虚拟单元制造车间的规划与调度关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
市场竞争的日益激烈和市场需求动态多变,迫使企业车间的制造系统必须具备快速可重构的能力,从而以合理的成本快速投入新产品的生产,适应动态多变的市场和客户的个性化需求。同时,随着物联网技术的发展和制造执行系统在生产制造领域应用的不断深入,也促使生产车间不断向透明化、数字化、可视化方向转变。本文分析和总结了目前典型的制造模式特点以及车间制造系统的发展趋势,在虚拟制造单元、物联网和制造执行系统等技术的基础上,发展了一种新的车间制造模式——虚拟单元车间制造模式。本文以虚拟单元制造车间的支持技术、虚拟单元重构方法以及车间的生产控制与调度为研究重点,对这些关键问题和技术进行了系统研究。主要研究内容如下:
     1、为了使制造系统能够适应动态多变的市场,并具备透明化、数字化、可视化等特点,本文在虚拟制造单元、物联网和制造执行系统等技术的基础上,发展了一种新的车间制造模式——虚拟单元车间制造模式。为了提高车间管理控制的自动化水平,提出了物联网与车间制造系统全面融合的理念和结构,并在可行性方面进行了探索和研究,就一些关键问题提出了相应的技术解决方案。首先,探讨了物联网技术对车间生产的重要意义,提出了一种基于网格平台的物联网构建方法,针对物联网环境的特点提出了一种基于网格服务的MES系统设计开发方法,构建了基于网格服务的MES系统层次体系结构和功能模型。然后,提出了一种物联网环境下生产实时监测和订单实时跟踪问题的解决方法。该方法首先采用WSRF技术将生产设备封装成标准的网格资源,通过设备网格资源动态信息的实时更新与查询和网格资源通知机制实现对生产设备加工过程的实时监测;然后采用OGSA—DAI网格中间件和WSRF技术将异构数据库系统封装成标准的网格服务,从而屏蔽系统的差异性,实现订单进度信息的集成访问。从而可以实现管理人员和客户对生产进度的实时监测,不但为管理者的管理决策提供了实时数据支持,而且便于客户准确预测订单完工时间。
     2、针对单件、小批量、个性化面向订单生产企业,研究了多张不同交货期生产订单并存情况下的虚拟单元重构问题。采用两阶段的策略进行求解。在产品聚类阶段提出了一种最小树和遗传算法相结合的自适应聚类算法,在算法中引入了一种新的基于最小树的编码方法,有效的缩短了编码长度,缩小了问题的搜索空间。该算法只需操作人员给定聚类的最大数量,就可以自适应地确定最佳聚类数目和产品聚类。在单元重构阶段建立了问题的多目标整数规划模型,针对该问题的特点,将粒子群算法与协同进化策略相结合,提出了一种平行多目标协同粒子群优化算法(PCMOPSO)。采用生产实例对算法的有效性和可行性进行了验证。
     3、对虚拟单元制造模式下的车间调度特点进行了分析,然后分别针对目标数量较多的高维多目标调度问题和资源共享情况下的生产调度问题进行了研究。针对具有高维搜索空间的多目标生产调度问题,提出了一种基于偏好的多目标粒子群优化算法(PMOPSO)。算法引入了决策者的偏好信息,用以指导算法的搜索过程,使算法在决策者感兴趣的区域进行搜索,不但缩小了算法的搜索空间,提高了算法的效率,而且一次运算只求得偏好区域内若干个折衷解,避免了决策者要在众多非劣解中做出困难的选择。在算法中,采用了新的偏好信息给定方法,即采用目标间重要关系、目标数值或目标权重大致取值范围来表示偏好信息。采用该方法,不但便于决策者给定偏好信息,而且还可以根据决策者的需求,对搜索区域的范围进行适当的调整。针对偏好信息的特点,提出了一种模拟人类社会组织“投票选举”的偏好信息处理方法,该方法直观简便并易于实现。针对资源共享情况下的生产调度问题的特点,将粒子群优化算法与协同进化算法相结合提出了一种分布式协同多目标粒子群调度算法,针对共享资源调度冲突问题,在算法中引入了一种模拟市场机制的解码规则加以解决。并通过仿真试验,对上述两种算法性能进行比较分析和评价,结果表明了算法的有效性和可行性。
     4、研究了多张不同交货期订单并存情况下的多目标分批动态调度问题。首先,针对传统的多目标动态调度问题,提出了一种基于滚动窗口的多目标粒子群动态调度算法,该算法采用基于周期和事件驱动的混合再调度机制将调度过程分成连续静态调度区间,在每个区间内用基于Pareto概念的多目标粒子群算法对窗口工件进行调度优化,一次求解可得到多个Pareto最优解,为决策者提供了多样性的选择。并针对调度问题的特点,并设计了一种适合多目标调度的间隙插入式解码方法,有效的减小了问题搜索空间。然后,针对面向订单制造的多目标分批动态调度问题,提出了一种基于粒子群算法的多目标柔性分批动态调度算法,算法采用局部更新和完全重调度相结合的策略,既可以保持生产秩序的稳定,同时又保证了算法对突发事件的快速反应能力。在算法中,提出了一种新的基于“游标”的柔性批次分割方法,并采用一种批次分割与加工工序相融合的粒子编码方法,使得该算法不但可以根据机床负荷与订单交货期将工件族划分为具有柔性批量的多个批次,而且可使批次工艺路线和加工排序同时得到优化。而且,算法一次求解可得到多个Pareto最优解,为决策者提供了多样性的选择。并且,通过实例验证了上述算法有效性和可行性。
     5、最后,设计并开发了虚拟单元制造车间MES原型系统,对原型系统的主要功能进行了介绍,并将该原型系统在工业泵阀工厂进行了实验性应用。
The trends of increasing severe market competition and decreasing product life cycles in theglobal manufacturing era point at the need to develop flexible reconfigurable manufacturing systems,which should adapt themselves to single work piece, small-batch, diversified and make to ordermanufacturing environment. As the application of internet of things and manufacturing executionsystem in manufacturing field, the shop-floor has become more and more transparency, digital andviewable.Thorough summary and analysis of advanced manufacturing system mode, a new shop-floormanufacturing mode based on virtual manufacturing cell, internet of things and manufacturingexecution system, named virtual cellular shop-floor manufacturing mode, was developed. Thisdissertation focuses the production scheduling and control problem of shop-floor in this kind ofmanufacturing mode. An extensive study on the supporting technologies, reconfigurationmethodology of virtual manufacturing cell, production scheduling and control algorithm was carriedout. The main contents and achievements of the dissertations are as follows:
     1. In order to make the manufacturing system become transparency, digital, viewable, flexibleand reconfigurable, a new shop-floor manufacturing mode based on virtual manufacturing cell,internet of things and manufacturing execution system (MES), named virtual cellular shop-floormanufacturing mode, was developed. In order to realize the internet of things and automatic control inshop-floor, the feasibility of shop-floor internet of things was discussed and solving methods for a fewrelated problems were put forward. First, a shop-floor internet of things construction method based oncomputing grid was discussed, a MES construction method based on grid service was proposedaccording to characteristics of internet of things, and the architecture of MES system based on gridservice was constructed. And then, a method to realize real time monitoring of shop-floor and productorder with internet of things was proposed. With this method, machine tools was encapsulated as gridresources with WSRF at first, and shop-floor can be real time monitored through inquiring thedynamic information or notifications of grid resources; then the heterogeneous database system wasencapsulated as uniform grid service with OGSA-DAI and WSRF, and the information of orderproduction schedule can be integrated access easily. With the above method, not only the real timemonitoring of the shop-floor can be easily realized for managers of the factory, but also completiontime of orders can be accurately predicted for the customers.
     2. To adapt to characteristics of single work piece, small-batch, diversified and make to ordermanufacturing environment, a methodology which could be used to reconfigure VirtualManufacturing Cell for multiple product orders with different due dates was proposed. The methodology is divided into two phases: product clustering and virtual cell reconfiguration. In thephase of product clustering, an adaptive clustering algorithm based minimal spanning tree and geneticalgorithm was proposed. To compress the length of gene code and searching space of problem, a newcoding method based on minimal spanning tree is employed in the algorithm. The algorithm canautomatically estimate the optimal number of clusters without a-priori information. In the phase ofvirtual cell reconfiguration, a non-linear multi-objective integer programming model was constructedand a new parallel collaborative multi-objective particle swarm optimization (PCMOPSO) algorithmwas proposed. Finally, the algorithms were verified through examples.
     3. Aiming at the characteristics of scheduling problem in the virtual cellular shop-floor, themulti-objective scheduling problem with large dimensional searching space and scheduling problemwith resource shared by different cells ware studied respectively. To solve the multi-objectivescheduling problem with large dimensional searching space, a preference based multi-objectiveparticle swarm optimization algorithm (PMOPSO) was proposed. The preference information ofdecisions maker is incorporated into the algorithm to lead the searching direction. So that, not only thesearching space is compressed and the efficiency of the algorithm is improved, but also just a fewtrade-off solutions located in preferred area are obtained in a single run, and the hard work ofchoosing a satisfying solution from numerous non-inferior solutions is eliminated. In the algorithm, anew expression method of preference information based on importance relationship among objectivesand the value range of objectives or objective weights was proposed. With this method, not only thepreference of decisions maker can be easily specified, but also the range of searching area can beadjusted properly according to the requirements of decisions maker. In view of the characteristics ofpreference information, a new preference information handling method, which simulates the “vote” ofhuman society, was proposed. The method is intuitive, simple and easy to use. To solve the schedulingproblem with resource shared by different cells, a distributed collaborative multi-objective particleswarm algorithm was proposed, in the algorithm a new decoding method which simulates marketmechanism is employed to solve the resource conflict. Finally, the performance of the abovealgorithms was evaluated through simulations, and the results demonstrate the feasibility andefficiency of proposed algorithms.4. The multi-objective dynamic scheduling problem with lot-splitting for multiple product orders withdifferent due dates was studied. First, the traditional multi-objective dynamic scheduling problem wasstudied. To solve the multi-objective dynamic scheduling problem, a new multi-objective dynamicscheduling algorithm based on particle swarm optimization algorithm and rolling-horizon was proposed. In this algorithm, periodic and event driven rescheduling strategies were employed and thedynamic scheduling problem was decomposed into a series of continual and static schedulingproblems, then an improved multi-objective particle swarm optimization algorithm were applied tooptimize each of the static scheduling problems, and the decisions maker can choose a satisfyingsolution from many Pareto optimal solutions obtained in a single run. To compress the searchingspace, a new active multi-objective scheduling decoding method was employed in the algorithm. Tosolve the multi-objective dynamic scheduling problem with lot-splitting for multiple product orderswith different due dates, a novel multi-objective flexible size lot-splitting dynamic schedulingalgorithm based on particle swarm optimization algorithm was proposed. Local and global updatingstrategy are both considered in the algorithm, local updating strategy is adopted for those turbulencesthat happen in high frequency but have little effect on the scheduling; otherwise, global updatingstrategy is adopted. In the algorithm, a flexible size lot-splitting approach based on “cursors” was putforward. Combined the lot-splitting and the lot scheduling, a novel particle coding scheme wasproposed. So that the algorithm not only can split lots into flexible size sub-lots according to machineworkloads, but also can optimize the lots routing and sequencing simultaneously. The performance ofthe proposed algorithms was evaluated through simulations, and the results demonstrate the feasibilityand efficiency of the proposed algorithms.5. Finally, A MES prototype system for virtual cellular shop-floor was designed and developed. By itsexperimental application in industry pump and valve factories, the application problem of system isdiscussed.
引文
[1]路涌祥.坚持科学发展,推进制造业的历史性跨越[J].机械工程学报,2007,43(11):1-6.
    [2]李廉水.中国制造业发展研究报告2009[M].科学出版社,2009.
    [3]李冶,屈贤明.2006-2007年中国装备制造业发展报告[M].中国计划出版社,2008.
    [4]卢小平.现代制造技术[M].清华大学出版社,2003:1-2.
    [5]中华人民共和国国家统计局.中国统计年鉴2009[M].中国统计出版社,2009.
    [6]中华人民共和国国家统计局.中华人民共和国2009年国民经济和社会发展统计公报.
    [7]陈菊红,汪应洛,孙林岩.灵捷虚拟企业科学管理[M].西安交通大学出版社,2002.
    [8] Gunasekaran A. Agile manufacturing: Enablers and an implementation framework[J].International Journal of Production Research,1998,36(5):1223-1247.
    [9] Gunasekaran A, Yusuf Y Y. Agile manufacturing: A taxonomy of strategic and technologicalimperatives [J]. International Journal of Production Research,2002,40(6):1357-1385.
    [10] Warnecke H J. The Fractal Company [M]. Berlin: Springer.1979.
    [11] Tharumarajah A, Well A J, Names L. Comparison of the Bionic Bractal and HolonicManufacturing System Concepts [J]. International Journal of Computer Integrated Manufacturing.1996.9(3):217-226.
    [12] Valckenaers Brussel V, Paul. Multi-agent Manufacturing Control in Holonic ManufacturingSystems [J]. Human Systems Management.1999.18(3-4):233-243.
    [13] Koren Y, Heisel U, Jovane F, et al.Reconfigurable Manufacturing Systems[J]. Annals of the CIRP,1999,48(2):527-540.
    [14]范玉顺,刘飞,祁国宁.网络化制造系统及其应用实践.机械工业出版社,2003.
    [15]刘飞,雷琦,宋豫川.网络化制造的内涵及研究发展趋势[J].机械工程学报,2003,39(8):l-6.
    [16]王爱民,范莉娅,肖田元,等.面向制造网格的应用平台及虚拟企业建模研究[J].机械工程学报,2005,2(41):176-181.
    [17]叶作亮,顾新建,钱亚东,等.制造网格—网格技术在制造业中的应用[J].中国机械工程,2004,5(19):1717-1720.
    [18] Mehrabi M G, Ulsoy A G, Koren Y. Reconfigurable Manufacturing Systems and Their EnablingTechnologies [J]. International Journal of Manufacturing Technology and Management,2000,1(1):113-130.
    [19]齐寄阳.可重构制造系统若干使能技术的研究[D].博士论文,中国科学技术大学,2006.
    [20]罗振璧,盛伯浩,赵晓波等.快速重组制造系统.中国机械工程,2000,11(3):300-303.
    [21] McLean CR, Bloom HM, Hopp TH. The virtual manufacturing cell [C].//Proceedings of FourthIFAC/IFIP Conference on Information Control Problems in Manufacturing Technology,1982:105–111.
    [22] MESA International.The Benefits of MES:A Report from the Field[R].MESA International WhitePaper Number1,1997.
    [23] MESA International.MES functionalities&MRP to MES data flow possibilities[R].MESAInternational White Paper2.1997.
    [24]白俊杰,龚毅光,王宁生,等.面向订单制造的可重构制造系统中虚拟制造单元构建技术[J].计算机集成制造系统,2009,15(2):313-320.
    [25]李淑霞,单鸿波.基于敏捷制造单元的车间动态重构[J].计算机集成制造系统,2007,13(3):520-526.
    [26]冷晟,魏孝斌,王宁生.虚拟制造单元重构中资源选择问题研究[J].计算机集成制造系统,2006,12(11):1815-1831.
    [27] Nomden G, Slomp J, Suresh N C. Virtual manufacturing cells: a taxonomy of past research andidentification of future research issues [J], International Journal of Flexible ManufacturingSystems,2006,17(2):71–92.
    [28] Mckay KN,Wiers VCS.Unifying the theory and practice of production scheduling [J]. Journalof Manufacturing Systems,1999,18(4):241-255.
    [29] Guinard Dominique. Towards opportunistic applications in a web of things[C].//Proceedings of20108th IEEE International Conference on Pervasive Computing and CommunicationsWorkshops. Washington, D.C., USA: IEEE,2010:863-864.
    [30] Bo Yan, Guangwen Huang. Application of RFID and internet of things in monitoring andanti-counterfeiting for products[C].//Proceedings of2008International Seminar on Business andInformation Management. Washington, D.C., USA: IEEE,2009:392-395.
    [31] Jianhua Wang, Yongsheng Song, Yan Yu, et al. Internet of Things in college applicationprospects[C].//Proceedings of2010International Conference on Electronics and InformationEngineering. Washington, D.C., USA: IEEE,545-547.
    [32]李建岐,雷煜卿,侯宝素. RuBee技术简介及其在电力物联网中的应用[J].电网技术,34(8):199-204.
    [33]唐敦兵,杨雷,赵国安,等.面向可循环经济的物联网技术应用研究[J].中国制造业信息化,2010,39(7):1-7.
    [34] AMR Consulting.Integratable MES: The Challenge And The Opportunity.http://www.amrconsulting.com/IntegratedMES.pdf.1995-4/2003-10-9.
    [35] MSTC/JOP.Specifications of the OpenMES Framework Version1.0(Draft alpha2).2000,9
    [36]任守纲.基于构件的MES软件产品线关键技术研究[D].南京航空航天大学博士学位论文.2005.
    [37]李亚白.面向服务的协同制造执行系统集成与重构技术研究[D].南京航空航天大学博士学位论文.2007.
    [38] National Research Council, Visionary Manufacturing Challenges for2020, National AcademyPress, Washington, D.C.,1998.
    [39] Yamada Y, Ookoudo K, Komura Y. Layout Optimization of Manufacturing Cells and AllocationOptimization of Transport Robots in Reconfigurable Manufacturing Systems Using ParticleSwarm Optimization[C], IEEE International Conference on Intelligent Robots and Systems,2003:2049-2054.
    [40] Kuo C H.Resource Allocation and Performance Evaluation of the Reconfigurable ManufacturingSystems[C], Proceedings of the IEEE International Conference on Systems, Man and Cybernetics,2001:2451-2456.
    [41] Xiaobo Z, Jiancai W, Zhenbi L. A Stochastic Model of a Reconfigurable Manufacturing System.Part1: A Framework[J], International Journal of Production Research,2000,38(10):2273-2285.
    [42] Xiaobo Z, Wang J, Luo Z. A Stochastic Model of a Reconfigurable Manufacturing System. Part2:Optimal Configurations[J], International Journal of Production Research,2000,38(12):2829-2842.
    [43] Xiaobo Z, Wang J,Luo Z. A Stochastic Model of a Reconfigurable Manufacturing System. Part3:Optimal Selection Policy[J], International Journal of Production Research,2001,39(4):747-758.
    [44] Xiaobo Z, Wang J, Luo Z. A Stochastic Model of a Reconfigurable Manufacturing System. Part4:Performance Measure [J], International Journal of Production Research,2001,39(6):1113-1126.
    [45] Spicer P, Koren Y, Shpitalni M, et al. Design Principles for Machining System Configurations [J].Annals of the CIRP,2002,51(1):275-280.
    [46]罗振壁,刘阶萍,陈恳等.可重组制造系统过程可诊断性的测度[J].清华大学学报(自然科学版),2001,41(2):34-37.
    [47]梁福军,宁汝新.可重构制造系统理论研究[J].机械工程学报,2003,39(6):36-43.
    [48]梁福军,宁汝新.可重构制造系统成本模型[J].中国机械工程,2003,14(23):2023-2028.
    [49] Koren Y, Hu S J, Weber T W.Impact of Manufacturing System Configuration on Performance [J],Annals of the CIRP,1998.47(1):369-372.
    [50] Maier-Speredelozzi V, Koren Y, Hu S J.Convertibility Measures for Manufacturing SystemsJ],Annals of the CIRP,2003,52(1):367-370.
    [51] Zhong W, Maier-Speredelozzi V, Bratzel A, et al. Performance Analysis of Machining Systemswith Different Configurations[C], Proceedings of the2000Japan-USA Flexible AutomationConference, Michigan2000:783-790.
    [52] Sung-Yong Son. Design Principles and Methodologies for Reconfigurable Machining Systems. Adissertation of the University of Michigan,2000.
    [53] Yong-Mo Moon. Reconfigurable Machine Tool Design: Theory and Application. Ph.D Disseration,the University of Michigan,2000.
    [54]许虹.可重构机床设计理论与方法研究[D],浙江大学博士学位论文,2003.
    [55] Lei Deming. Multi-objective production scheduling: A survey [J]. International Journal ofAdvanced Manufacturing Technology,43(9-10):925-938.
    [56] Sellers D W. A survey of approaches to the job shop scheduling problem [C].//Proceedings of theTwenty-Eighth Southeastern Symposium on System Theory, Baton Rouge LA USA,1996:396-400.
    [57] Linn R, Zhang W. Hybrid flow shop scheduling: a survey [J]. Computers and IndustrialEngineering,1999,37(1):57-61.
    [58] Süer G A, Subramanian Ananthanarayanan, Huang, Jing. Heuristic procedures and mathematicalmodels for cell loading and scheduling in a shoe manufacturing company [J]. Computers andIndustrial Engineering,2009,56(2):462-475.
    [59] Pitts R A, Ventura J A. Scheduling flexible manufacturing cells using Tabu Search [J].International Journal of Production Research,2009,47(24):6907-6928.
    [60] Kesen Saadettin Erhan, Das Sanchoy K, Güng r Zülal. A genetic algorithm based heuristic forscheduling of virtual manufacturing cells (VMCs)[J]. Computers and OperationsResearch,2010,37(6):1148-1156.
    [61] Ye Hegui, Liang Ming. Simultaneous modular product scheduling and manufacturing cellreconfiguration using a genetic algorithm [J]. Journal of Manufacturing Science and Engineering,Transactions of the ASME,2006,128(4):984-995.
    [62] Saad Sameh M, Baykasoglu Adil, Gindy Nabil N Z. A new integrated system for loading andscheduling in cellular manufacturing [J]. International Journal of Computer IntegratedManufacturing,2002,15(1):37-49.
    [63] Mak K L, Peng P, Wang X X, et al. An ant colony optimization algorithm for scheduling virtualcellular manufacturing systems [J]. International Journal of Computer Integrated Manufacturing,2007,20(6):524-537.
    [64] Leng Sheng, Wei Xiaobin, Zhang Wenyi. Improved ACO scheduling algorithm based on flexibleprocess [J]. Transactions of Nanjing University of Aeronautics and Astronautics,2006,23(2):154-160.
    [65]余建军,孙树栋,王军强,等.基于免疫算法的柔性制造单元动态调度研究[J].航空学报,2007,28(2):464-469.
    [66] Jackson J R. Simulation research on job shop production [J]. Naval Res Log Quart,1957,4(3):287-295.
    [67] Sabuncuoglu I, Bayiz M. Analysis of reactive scheduling problems in a Job shop environment[J].European Journal of Operational Research,2000,126(3):567-586.
    [68] Sun J, Xue D. A dynamic reactive scheduling mechanism for responding to changes of productionorders and manufacturing resources [J].Computers in Industry,2001,46(2):189-207.
    [69]包振强,李长仪,周鑫.基于知识的动态调度决策机制研究[J].中国机械工程,2006,17(13):1366-1370.
    [70]朱琼,陈雪芳,张洁.面向代理的车间动态调度方法[J].上海交通大学学报,2008,42(7):1046-1050.
    [71] Eguchi T, Oba F, Toyooka S. A robust scheduling rule using a neural network in dynamicallychanging job-shop environments [J]. International Journal of Manufacturing Technology andManagement,2008,14(3-4):266-288.
    [72] Chryssolouris G, Subramaniam V. Dynamic scheduling of manufacturing job shops using geneticalgorithms [J], Journal of Intelligent Manufacturing,2001,12(3):281-293.
    [73] Zhou R, Nee A Y C, Lee H P. Performance of an ant colony optimisation algorithm in dynamicjob shop scheduling problems [J]. International Journal of Production Research,2009,47(11):2903-2920.
    [74]刘明周,单晖,蒋增强等.不确定条件下车间动态重调度优化方法[J].机械工程学报,2009,45(10):137-142.
    [75]钱晓龙,唐立新,刘文新.动态调度的研究方法综述[J].控制与决策,2001,16(2):141-145.
    [76] Ouelhadj Djamila, Petrovic Sanja. A survey of dynamic scheduling in manufacturing systems [J].Journal of Scheduling,2009,12(4):417-431.
    [77] Suresh V, Chaudhuri Dipak. Dynamic scheduling-a survey of research [J]. International Journalof Production Economics,1993,32(1):53-63.
    [78] International Telecommunication Union UIT. ITU Internet Reports2005: The Internet ofThings[R].2005.
    [79]潘林,赵会群,孙晶.基于网格技术的物联网Savant中间件的实现技术[J].计算机应用研究,2007,24(6):292-294.
    [80] Pan Yi-Lun, Lee Yueh-Ching, Wu Fan. Job Scheduling of Savant for Grid Computing on RFIDEPC Network[C].//Proceedings of2005IEEE International Conference on Services Computing.Washington, D.C., USA: IEEE,75-84.
    [81] Niedermayer H, Holz R, Pahl M O, et al. On Using Home Networks and Cloud Computing for aFuture Internet of Things[C].//Proceedings of Second Future Internet Symposium. Berlin,Germany: Springer Verlag,70-80.
    [82] Savolainen T, Beeckmann D, Groumpos P, et al. Positioning of modeling approaches, methods andtools [J]. Computers in Industry,1995.25(3):255-262.
    [83] GLORIAD.NASA Information Power Grid(IPG) Infrastructure [EB/OL]. http://www.gloriad.org/gloriad/projects/project000053.html
    [84]颜波,黄必清,郑力,等.网格研究现状及其在制造业中的应用[J].计算机集成制造系统,2004,10(9):1021-1030.
    [85]石胜友.制造网格资源管理与配置关键技术研究[D].西北工业大学博士学位论文,2007.
    [86]井浩,张璟,李军怀.基于WSRF的制造网格资源共享机制研究[J].微电子学与计算机,2007,24(7):13-19.
    [87]程念胜.制造网格环境下企业集成技术研究[D].华中科技大学博士学位论文,2009.
    [88]谢晓兰,刘羽,周德俭.制造网格数据访问与集成关键技术研究[J].武汉理工大学学报,2009,31(6):119-121.
    [89]胡业发,陶飞,丁毓峰,等.支持协同制造的制造网格平台研究[J].中国机械工程,2006,17(18):1903-1907.
    [90]邓宏,陈笠,邓倩妮,等.基于制造网格的虚拟企业组织变更与制造资源调度问题研究[J].计算机集成制造系统,2006,12(8):1211-1219+1262.
    [91]徐云,肖田元,梁策.网络化制造平台集成及制造网格研究[J].计算机集成制造系统,2006,12(11):1838-1847.
    [92]饶运清,刘世平,李淑霞等.敏捷化车间制造执行系统研究[J].中国机械工程,2002,13(8):654-657.
    [93] Shuxia Li,Peigen Li,Yunqing Rao.Application of Binary Relation-Based ManufacturingInformation Analysis for Agile Production Configuration[J].Advances in Systems Science andApplications,2003,3(3):350-356.
    [94]曹春平.基于多代理的可集成制造执行系统关键技术研究[D].南京航空航天大学博士学位论文.2003.
    [95]王琦峰,刘飞,黄海龙.面向服务的离散车间可重构制造执行系统研究[J].计算机集成制造系统,2008,14(4):737-743.
    [96]王琦峰,刘飞.面向服务的制造执行系统建模方法研究[J].中国机械工程,2008,19(13):1569-1573.
    [97] Ko K-C, Egbelu P J. Virtual cell formation [J]. International Journal of Production Research,200341(11):2365–2389
    [98] Ko KC, Egbelu P J. Reconfiguration of a job shop to respond to product mix changes based on avirtual production system concept [J]. International Journal of Production Research,200442(22):4641-72
    [99] Irani SA, Cavalier TM, Cohen PH. Virtual manufacturing cells: exploiting layout design andinter-cell flows for the machine sharing problem[J]. International Journal of Production Research,199331(4):791–810
    [100] Saad SM, Baykasoglu A, Gindy NNZ. An integrated framework for reconfiguration of cellularmanufacturing systems using virtual cells [J]. Production Planning&Control1,20023(4):381–393
    [101] Ratchev S M, Concurrent process and facility prototyping for formation of virtual manufacturingcells [J]. Integrated Manufacturing Systems200112(4):306–315
    [102] Slomp J, Chowdary B V, Suresh N C. Design of virtual manufacturing cells: A mathematicalprogramming approach [J]. Robotics and Computer Integrated Manufacturing,200521(3):273–288
    [103] Mak K L, Lau, J S K, Wang X. X. A genetic scheduling methodology for virtual cellularmanufacturing systems: an industrial application[J]. International Journal of Production Research,200543(12):2423-50
    [104]梁福军,宁汝新.可重构制造系统中基于相似性理论的虚拟制造单元生成方法[J].计算机集成制造系统,200410(11):1370-1376
    [105]马玉敏,陈炳森,张为民.动态环境下的单元化制造的数学建模[J].同济大学学报,200331(5):581-585
    [106]王志亮,张友良,汪惠芬.敏捷制造模式下制造单元重构技术研究[J].计算机集成制造系统,2004,10(7):727-731.
    [107] Huang Pingjuan, Li Hui, Han Lidong. Order scheduling problems in make-to-ordermanufacturing systems [C].//proceedings of2005IEEE International Conference onMechatronics and Automation. Washington, D.C., USA: IEEE Computer Society,2005:2179-2184.
    [108] Sawik T. Integer programming approach to production scheduling for make-to-ordermanufacturing [J]. Mathematical and Computer Modeling,2005,41(1):99-118.
    [109]张人千,肖依永.面向订单基于Agent的启发式产品组合生产计划研究[J].系统工程理论与实践,2007(10):54-62
    [110]周水银,陈荣秋.单机加权成套订单数遗传算法研究[J].系统工程,2005,23(5):22-24.
    [111] R M Cole. Clustering with genetic algorithms. M.S. thesis, Univ. Western Australia, Perth, W.A.,1998.
    [112] M C Cowgill, R J Harvey, L T Watson. A genetic algorithm approach to cluster analysis [J].Computers&Mathematics with Applications,1999,37(7):99–108.
    [113] Hruschka Eduardo R, Campello Ricardo J G B, de Castro Leandro N. Evolving clusters ingene-expression data [J]. Information Sciences,2006,176(13):1898-1927.
    [114] Alves V S, Campello R J G B, Hruschka Eduardo R. Towards a fast evolutionary algorithm forclustering [C]//Proceeding of2006IEEE Congress on Evolutionary Computation, Washington,D.C., USA: IEEE,2006:1776-1783.
    [115] Bandyopadhyay S, Maulik U. Genetic clustering for automatic evolution of clusters andapplication to image classification [J]. Pattern Recognition,2002,35(6):1197-1208.
    [116] Maulik U, Bandyopadhyay S. Nonparametric genetic clustering: comparison of validity indices[J]. IEEE Transaction on Systems, Man and Cybernetics,2001,31(1):120-125.
    [117] C C Lai. A novel clustering approach using hierarchical genetic algorithms [J]. IntelligentAutomation and Soft Computing,2005,11(3):143-153.
    [118]普运伟,朱明,金炜东,等.核聚类算法最佳聚类数的自适应确定方法[J].计算机工程,200733(4):11-13
    [119] Girolami Mark. Mercer kernel-based clustering in feature space [J]. IEEE Transactions on NeuralNetworks,2002,13(3):780-784.
    [120] Eberhart R, Kennedy J. A new optimizer using particle swarm theory[C].//Proceedings of theSixth International Symposium on Micro Machine and Human Science. Washington, D.C., USA:IEEE,1995:39-43.
    [121] Kennedy J, Eberhart R. Particle swarm optimization[C].//Proceedings of the1995IEEEInternational Conference on Neural Networks. Washington, D.C., USA: IEEE,1995:1942-1948.
    [122] Wang Kang Ping, Huang Lan, Zhou Chun Guang, et al. Particle swarm optimization for travelingsalesman problem[C].//Proceeding of2003International Conference on Machine Learning andCybernetics. Washington, D.C., USA: IEEE,2003:1583-1585.
    [123] Salerno John. Using the particle swarm optimization technique to train a recurrent neuralmodel[C].//Proceedings if the1997IEEE9th IEEE International Conference on Tools withArtificial Intelligence. Washington, D.C., USA: IEEE,1997:45-49.
    [124] Yoshida H, Fukuyama Y., Takayama S, et al. A particle swarm optimization for reactive powerand voltage control in electric power systems considering voltage security assessment[C].//Proceeding of1999IEEE International Conference on Systems Man and Cybernetics. Washington,D.C., USA: IEEE,1999:497-502.
    [125] Fukuyama Y, Yoshida H. A particle swarm optimization for reactive power and voltage control inelectric power systems[C].//Proceedings of the2001Congress on Evolutionary Computation.Washington, D.C., USA: IEEE,2001:87-93.
    [126]刘静.协同进化算法及其应用研究[D].西安电子科技大学博士学位论文,2004.
    [127]郭园平.动态种群规模的协同进化算法模型、理论与应用[D].中国科学技术大学博士学位论文,2008.
    [128]曾威.卫星舱布局的双系统协同进化算法与CAD系统关键技术[D].大连理工大学博士学位论文,2007.
    [129] Tan K C, Yang Y J, Goh C K. A distributed cooperative coevolutionary algorithm formultiobjective optimization [J]. IEEE Transactions on Evolutionary Computation,2006,10(5):527-549.
    [130]玄光男,程润伟著.于歆杰,周根贵译.遗传算法与工程优化[M].北京:清华大学出版社,2004,79-85.
    [131] C M Fonesca, P J Fleming. Genetic algorithms for multi-objective optimization: Formulation,discussion and generalization[C]//Proceedings of the5th International Conference on GeneticAlgorithms, San Mateo, California,1993,416-423.
    [132] Horn J, Nafpliotis N, Goldberg D E. A niched Pareto genetic algorithm for multi-objectiveoptimization[C].//Proceedings of the First IEEE Conference on Evolutionary Computation.Washington, D.C., USA: IEEE,1994:82-87.
    [133] N Srinivas, K Deb. Multi-objective optimization using non-dominated sorting in geneticalgorithms [J], Evolutionary Computation,1994,2(3):221-248.
    [134] E Zitzlaer, L Thiele. Multi-objective Evolutionary Algorithms: A Comparative Case Study andthe Strength Pareto Approach [J]. IEEE Transactions on Evolutionary Computation,1999,3(4):257-271.
    [135] E Zitzlaer, M Laumanns, L Thiele. SPEA2: Improving the strength pareto evolutionary algorithm,TIK-Report103,2001.
    [136] Deb K, Pratap Amrit, Agarwal Sameer. A fast and elitist multiobjective genetic algorithm:NSGA-II [J]. IEEE Transactions on Evolutionary Computation,2002,6(2):182-197.
    [137]吴秀丽,孙树栋,余建军,等.多目标柔性作业车间调度优化研究[J].计算机集成制造系统,2006,12(5):731-736.
    [138]吴秀丽,孙树栋,余建军,等.多目标柔性作业车间调度决策精选机制研究[J].中国机械工程,2007,18(2):161-165.
    [139]鞠全勇,朱剑英.多目标批量生产柔性作业车间优化调度[J].机械工程学报,2007,43(8):148-154.
    [140] Deming Lei. A Pareto archive particle swarm optimization for multi-objective job shopscheduling [J]. Computers and Industrial Engineering,2008,54(4):960-971.
    [141] Fonseca Carlos M, Fleming Peter J. Multiobjective genetic algorithms made easy: Selection,sharing and mating restriction [C]//Proceedings of the1st IEE/IEEE International Conference onGenetic Algorithms in Engineering Systems: Innovations and Applications. Sheffield, England,1995:45-52.
    [142]商秀芹,卢建刚,孙优贤,等.一种基于偏好的多目标遗传算法在动态模型参数辨识中的应用[J].化工学报,2008,59(7):1620-1624.
    [143] Shang Xiuqin, Lu Jiangang, Sun Youxian. A preference-based non-dominated sorting geneticalgorithm on dynamic economic dispatch [C]//Proceedings of the World Congress on IntelligentControl and Automation. Chongqing, China,2008:2794-2797.
    [144]余进,何正友,钱清泉.基于偏好信息的多目标微粒群优化算法研究[J].控制与决策,2009,24(1):66-70+75.
    [145] Cvetkovic Dragan, Parmee Ian C. Preferences and their application in evolutionarymultiobjective optimization [J]. IEEE Transactions on Evolutionary Computation,2002,6(1):42-57.
    [146] Jin Y, Sendhoff B. Incorporation of Fuzzy Preferences into Evolutionary Multi-objectiveOptimization [C]//Proceedings of the4th Asia Pacific Conference on Simulated Evolution andLearning. Singapore,2002:26-30.
    [147] Branke J, Kauler T, Schmeck H. Guidance in evolutionary multi-objective optimization [J].Advances in Engineering Software,2001,32(6):499-507.
    [148]崔逊学,李淼,方廷健.多目标协调进化算法研究[J].计算机学报,2001,24(9):979-984.
    [149] Cui Xun-Xue, Lin Chuang. Preference-based multi-objective concordance genetic algorithm [J].Ruan Jian Xue Bao,2005,16(5):761-770.
    [150] Xia Weijun, Wu Zhiming. An effective hybrid optimization approach for multi-objective flexiblejob-shop scheduling problems [J]. Computers and Industrial Engineering,2005,48(2):409-425.
    [151] Guohui Zhang, Xinyu Shao, Peigen Li, et al. An effective hybrid particle swarm optimizationalgorithm for multi-objective flexible job-shop scheduling problem [J]. Computers and IndustrialEngineering,2009,56(4):1309-1318.
    [152]袁坤,朱剑英.一种求解多目标柔性Job Shop调度的改进遗传算法[J].中国机械工程,2007,18(2):156-160.
    [153]潘全科,朱剑英.作业车间动态调度研究[J].南京航空航天大学学报,2005,37(2):262-268.
    [154]潘全科,朱剑英.多工艺路线的批量生产调度优化[J].机械工程学报,2004,40(4):36-39.
    [155] Low Chinyao, Hsu Chih-Ming, Huang Kai-I. Benefits of lot splitting in job-shop scheduling [J].International Journal of Advanced Manufacturing Technology,2004,24(9-10):773-780.
    [156] Jeong Han-Il, Park Jinwoo, Leachman R C. Batch splitting method for a job shop schedulingproblem in an MRP environment [J]. International Journal of Production Research,1999,37(15):3583-3598.
    [157] Chan Felix T S, Wong T C, Chan P L Y. Equal size lot streaming to job-shop scheduling problemusing genetic algorithms [A]. Proceedings of the2004IEEE International Symposium onIntelligent Control [C]. Taipei,2004:472-476.
    [158] Chan Felix T S, Wong T C, Chan L Y. Lot splitting under different job shop conditions [A].Proceedings of the2007IEEE Congress on Evolutionary Computation [C]. Singapore,2008:4722-4728.
    [159]孙志峻,安进,黄卫清.作业车间多工艺路线批量作业计划优化[J].中国机械工程,2008,19(2):183-187.
    [160] Gao Jie, Sun Linyan, Gen Mitsuo. A hybrid genetic and variable neighborhood descent algorithmfor flexible job shop scheduling problems [J], Computers and Operations Research.2008,35(9):2892-2907.
    [161] Gao Jie, Gen Mitsuo, Sun Linyan, et al. A hybrid of genetic algorithm and bottleneck shifting formultiobjective flexible job shop scheduling problems [J]. Computers and Industrial Engineering,2007,53(1):149-162.
    [162]夏蔚军,吴智铭.基于混合微粒群优化的多目标柔性Job-Shop调度[J].控制与决策,2005,20(2):137-141
    [163]张超勇,饶运清,李培根,等.柔性作业车间调度问题的两级遗传算法[J].机械工程学报,2007,43(4):119-124.
    [164]张维存,郑丕谔,吴晓丹.蚁群遗传算法求解能力约束的柔性作业车间调度问题[J].计算机集成制造系统,2007,13(2):333-337+362.
    [165] Mastrolilli M, Gambardella LM. Effective neighborhood functions for the flexible job shopproblem [J]. Journal of Scheduling,2000,3(1):3-20.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.