was studied under different flow parameters and structures (without considering the steam-condensing).The results show that: higher injection Mach number, smaller injection coefficient and smaller nozzle exit flow direction angle were conducive to injection capacity. Mixing chamber compression ratio E m has a significant impact on the ejector performance, which should be considered carefully in design of the ejector.
     2. Numerical simulation results with wet steam condensation flow model were coincident to the experimental data of C. A. Moses and G. D. Stein, as well as M. J. Moore, which validated the credibility and accuracy of the model.
     3. A large number of numerical simulations about supersonic steam annular ejector were presented by using wet steam condensation flow model. The results showed that: in ejector nozzle flow field, as Mach number of the exit declined, static pressure and static temperature increased due to vapor condensation. A lower injection pressure and a higher total temperature injection can reduce the amount of steam condensation, thus improve the injection capacity. Injection coefficient decreased because of condensation of steam, and the smaller the injection coefficient, the greater the decrease. Appropriately reducing the convergence ratio ? , area ratio ? and increasing the l d of secondary throat can increase the total pressure recovery coefficient to improve ejector performance. By increasing the entrance overheating degree of the steam ejector nozzle, the start-up pressure can be cut down as well.
引文
[1]徐万武,谭建国,王振国.高空模拟试车台超声速引射器数值研究[J].固体火箭技术,26(2), 2003.
    [2]廖达雄.引射器性能优化和增强混合方法研究[D].西北工业大学硕士学位论文,2003.
    [3]吕辉强.二维超声速空气引射器理论与实验研究[D].国防科学技术大学硕士论文, 2008.
    [4] Tohru Mitani, et al. Wind Tunnels and Supplemental Studies of Scram Jet Engine Tests [R]. Japan NAL Kakuda Research Center, 2001.
    [5]黄生洪,徐胜利,李俊杰,陈延辉,夏慧.水蒸汽凝结对超声速风洞蒸汽引射系统的影响[J].推进技术, 26(5), 2005.
    [6] Hisham EI-Dessouky, Hisham Ettouney, Imad Alatiqi, Ghada AI-Nuwaibit. Evaluation of Steam Jet Ejectors[J]. Chemical Engineering and Processing 41(2): 551-561, 2002.
    [7] Da-wen Sun. Variable Geometry Ejectors and Their Applications in Ejector Refrigeration Systems[J], Energy 21(10): 919-929, 1996.
    [8]李德海,肖新鹰.环状引射器的工作性能优势分析[J],航空发动机, 32(3). 2006
    [9] Zhang Jing-zhou, Shan Yong , Li Li-guo. Computation and Validation of Parameter Effects on Lobed Mixer-Ejector Performances[J],Chinese Journal of Aeronautics, 18 (3): 93-198, 2005.
    [10]张堃元,徐辉等.主流倾斜的两级引射器模型试验研究[J].燃气涡轮试验与研究, 13(3), 2000.
    [11]张鲲鹏,薛飞,潘卫明,范志华.高压气体引射器的试验研究和仿真[J],热科学与技术3(2), 2004.
    [12]廖达雄,任泽斌,余永生,杨永.等压混合引射器设计与实验研究[J].强激光与粒子束18(5), 2006.
    [13]徐万武,王振国.环型超声速空气引射器零二次流流场数值研究[J].推进技术, 24(1), 2003.
    [14]徐万武,谭建国,王振国.二次流对超声速环型空气引射器真空度的影响[J].国防科技大学学报,25(3), 2003.
    [15]黄华,姜宗福.压力恢复系统引射器工作效率工程估算[J],国防科技大学学报23(3), 2001.
    [16]孙兰昕.汽轮机除湿级内两相流动数值研究[D],哈尔滨工程大学硕士学位论文,2006.3.
    [17]李亮.存在自发凝结的湿蒸汽两相非平衡凝结流动数值研究[D],西安交通大学博士论文,2002.9.
    [18]蔡颐年,王乃宁.湿蒸汽两相流[M],西安:西安交通大学出版社,1985.
    [19]黄跃,蔡颐年.膨胀率对拉伐尔喷管超音速湿蒸汽流动凝结过程的影响[J],西安交通大学学报.18(2): 51-61,1984.
    [20]黄跃.蒸汽透平中自发凝结及流动特性的理论和试验研究[D],西安交通大学博士学位论文,1987.
    [21]张冬阳.非平衡态湿蒸汽流动快速准确数值模拟方法研究[D],中国科学院工程热物理研究所博士论文,2002.
    [22]于禄,郝柏林.相变和临界现象[M],北京:科学出版社,1984.
    [23] Cai X S, et al, A Novel Method for Measuring the Coarse Water in Wet Steam Flow in Steam Turbine[J]. Journal of Thermal Science. 10(2): 123-126, 2001.
    [24] Baumann, K. Some Recent Developments in Large Steam Turbine Practice[J]. J. Instn. Elect. Engrs 59(1): 565-569, 1921.
    [25] Wang N N, Wei J M, Cai X S, et al, Optical Measurement of Wet Steam in Turbines, ASME, J of Engineering for Gas Turbines and Power. 120: 867-871. 1998.
    [26] Wegener, P.P., Non-equilibrium flows[M], Marcl Dekker, 1969.
    [27] H. Daiguji, K. Ishazaki, T. Ikohagi. A High-Resolution Numerical Method for Transonic Non-equilibrium Condensation Flows through a Steam Turbine Cascade. In Proceedings of the 6th International Symposium on Computational Fluid Dynamics. 1(2): 479-484, 1995.
    [28] Moore M J, Sieverding C H, Two-Phase Steam Flow in Turbines and Separators. Hemisphere Publishing Corporation, 1976.
    [29] J. Gerber, A. J., Two-Phase Eulerian/Lagrangian Model for Nucleating Steam Flow, ASME J. Fluids Eng. 124(1): 465-475. 2002.
    [30] Gerber A G, Kermani. A Pressure based Eulerian/Eulerian Multi-phase Model for Non-equilibrium Condensation in Transonic Steam Flow [J]. Heat and Mass Transfer. 47(1): 217-2231. 2004.
    [31] Keramat, Fakhari. Development of a Two-Phase Eulerian/Lagrangian Algorithmfor Condensing Steam Flow. 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada. 2006.1.
    [32] C. A. Moses and G. D. Stein. On the Growth of Steam Droplets Formed in a Laval Nozzle Using Both Static Pressure and Light Scattering Measurements[J]. J. of Fluid Engineering. 100: 311-322. 1978.9.
    [33] L. Zori, F. Kelecy, Wet Steam Flow Modeling in a General CFD Flow Solver, 35th AIAA Fluid Dynamics Conference and Exhibit Toronto, Ontario Canada. 2005.6.
    [34] Kelleners Philip, Simulation of In-viscid Compressible Multiphase Flow With Condensation[R]. Center for Turbulence Research Annual Research Briefs, 2003.
    [35]杨勇,沈胜强,孔泰佑.水蒸气超音速流动过程中自发凝结现象的数值模拟[J],工程热物理学报, 29(8): 1393-1396, 2008.
    [36]杨勇,沈胜强,孔泰佑.水蒸气跨音速流动中非平衡现象的数值模拟[J].热科学与技术. 7(3), 2008.9.
    [37]李海军.喷射器性能、结构及特殊流动现象研究[D],大连理工大学博士论文,2004.
    [38]徐海涛,桑芝富.蒸汽喷射器喷射系数计算的热力学模型[J].化工学报. 55(5), 2004.7.
    [39]张飞,王志浩,张秀玲.高空模拟试车台等截面式环型蒸汽引射器零二次流流场数值模拟[J].桂林航天工业高等专科学校学报. 2(50), 2008.
    [40] Moore M J, Sieverding C H, Aerothermodynamics of Low Pressure Steam Turbines and Condensers. Hemisphere Publishing Corporation. 1986.
    [41] Hill. Condensation of Water Vapor During Supersonic Expansion in Nozzles[J], Journal of Fluid Mechanics. 25(3): 593~620,1966.
    [42] [美] H.G.斯蒂弗,气体动力学基本原理F编[M].高速流体中的凝结现象,北京:科学出版社,1988.
    [43]徐万武.高性能、大压缩比化学激光器压力恢复系统研究[D],国防科学技术大学博士论文,2003.
    [44]潘锦珊等.气体动力学基础[M],西安:西北工业大学出版社,1995.
    [45]索科洛夫,津格尔等.喷射器[M],北京:科学出版社,1977.
    [46] Fluent6.2 Help Documentation,2004.
    [47]张峰.汽轮机末级蒸汽凝结流动的数值模拟研究[D],长沙理工大学硕士学位论文,2007.4.
    [48]杨世铭等.传热学[M],北京:高等教育出版社,1998, 12.
    [49]陈红梅.湿蒸汽非均质凝结流动的数值研究[D],西安交通大学硕士学位论文,2004.
    [50]韩中合,王智,杨昆,田松峰.膨胀率对湿蒸汽自发凝结流动影响的数值分析[J], 31(2): 36-39, 2004.
    [51]张冬阳,刘建军,蒋洪德.三维湿蒸汽流动快速准确数值模拟方法及应用[J], 24(2): 262-264, 2003.
    [52] Moore M J, Walters P T, et al. Predicting the Fog Drop Size in Wet Steam Turbines, In: Wet Steam 4 Conference. Univ. of Warwick: Institute of Mechanical Engineers (UK). Paper No. C37/73. 101-109,1975.
    [53]徐华舫.空气动力学基础[M],北京:北京航空学院出版社, 1987.
    [54]李桦,范晓樯,丁猛.超声速扩压器中激波串结构的数值模拟[J],国防科技大学学报. 2002.
    [55]王占学,王建峰,唐狄毅.高空台扩压器的数值模拟[J].推进技术. (6), 1998.
    [56] Lamanna, On Nucleation and Droplet Growth in Condensing Nozzle Flows[D]. Windhaven University of Technology, The Netherlands, ISBN 902386216492X
    [57] Wegener. Non-equilibrium Flows, Part 1[M]. Marcel Dekker, New York and London, 1969.
    [58] Bolm D, Kerpicci H, Ren J, Surken N, Homogeneous and Heterogeneous Nucleation in a Nozzle Guide Vane of a L P-Steam Turbine. 4th European Conference on Turbo machinery. Firenze, Italy, 2001.
    [59] J. B. Young , An Equation of State for Steam For Turbo Machinery and Other Flow Calculations, J. of Eng. for Gas Turbines and Power, Jan, 1988, Vol. 110, pp. 1-7
    [60] A kleitz, J M Drorey, Instrumentation for wet steam, Int. J. Mech. SCI 21(8): 811-842, 2004.
    [61] Nicke, E, Nürnberger, D., Potential of 3D-Flow-Simulation for Multistage Turbo machinery Design, Proceedings ODAS2002, 4th ONERA-DLR Aerospace Symposium, Cologne, Germany, 13th-14th of June, 2002.
    [62] A. R. Avetissian, G. A. Philippov, L. I. Zaichik, The effect of turbulence on spontaneously condensing wet-steam flow,Nuclear engineering and design[J]. Vol. 235(1): 1215-1223, 2005.
    [63] A. J. White, Numerical Investigation of Condensing Steam Flow in Boundary Layers[J], Heat and fluid flow. 21: 727-734, 2000.
    [64]王福军.计算流体动力学分析—CFD软件原理与应用[M].北京:清华大学出版社,2004, 9.
    [65]韩占忠,王敬等.流体工程仿真计算[M],北京:北京理工大学出版社,2005.3.
    [66]王瑞金,张凯等. Fluent技术基础与应用实例[M],北京:清华大学出版社,2007, 2.
    [67]江帆,黄鹏. Fluent高级应用与实例分析[M].北京:清华大学出版社, 2008, 7.
    [68] S. E. Stephens. L. B. Bates, Geometry Effects in Second Throat Annular Steam Ejectors[J] . AIAA91-2271.
    [69] Swapan Kumar Das, Deepak Kumar Bhattacharya. Turbine Blade Failure in A Thermal Power plant [J]. Engineering failure analysis. 2003.
    [70] M. R. Khajavi, M. H. Shariat. Failure of First Stage Gas Turbine Blades[J]. Engineering Failure analysis. .11: 589-597, 2004.
    [71] Jian fu Hou, Bryon J. Wicks, Ross A. Antoniou. An Investigation of Fatigue Failures of Turbine Blades in a Gas Turbine Engine by Mechanical Analysis [J]. Engineering Failure Analysis 9: 201–211, 2002.
    [72] J. B. Young. Two-Dimensional Non Equilibrium Wet-Steam Calculations for Nozzles and Turbine Cascades[J]. Journal of Turbo machinery. 114: 569-579, 1992.7.
    [73] J. B. Young. The Spontaneous Condensation of Steam in Supersonic Nozzles. Physics Chemical Hydrodynamics. 3(2): 57-82, 1982.7.
    [74]温正,石良辰,任毅如. FLUENT流体计算应用教程[M].北京:清华大学出版社. 2009.1.
    [75]缪亚芹,万锁芳,吴恒刚.多喷管引射器试验研究和数值模拟南京师范大学学报(工程技术版). 16(2), 2006.6.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.