脊尾白虾全人工繁育及繁殖相关基因的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究首次解决了脊尾白虾全人工繁育技术,提出了人工控制亲虾同步性成熟的方法,以及受精卵人工孵化及幼体选优的方法,明确了幼体孵化、培育的适宜温度和盐度范围。同时借助分子生物学手段,克隆了脊尾白虾卵黄蛋白原(Vg)、卵黄蛋白原受体(VgR)和蜕皮激素受体(EcR)基因,并分析了Vg、VgR和EcR基因在脊尾白虾繁殖过程中的表达特征。主要结果如下:
     一、脊尾白虾亲虾人工培育
     1、脊尾白虾卵巢解剖结构与组织学特征
     取卵巢发育不同阶段的脊尾白虾雌虾卵巢,研究了卵巢结构、组织学特征以及卵黄蛋白积累。结果显示,脊尾白虾卵巢一对,左右对称,中间分离,前后端愈合,成熟的卵巢外形呈“⊥”型或“橄榄球”型。随着卵巢发育,性腺指数逐渐增大,卵巢成熟时(IV期)最大,排卵后(V期)又降到最小;组织学特征显示,在卵细胞增殖期,细胞核清晰可见,一般能观察到1-2个沿核膜内侧分布的核仁,同时随着卵细胞逐渐成熟,卵原细胞周围的滤泡细胞逐渐增多,卵原细胞的卵黄蛋白逐渐增多。卵细胞成熟时,并未观察到类似对虾的皮质棒,明显的标志是细胞核消失,滤泡细胞数量减少。排卵后的恢复期,细胞核重新出现,卵原细胞又开始增殖,卵黄蛋白重新开始积累。
     2、脊尾白虾亲虾人工培育及其同步性成熟调控方法的建立
     提出了一种全人工培育脊尾白虾亲虾的方法,在24°C、26°C温度下,分别经过120天和110天的培育,80%雌虾性腺可达到成熟。此方法可切断其病原传播途径,在人工控制的养殖环境下实现脊尾白虾性腺同步发育成熟,为培育出健康优质脊尾白虾苗种打下良好的基础。
     二、脊尾白虾受精卵人工孵化
     1、不同温度和盐度对脊尾白虾胚胎发育速度的影响
     选用实验室内人工控制交尾的脊尾白虾,研究了不同温度和盐度对脊尾白虾胚胎发育的影响。结果显示,5-30盐度范围内,盐度20时的孵化时间最短,但与5、10、15、25、30盐度组无显著差异(P>0.05)。脊尾白虾胚胎发育的生物学零度为12.18°C,有效积温为3828.27°C h。在15-28°C范围内,温度对脊尾白虾胚胎发育影响显著,胚胎发育时间随着温度升高而呈双曲线性缩短,而胚胎发育速度随着温度的升高而呈直线性加快,但当温度超过30°C时,胚胎无法正常完成发育。因此在脊尾白虾育苗中,幼体孵化温度不应低于12°C,最高不超过28°C,盐度控制在5-30范围内即可。
     2、脊尾白虾受精卵人工孵化及幼体选优方法的建立
     提出了一种脊尾白虾人工室内孵化及幼体选优的方法。主要包括以下特点:通过调节水温,可调控受精卵发育速度;可以将活力强幼体与活力差幼体、死亡幼体很好地分离,幼体变态为仔虾的存活率在85%以上;每尾抱卵虾单独培育,幼体孵化后亲缘关系明确,可用于家系建立及选择育种。
     三、脊尾白虾幼体人工培育
     1、不同温度对脊尾白虾幼体变态存活的影响
     选用实验室内人工控制交尾的脊尾白虾,研究了不同温度对脊尾白幼体变态、存活的影响。结果显示,在盐度为31的条件下,脊尾白虾幼体变态发育速度随着温度的升高而加快,18°C、20°C、22°C、24°C、26°C和28°C各实验组开始出现仔虾的时间依次为17、14、11、9、8和8d,各组90%以上幼体变态为仔虾的时间依次为21、18、15、14、11和11d。各实验组在幼体变态过程中存活率都呈明显的阶梯式下降趋势,且28°C组的存活率下降最快,但当存活幼体全部变为仔虾时,各实验组间的存活率并无显著性差异(P>0.05)。18°C组仔虾干质量明显高于其它各组(P<0.05),28°C组仔虾干质量最低,但与20°C、22°C、24°C和26°C组无显著性差异(P>0.05)。因此在脊尾白虾育苗中,幼体培育温度,建议控制在22-26°C为最佳。
     2、不同盐度对不同日龄脊尾白虾生长发育的影响
     选用室内人工培养的卵巢发育到II期的脊尾白虾雌虾以及性成熟雄虾,经逐级淡化,盐度稳定在5、10、15、20、25、30。雌抱卵孵化后,研究了不同盐度对溞状幼体变态、生长及存活的影响,以及不同盐度对仔虾后生长、存活的影响。结果显示,不同盐度对脊尾白虾溞状幼体的变态率和存活率无显著性影响,但对仔虾的干质量影响显著,15和20盐度下仔虾的干质量显著高于其它盐度组(P<0.05);不同盐度对20日龄脊尾白虾的生长影响显著(P<0.05),其特定生长率随着盐度升高而逐渐增大,在盐度20时达到最大(P<0.05),当盐度超过20时其特定生长率又开始降低;同时由60日龄脊尾白虾鳃Na+-K+-ATPase的相对表达量可以看出,在高盐或低盐时Na+-K+-ATPase的相对表达量均较高,在盐度20时鳃Na+-K+-ATPase的相对表达量最低(P<0.05),经二次方程拟合计算,理论Na+-K+-ATPase的相对表达量最低时的盐度为17.53,此盐度可能为脊尾白虾成体的等渗点。因此,在脊尾白虾人工育苗及养殖过程中,建议适宜盐度控制在15-20。
     3、不同日龄脊尾白虾对氨氮的耐受性
     在水温24°C、盐度31、pH8.1的条件下,研究了氨氮对30日龄和120日龄脊尾白虾的毒性。结果表明,氨氮对30日龄脊尾白虾24、48、72、96h的半致死质量浓度分别为155.81、116.71、92.55、80.40mg/L,氨氮对120日龄脊尾白虾24、48、72、96h的半致死质量浓度分别为178.80、156.37、140.28、120.86mg/L。30日龄脊尾白虾总氨氮和非离子氨的安全质量浓度为8.04、0.26mg/L,120日龄脊尾白虾总氨氮和非离子氨的安全质量浓度为12.09、0.50mg/L。因此,在脊尾白虾养殖过程中,水体中的非离子氨浓度不应超过0.26mg/L。
     四、脊尾白虾卵黄蛋白原基因的克隆及其在卵巢发育过程中的表达分析
     首次克隆得到了脊尾白虾卵黄蛋白原基因(Vg)cDNA,全长7841bp,开放阅读框7632bp,编码2543个氨基酸。脊尾白虾Vg氨基酸与罗氏沼虾(Macrobrachium rosenbergii)一致性最高为75%,与高背长额虾(Pandalus hypsinotus)一致性为62%,与日本仿长额虾(Pandalopsis japonica)为61%,而与对虾科的对虾一致性却相对较低,为33-38%。该蛋白存在7个N-糖基化位点(N151,N159,N168,N614,N660,N936和N2306),而在枝鳃亚目中几乎没有糖基化位点。
     荧光定量分析显示,脊尾白虾Vg主要在肝胰腺内表达,其次为卵巢,肌肉和鳃有微量的表达。卵巢发育期间,卵巢中Vg mRNA的相对表达量却是一直处于上升趋势,在第V期时达到最大;而肝胰腺中Vg mRNA的相对表达量在IV期时却最高,在V期的表达量下降至与I、II期水平。但在卵巢整个发育阶段,肝胰腺中Vg mRNA的相对表达量始终显著高于卵巢(P>0.05),因此推测,在脊尾白虾卵巢整个发育过程中,Vg主要在肝胰腺内合成,只是在恢复期时卵巢中的Vg合成明显起到了协助作用,为脊尾白虾卵巢再次成熟奠定了基础。
     五、脊尾白虾卵黄蛋白原受体基因的克隆及其在卵巢发育过程中表达模式
     成功获得了脊尾白虾卵黄蛋白原受体基因(VgR)cDNA全长,开放阅读框5661bp,编码1886个氨基酸。亲缘关系分析,脊尾白虾VgR与虾类的亲缘关系最近,其次为昆虫,而与鱼类等脊椎动物关系较远。脊尾白虾VgR含4种结构域,LDL-receptor classAdomain,Low-density lipoprotein-receptor YWTD domain,EGF domain和Transmembraneregion,是一种跨膜转运蛋白。
     通过荧光定量PCR对该基因在各组织及卵巢发育期肝胰腺和卵巢内的表达分析显示,脊尾白虾VgR在肝胰腺、卵巢、鳃和肌肉中均有表达,但主要在卵巢内表达,其次为肝胰腺。在卵巢发育过程中,卵巢内的VgR的表达量呈现先升高后降低又升高趋势,在III期的表达量显著高于I、II期(P<0.05),IV期的表达量最低(P<0.05),而在V期时表达量达到最大(P<0.05);随着卵巢的发育,肝胰腺内VgR的表达量在IV时显著高于其它时期的表达量(P<0.05),I和V期的表达量相近(P>0.05),II和III的表达量最低。在卵巢整个发育过程中,卵巢内VgR的表达量始终显著高于肝胰腺内的表达量(P<0.05)。结果表明,脊尾白虾VgR对Vg的转运可能存在一个平衡,即当卵巢成熟时由肝胰腺分泌到血液中的部分Vg被肝胰腺VgR又重新转移至肝胰腺内,而为下次卵巢发育准备,在排卵后的恢复期肝胰腺中VgR表达量的降低和卵巢中VgR表达量的升高也说明,VgR对Vg的转运在不同阶段是有方向性的。
     六、脊尾白虾蜕皮激素受体基因的克隆及其在卵巢和胚胎发育中表达分析
     首次克隆得到了脊尾白虾蜕皮激素受体(ECR)基因cDNA,全长2638bp,开放阅读框1713bp,编码570个氨基酸。系统进化分析,与已知的甲壳动物ECR亲缘关系最近,而与昆虫亲缘关系较远。荧光定量分析显示,脊尾白虾ECR除在血细胞中不表达外,在其它各组织器官中均有分布,主要在受精卵和肝胰腺中表达,而在肌肉、卵巢、大额腺和鳃等组织中的表达却相对较低。
     卵巢发育不同阶段,肝胰腺中ECR和HSP90的表达量变化与Vg的表达量呈正相关性,推测在肝胰腺中ECR与HSP90主要参与了Vg的合成;卵巢中ECR与性腺成熟相关,ECR的表达量在III期达到最高(P<0.05),而III期是生殖蜕皮前蜕皮激素含量高峰期。
     脊尾白虾胚胎发育过程中,ECR的表达量随着胚胎发育呈逐渐上升趋势,在Zoea I达到最大(P<0.05);HSP90的表达量随着胚胎发育逐渐升高,在前溞状幼体期(Protozoea)达到最大,而后稍有下降,但仍维持在较高水平;Vg在受精卵和十六细胞期均无表达,囊胚期和无节幼体有微量表达,前溞状幼体表达量显著升高,后溞状幼体表达量达到最大,但与溞状幼体I期表达量无显著性差异(P>0.05)。
1. The artifical culturing of Exopalaemon carinicauda parents
     (1) Morphological and histological observation on ovary development of Exopalaemoncarinicauda
     The anatomy and histology of reproductive system of female Exopalaemon carinicaudawere observed. The results showed that the reproductive system of female Exopalaemoncarinicauda was “⊥” or “Rugby” shaped and contained an oviduct. The ovary was composedof the left and right parts connected at front and end. The ovary development could be dividedinto five stages: inactive stage (I stage), minor growth stage (stage II), major growth stage(stage III), mature stage (stage IV), and spawn stage (stage V). The gonadosomatic index(GSI) increased with the ovary development, and the value of GSI was the higest at matureatage, and lowest at the spawn stage. One or two nucleolus were observed clearly and thenumber of follicle cells increased from stage I to stage III, however, the nucleus were notobserved at mature stage, the follicle cells and oocytes were fused in late ovarian stage. Theconcentration of vitellin was the highest at mature stage. Cortical rods were not observedfrom stage I to stage V.
     (2) The artifical culturing of Exopalaemon carinicauda parents
     A technique of artifical culturing of Exopalaemon carinicauda parents was introduced inthe part, which can cutted off the spread of pathogen. Exopalaemon carinicauda can maturesynchronously under the control of manual.
     2. The eggs incubation of Exopalaemon carinicauda
     (1) Effects of temperature and salinity on the embryonic development of Exopalaemoncarinicauda
     The purpose of the present study was to determine the effects of temperature on the eggincubation period of E. carinicauda larvae reared in the laboratory. The number of days from spawning to hatching and mean rearing temperature were determined from25females. Theegg incubation period decreased exponentially from41to10days with increasing meantemperatures of15.3to28.1C, but at30C, embryonic development could not be completed.The relationship between mean temperature (T) and egg incubation period was analyzed usingthe equation T KV C, based on heat summation theory. The lower critical temperature forembryonic development represented by parameter C was12.18C, and the sum of effectivetemperature for embryonic development was3828.27C h. To conclude, water temperaturesbetween12.18C and28C were most suitable for embryonic development. There was nosignificant effect of salinity on the hatching of E. carinicauda.
     (2) The eggs incubation and selection of larvae of Exopalaemon carinicauda
     This study proposes a method for optimization of eggs incubation and larval selcetion ofExopalaemon carinicauda. It included the regulation of embryonic development, the bestlarval selection. And each female shrimp was reared in a container alone, so the relationshipwas very clear among different famliys.
     3. The rearing of Exopalaemon carinicauda larvae
     (1) Effects of water temperature on the survival and development period of larvae ofExopalaemon carinicauda
     The purpose of the present study was to determine the effects of temperature on thesurvival and development period of Exopalaemon carinicauda larvae reared in the laboratory.The larvae from each female were reared in1.5L beakers at six temperatures (18,20,22,24,26and28C) and fed Artemia sp. nauplii. The number of days from hatching to theattainment of each larval stage decreased with increasing temperature, the period over which90%of larvae from the T18—T28groups developed into juvenile shrimps was21,18,15,14,11and11days, respectively. The survival rates of larvae decreased with development time. Inparticular, the survival rate of the T28group decreased sharply over time. The survival rates,however, from incubation to juvenile shrimp showed no significant differences (P>0.05)between the six groups. The individual dry weight of post-larva from the T18group was thehighest of all of the six groups (P<0.05), and the individual dry weight of post-larva from theT28group was the lowest, but there was no significant difference (P>0.05) between the five groups from the T20group to the T28group. To conclude, water temperatures from22°C to26°C were most suitable for rearing E. carinicauda larvae.
     (2) Effects of salinity on the metamrphosis rate, survival rate and specific growth rate oflarvae and post-larvae of Exopalaemon carinicauda
     The female and male E. carinicauda were selcted from the laboratory, the ovary was atstage II of femal E. carinicauda, and then reared at different salinity water until hatching, soas to anayze the effect of salinity on metamrphosis rate, survival rate and specific growth rateof larvae and post-larvae. The results showed that there were no significant effects of salinityon metamrphosis rate and survival rate of larvae (P>0.05), but the individual dry weightsignificantly affected by salinity (P<0.05). The body length and body wet weight increasedwith salintity from5to20ppt, and the salinity of20was the optimum salinity to20-days ageE. carinicauda. When the salinity is beyond20, the growth was decreased.
     The expression level of Na+-K+-ATPase mRNA was investigated in gill of60-days age E.carinicauda. The result showed that the Na+-K+-ATPase mRNA level was lowest at20ofsalinity. According to correlation equations and calculation results, the optimum salinity was17.53. It indicated that the salinity17.53ppt might be equal to the hemolymph osmoticpressure of E. carinicauda.
     The above results suggested that the optimum salinity was from15to20ppt to larva andjuvenile growth of E. carinicauda.
     (3) Acute toxicity of ammonia nitrogen to different ages Exopalaemon carinicauda
     Acute toxicity test of ammonia nitrogen to E. carinicauda was made by using themethod of usual biological toxicity test under the condition of seawater T=24, S=31, pH8.1.The result showed that the24,48,73,96h median lethal of total ammonia nitrogen were155.81,116.71,92.55,80.40mg/L to juvenile of E. carinicauda, respectively, and178.80,156.37,140.28,120.86mg/L to adult of E. carinicauda, respectively. The “safety level” forrearing E. carinicauda juveniles was estimated to be8.04mg/L for total ammonia nitrogen(0.26mg/L for nonionic ammonia nitrogen), and for E. carinicauda adults to be12.09mg/Lfor total ammonia nitrogen (0.50mg/L for nonionic ammonia nitrogen).
     4. Molecular characterization and expression analysis of vitellogenin (Vg) in
     Exopalaemon carinicauda
     The technique of homplgy cloning and anchored PCR were used to clone the Vg genefrom Exopalaemon carinicauda. The full length cDNA of Exopalaemon carinicauda Vg was7841bp, which contained an ORF (open reading frame) of7632bp encoding a polypeptide of2543amino acids with an estimated molecular mass of287763.7Da. The sequence of thecoding region shared33-75%identity with other known crustacean Vgs. Bioinformaticsanalysis revealed seven putative N-glycosylation sites in E. carinicauda Vg, the glycosylationof seven putative sites of E. carinicauda Vg (N151, N159, N168, N614, N660, N936and N2306) wasconfirmed. However, the Dendrobranchiata exhibited a remarkable deficiency in putativeN-glycosylation sites. E. carinicauda belonged to Pleocyemata, which were egg holdingspecies, while the Dendrobranchiata were releasing species. It seemed that there was a strongselective force against the occurrence of N-glycosylation sites in the Dendrobranchiatasuborder.
     The expression of the E. carinicauda Vg was observed in the most of the examinedtissues, but the expression level varied significantly among the tissues. There was a high levelin hepatopancreas, lower in ovary, while lowest in muscle and gill. In hepatopancreas, therelative level of Vg mRNA increased with the ovarian development, the highest level wasobserved at mature stage (GSI7.15%), but decreased during later stage maturation. In ovary,the relative level of Vg expression increased with the ovarian development, the highest levelwea observed at spawn stage (GSI0.67%). It indicated that the hepatopancreas was the majorsite of Vg synthesis, and the ovary might play a minor role in Vg synthesis of E. carinicauda.It might be an important reason that E. carinicauda can spawn many times in its life.
     5. Molecular cloning and expression analysis of vitellogenin receptor (VgR)in Exopalaemon carinicauda
     A full-length cDNA encoding vitellogenin receptor (VgR) was cloned from E.carinicauda using RACE method. The full-length cDNA consist of5892bp nucleotidesincluding5661bp open reading frame, which encodes1886amino acid residues. Aphylogenetic tree was constructed by the programs of CLUSTAL and MEGA. Thecrustaceans, insect, and vertebrate were clustered together and formed a group, respectively. In the tree, E. carinicauda showed the closest relationship with Macrobrachium rosenbergii,the result was similar with the result of the BLAST. So the relationships displayed in thephylogenic tree corresponded to their classification position. Analysis of the deduced proteinsequence of VgR with SMART algorithm revealed several conserved domains similar to thelow density lipoprotein receptor family. These domains included LDL-receptor class Adomain, Low-density lipoprotein-receptor YWTD domain, EGF domain and Transmembraneregion.
     The expression of the E. carinicauda VgR was observed in the most of the examinedtissues by quantitative Real-time PCR, but the expression level varied significantly among thetissues(P<0.05). There was a high level in ovary, lower in hepatopancreas, while lowest inmuscle and gill. With the ovarian development, expression of the VgR in the ovary was low atthe early vitellogenic stage, and significantly higher at major growth stage (stage III),however, it slightly decreased at mature stage (stage IV), and was the highest at spawn stage(stage V)(P<0.05). The highest level of VgR mRNA expression was found in hepatopancreasat mature stage, a significant decrease of VgR mRNA expression occurred at stage I, II, IIIand V. It indicated that the main site of E. carinicauda VgR mRNA expression was the ovary,and mediated the uptake of vitellogenin (Vg) into developing oocytes. However, the excessiveVg from blood was carried into the hepatopancreas at mature stage, as the nutrients ready forovarian development next time.
     6. ECR cDNA characterization and its expression during ovarian andembryonic development of Exopalaemon carinicauda
     Ecdysteroid are steroid hormones that play an important role in development, growth,molting of larva, and reproduction in crustacean. The effect of ecdysteroids is mediated by itsbinding to ecdysteroid recptor (ECR). To investigate the role of ECR during development ofovary and embryo of E. carinicauda, we isolated and characterized cDNA of E. carinicaudaECR, and studied mRNA expression pattern. The full-length cDNA seqience was2638bp andthe open reading frame encoded570amino acids. Sequence alignment showed that the E.carinicauda ECR shared high identity with other known crustacean. There was a high level inhepatopancreas, lower in eggs, while lowest in muscle and gill, ovary and mandibular gland, not detected in blood cells.
     In different development stages of E. carinicauda ovary, the ECR mRNA expression wasagreed with the HSP90mRNA expression in hepatopancreas, the ECR mRNA expression wasnot agreed with the HSP90mRNA expression in ovary, and was much higher at stage III, andkeeping relative highexpression level at later development of ovary. It indicated that ECR inovary played an important role in molting before spawning, while in synthetizing vitellogeninin hepatopancreas.
     In differdent development stage of E. carinicauda embryo, the the relative level of ECRmRNA increased with the embryonic development, the highest level was observed at Zoea I.The HSP90mRNA increased with the embryonic development, the highest level wasobserved at Protozoea stage, and then maintained high expression levels at later developmentstage. The Vg mRNA was not observed in oosperm and sixteen cells stage, the highest levelwas observed at Metazoea stage. It indicated that ECR and HSP90were involved inembryonic development, while Vg was involved in innate immune response of embryo andlarva of E. carinicauda.
引文
[1]曹梅,王兴强,阎斌伦,等.脊尾白虾对蛋白质和脂肪需求量研究.淮海工学院学报(自然科学版),2009,18(1):87-89.
    [2]李新正,刘瑞玉,梁象秋.中国长臂虾总科的动物地理学特点.生物多样性,2003,11(5):393-406.
    [3]邵银文,王春琳,励迪平,等.脊尾白虾自然群体与养殖群体的营养差异.水利渔业,2008,28(4):34-37.
    [4]梅肖乐,倪金佛,陈焕根,等.梭鱼、缢蛏、脊尾白虾无公害综合养殖技术.水产养殖,2005,26(6):24-25.
    [5]王兴强,阎斌伦,马甡,等.脊尾白虾生物学及养殖生态学研究进展.齐鲁渔业,2005,22(8):21-23.
    [6]黄则平,张沛花.三疣梭子蟹与脊尾白虾池塘混养技术.水产养殖,2004,25(5):8-9.
    [7]董建波,程建新,何健.脊尾白虾(Exopalaemon carinioauda)(Holthuis)和三疣梭子蟹(Portunus trituberculatus)(Miers)健康养殖技术探讨.现代渔业信息,2008,23(12):26-29.
    [8]张振华,李国峰,严少华.沿海咸淡水滩塘脊尾白虾的养殖技术.江苏农业科学,2002,(1):62-65.
    [9]施敏健,卞佩佩,于正洲.微孔增氧设施在三疣梭子蟹与脊尾白虾混养中的应用.水产养殖,2010(3):5-7.
    [10]丁理法,陈飞,李永富,等.锯缘青蟹与脊尾白虾生态养殖技术研究.中国水产,2009,(9):42-44.
    [11]高排山,沈俊华,施陆.三疣梭子蟹与脊尾白虾混养初探.科学养鱼,2004,(7):26-27.
    [12]唐兴本.中国对虾、脊尾白虾、毛蚶的三季轮养技术.中国水产,2004,(10):62-63.
    [13]邹胜利,杨辉,李秋,等.脊尾白虾网箱育苗池塘养殖试验.河北渔业,2009,(8):29.
    [14]陈贤龙,戎华南,林宝定.脊尾白虾池塘养殖试验.水产科学,2000,19(6):22-23.
    [15]林吉才,徐军超.脊尾白虾仿生态规模养殖试验.现代农业科技,2009,(17):313-314.
    [16]徐加涛,徐国成,于斌,等.脊尾白虾繁殖生物学及人工育苗生产技术.中国水产,2007,(4):52-55.
    [17]徐国成,徐加涛,于斌,等.脊尾白虾工厂化育苗生产技术研究.齐鲁渔业,2008,25(5):1-3.
    [18]徐兴林,王长林.脊尾白虾育苗试验初探.苏盐科技,2005,(2):24-25.
    [19]李国峰,张振华,严玉洲.脊尾白虾在低盐度水体中的人工繁育试验.水产养殖,2000,(1):6-7.
    [20]陈贤龙,沈江平,沈爱苗.脊尾白虾人工繁育试验.水产科技情报,1999,26(3):127-133.
    [21]陈东,孙长森,涂丽莉,等.脊尾白虾与东方白虾形态特征鉴别.安徽农业科学,2010,38(20):10722-10724.
    [22]董存有.珠江口脊尾白虾的一些生物学观察.四川动物,1989,8(4):36-38.
    [23]蔡泽平,陈浩如.水生动物选择-回避温度试验装置的设计和应用.热带海洋,1998,17(2):88-92.
    [24]顾军,李国峰,张振华,等.脊尾白虾对水体盐度的适应性试验.水产养殖,2004,25(2):39-40.
    [25]王春琳,张芬来,宋利平,等.脊尾白虾Palaemon carincauda淡水驯化的研究.浙江水产学院学报,1995,14(2):105-110.
    [26]王兴强,曹梅.低盐和低温对脊尾白虾生长和能量收支的影响.水生态学杂志,2010,3(2):66-71.
    [27]李明云,包坚敏,吴春娥.脊尾白虾窒息点与耗氧率的试验观察.海洋渔业,1992,6:251-253.
    [28]罗会明,黄厚哲.脊尾白虾幼体对饵料的摄食与吸收.厦门大学学报:自然科学版,1980,19(4):100-107.
    [29]陆开宏,华建权,陈贤龙.人工培育脊尾白虾溞状幼体的饵料基础研究.黄渤海海洋,2001,19(4):63-70.
    [30]李明德.天津脊尾白虾Palaemon(Exopalaemon) carincauda Holthuis个体生态.现代渔业信息,2005,20(10):10-13.
    [31]沈辉,万夕和,许璞,等.脊尾白虾的行为学观察研究.海洋科学,2010,34(10):53-56.
    [32]李明云.池养脊尾白虾的繁殖、生长及其最大持续轮捕量的初步探讨.水产学报,1994,18(2):85-92.
    [33]徐君义.浙江乐清湾脊尾白虾的繁殖和世代的初步研究.动物学杂志,1990,25(6):3-7.
    [34]刘瑞玉.中国北部经济虾类.北京:中国农业出版社,1995:48-49.
    [35]王绪峨.脊尾白虾繁殖生物学的初步观察.动物学杂志,1987,22(1):7-10.
    [36]施永海,张根玉,刘建忠,等.不同月份出生的脊尾白虾之生长及生殖特性.水产科技情报,2009,36(3):131-136.
    [37]卢敬让,戴玉蓉,李辉权.长江口脊尾白虾渔业资源特征和生殖习性.黄渤海海洋,1994,12(4):21-27.
    [38]王绪峨.脊尾白虾早期胚胎发育以及温、盐度与其孵化的关系.水产学报,1989,13(1):59-64.
    [39]梁象秋,李亚娟,周昭曼.脊尾白虾的幼体发育.水产学报,1988,12(2):157-168.
    [40]武文魁.脊尾白虾幼体发育的研究.海洋学报,1984,5(增刊):953-964.
    [41]肖化卿.白虾人工育苗初步研究.海洋科学,1988(1):42-44.
    [42]王克行.虾蟹类增养殖学.北京:中国农业出版社,1997,23-26.
    [43]施流章.温、盐度与长毛对虾卵的孵化及无节幼体发育的关系.水产学报,1981,5(1):58-63.
    [44]朱小明,李少菁.孵育温度对虾蟹幼体质量影响的初步研究.应用生态学报,1998,9(1):71-74.
    [45]董双林.中国综合水产养殖的发展历史、原理和分类.中国水产科学,2011a,18(5):1202-1209.
    [46]董双林.高效低碳——中国水产养殖业发展的必由之路.水产学报,2011b,35(10):1595-1600.
    [47]洪水根,林加涵,陈细法,等.长毛对虾卵子发生的研究I:卵子发生过程.海洋与湖沼,1988,19(4):301-305.
    [48]李怀梅,张乃禹.中国对虾卵母细胞发育的初步研究.海洋与湖沼,1994,25(3):243-247.
    [49]王桂忠,李少箐,朱冬发.东方扁虾卵巢和滤泡结构的研究.海洋学报,2002,24(5):108-114.
    [50]郑忠明,李明云.哈氏仿对虾卵巢发育的形态学与组织学观察.水产学报,2002,26(2):105-110.
    [51]何绪刚,张训蒲,龚世园,等.武湖日本沼虾卵巢发育研究.华中农业大学学报,2002,21(2):148-151.
    [52]顾志敏,何岗林.中华绒螯蟹卵巢发育周期的组织学细胞学观察.海洋与湖沼,1997,28(2):138-145.
    [53]上官步敏,刘正琮,李少箐.锯缘青蟹卵巢发育的组织学研究.水产学报,1991,15(2):96-101.
    [54]王春琳,蒋霞敏,赵青松,等.黑斑口虾蛄的卵巢组织学研究.动物学杂志,2001,36(4):6-9.
    [55]杨筱珍,王金峰,杨丽娜,等.日本新糠虾(Neomysis japonica)卵巢发育与卵子发生.海洋与湖沼,2009,40(3):338-346.
    [56]刘慧玲,李长玲,黄翔鹄,等.波纹龙虾卵巢的解剖学与组织学研究.水产科学,2009,28(7):387-390.
    [57]颜素芬,姜永华.中国龙虾卵子发生及卵巢发育的组织学研究.海洋科学,2009,33(6):12-17.
    [58]李太武,苏秀榕,张峰.三疣梭子蟹雌性生殖系统的组织学研究.辽宁师范大学学报(自然科学版),1993,16(4):315-323.
    [59]赵云龙,彭欣夏,李祥.罗氏沼虾雌性生殖系统的组织学研究.华东师范大学学报(自然科学版),1998,3:81-85.
    [60]邓道贵,高建国.粗糙沼虾卵巢发育的组织学.动物学杂志,2002,37(5):59-61.
    [61]颜素芬,姜永华.南美白对虾卵巢结构及发育的组织学研究.海洋湖沼通报,2004,2:52-58.
    [62] Okumura T, Yoshida K, Nikaido H. Ovarian development and hemolymph vitellogenin levels inlaboratory-maintained protandric shrimp, Pandalus hypsinotus: Measurement by a newlydeveloped time-resolved fluoroimmunoassay (TR-FIA). Zoological Science,2004,21:1037-1047.
    [63]孙修涛,李健,王清印,等.中国对虾产卵前后卵巢的形态和结构变化.海洋水产研究,1999,20(1):13-19.
    [64]黄建华,马之明,周发林,等.南海北部野生斑节对虾卵巢解剖结构及组织学的研究.南方水产,2005,1(3):49-53.
    [65]薛鲁征,堵南山,赖伟.中华绒鳌蟹(Eriocheir sinensis)雌性生殖系统的组织学研究.华东师范大学学报(自然科学版),1987,3:88-97.
    [66]姜叶琴,姚健萍,杨万喜.秀丽白虾卵母细胞不同发育阶段滤泡细胞的超微结构.动物学研究,2003,24(4):287-292.
    [67]王玉凤,堵南山,赖伟.罗氏沼虾(Macrobrachium rosenbergii)卵子发生的细胞化学研究.华东师范大学学报(自然科学版),1997,(4):91-94.
    [68]王桂忠,林淑君,林琼武,等.盐度对锯缘青蟹幼体存活与生长发育的影响.水产学报,1998,22(1):89-92.
    [69]董双林,赵文.养殖水域生态学.北京:中国农业出版社,2004,29.
    [70]姚海富,史海东,毛国民.不同温度和盐度对锯缘青蟹抱卵的影响.浙江海洋学院学报(自然科学版),2005,24(1):41-43.
    [71]叶建生,王兴强,马甡,等.盐度突变对凡纳滨对虾非特异性免疫因子的影响.海洋水产研究,2008,29(1):38-43.
    [72]刘海映,王冬雪,姜玉声,等.盐度对口虾蛄假溞状幼体存活和摄食的影响.大连海洋大学学报,2012,27(4):311-314.
    [73] Mene L, Alvar ez-Osso rio M T, Gonzf ilez-Gurr iarfin E, et al. Effects of temperature andsalinity on larval development of Necor apuber (Brachyura: Portunidae). Marine Biology,1991,108:73-81.
    [74] Choy S C. Embryonic and larval biology of Liocar cinus holsatus and Necora puber (Crustacea:Brachyura: Portunidae). Journal of Experimental Marine Biology and Ecology,1991,148:77-92.
    [75] Hamasaki K. Study on the reproduction and development o f the swimming crab, Portunustrituberculatus. Special Scientific Report of Japan Sea-Farming Association,1996,8:124.
    [76]邢克智,刘茂春.温度对青虾胚胎发育的影响.河北大学学报(自然科学版),1996,16(5):22-26.
    [77]彭昌迪,郑建民,彭文国,等.南美白对虾的胚胎发育以及温度与盐度对胚胎发育的影响.上海水产大学学报,2002,11(4):311-316.
    [78]江新琴,俞存根,陈全震.温度和盐度对锈斑蟳卵孵育时间的影响.水产学报,2008,32(6):915-921.
    [79]尚玉昌.普通生态学.北京:高等教育出版社,1993:36-37.
    [80]孙儒泳.动物生态学原理(第三版).北京:北京师范大学出版社,2001:41-42.
    [81]王桂忠,朱冬发,李少菁.东方扁虾胚胎发育温比率的初步研究.海洋通报,1998,17(3):39-44.
    [82] Katsuyuki H. Effects of temperature on the egg incubation period, survival and developmentalperiod of larvae of the mud crab Scylla serrata (Forskal)(Brachyura: Portunidae) reared in thelaboratory. Aquaculture,2003,219(1-4):561-572.
    [83]吕佳,宋胜磊,唐建清,葛家春,潘建林.克氏原螯虾受精卵发育的温度因子数学模型分析.南京大学学报:自然科学版,2004,40(2):226-231.
    [84]曾朝曙,王桂忠,李少菁.锯缘青蟹胚胎发育的观察及温度影响胚胎发育的研究.福建水产,1991,(1):45-50.
    [85]赵云龙,孟凡丽,陈立侨,顾志敏,徐谷星,刘启文.不同水温对红螯螯虾胚胎发育的影响.湖泊科学,2000,12(1):59-62.
    [86]曾朝曙,王桂忠,李少菁.锯缘青蟹胚胎发育的观察及温度影响胚胎发育的研究.福建水产,1991,(1):45-50.
    [87] Millamena O M, Quinitio E. The effects of diets on reproductive performance of eyestalk ablatedintact mud card Scylla serrata. Aquaculture,2000,181(1-2):81-90.
    [88] Aguirre-Guzmán G, Vázquez-Juárez R, Ascencio F. Differences in the susceptibility of Americanwhite shrimp larval substages (Litopenaeus vannamei) to four vibrio species. Journal ofInvertebrate Pathology,2001,78(4):215-219.
    [89]邢克智,刘茂春.温度对青虾胚胎发育的影响.河北大学学报:自然科学版,1996,16(5):22-26.
    [90]李庭古,罗刚,徐国成,邵营泽.不同水温对克氏螯虾受精卵孵化的影响.水产养殖,2006,27(1):16-17.
    [91]姚俊杰,赵云龙,周忠良,汤亮,吕敢堂.两种沼虾胚胎发育中可溶蛋白的组成及含量变化.动物学杂志,2006,41(2):9-14.
    [92]罗文,周忠良,赵云龙,杨志彪,张明凤.红螯螯虾胚胎发育过程中蛋白质含量及氨基酸组成的分析.华东师范大学学报:自然科学版,2004,(1):88-92.
    [93]田华梅,王群,赵云龙,罗文,樊玉杰.中华绒螯蟹胚胎发育过程中的消化酶活力及氨基酸组成.中国水产科学,2003,10(5):404-408.
    [94]王桂忠,汤鸿,李少菁,王大志,林琼武.锯缘青蟹胚胎发育过程主要生化组成.台湾海峡,1995,14(3):280-283.
    [95] Babu D E. Observations on the embryonic development and energy source in the crab Xanthobidentatus. Marine Biology,1987,95(1):123-127.
    [96] Yao J J, Zhao Y L. Characteristics of several digestive enzymes and isozyme during embryonicdevelopment in prawn, Macrobrachium rosenbergii. Fisheries Science,2006,25(12):595-600.
    [97]施流章.温、盐度与长毛对虾卵的孵化及无节幼体发育的关系.水产学报,1981,5(1):57-63.
    [98]王清印,李健,金显仕.黄海水产研究所虾类养殖研究的发展与成就.2008,113-114.
    [99]薛素燕,赵法箴,方建光,等.温度和盐度对中华原钩虾幼体孵化、存活及生长的影响.水产学报,2012,36(7):1094-1101.
    [100]崔淑贞,刘忠虎,齐胜利,牛安敏,张震,谷秋荣.罗氏沼虾人工繁殖及幼体培育技术研究.河南农业大学学报,1995,29(3):273-277.
    [101]彭昌迪,郑建民,彭文国,何世强,唐天礼,王维部.南美白对虾的胚胎发育以及温度与盐度对胚胎发育的影响.上海水产大学学报,2002,11(4):310-316.
    [102]潘鲁青,马甡,王克行.温度对中国对虾幼体生长发育与消化酶活力的影响.中国水产科学,1997,4(3):17-22.
    [103]赵云龙,孟凡丽,陈立侨,顾志敏,徐谷星,刘启文.不同水温对红螯螯虾胚胎发育的影响.湖泊科学,2000,12(1):59-62.
    [104] Smagghe G. Ecdysone: Structures and Functions. Netherlands: Springer,2009:231-269.
    [105] Li K, Li S, Cao Y. Transcriptional regulation by20-hydroxyecydsone and its nuclear receptorEcR-USP. Acta Entomologica Sinica,2011,54(8):933-937.
    [106] Priya T A J, Li F H, Zhang J Q, et al. Molecular characterization of an ecdysone inducible geneE75of Chinese shrimp Fenneropenaeus chinensis and elucidation of its role in molting by RNAinterference. Comparative Biochemistry and Physiology,2010,156(3):149-157.
    [107]成永旭,堵南山,赖伟.不同阶段中华绒螯蟹肝胰腺的脂类及脂肪酸组成.动物学报,1998,44(4):420-429.
    [108] Anger K, Dawirs R R. Influence of starvation on the larval development of Hyas araneus(Decapod, Majidae). Helgoland Marine Research,1981,34(3):287-311.
    [109]潘鲁青,王克行.中国对虾幼体消化酶活力的实验研究.水产学报,1997a,21(1):26-31.
    [110]汤鸿,李少菁,王桂忠,林琼武.锯缘青蟹幼体消化酶活力.厦门大学学报:自然科学版,1995,34(1):88-93.
    [111]潘鲁青,王克行.中华绒螯蟹幼体消化酶活力与氨基酸组成的研究.中国水产科学,1997b,4(2):13-20.
    [112]潘鲁青,王伟.日本对虾幼体几种消化酶活力的研究.海洋湖沼通报,1997,(2):15-18.
    [113]邢克智,刘茂春,王金华.温度、盐度对青虾幼体生长发育的影响.南开大学学报:自然科学版,1997,30(3):88-105.
    [114] Villarreal H, Hernandez-Llamas A. Influence of temperature on larval development of Pacificbrown shrimp Farfantepenaeus californiensis. Aquaculture,2005,249(1-4):257-263.
    [115] Kumlu M, Eroldogan O T, Aktas M. Effects of temperature and salinity on larval growth, survivaland development of Penaeus semisulcatus. Aquaculture,2000,188(1-2):167-173.
    [116]黄国强,董双林,王芳,等.饵料种类和摄食水平对中国对虾蜕皮的影响.中国海洋大学学报:自然科学版,2004,34(6):942-948.
    [117]梁华芳,韦寿贵.不同海水相对密度对斑节对虾胚胎发育和无节幼体变态的影响.湛江海洋大学学报,1999,19(2):69-72.
    [118]姚海富,史海东,毛国民.不同温度和盐度对锯缘青蟹抱卵的影响.浙江海洋学院学报(自然科学版),2005,24(1):41-43.
    [119] Towle D W. Role of Na+-K+-ATPase in ionic regulation by marine and estuarine animals. MarineBiology Letters,2:107-122.
    [120]潘鲁青,刘泓宇.甲壳动物渗透调节生理学研究进展.水产学报,2005,29(1):109-114.
    [121] Chen J C, Lin J N. Osmotic concentration and tissue water of Penaeua chinesis juveniles rearedat different salinity and temperature levels. Aquaculture,1998,164:173-181.
    [122]朱小明,李少菁.甲壳动物幼体蜕皮的调控.水产学报,2001,25(4):379-384.
    [123]成永旭,堵南山,赖伟.不同阶段中华绒螯蟹肝胰腺的脂类及脂肪酸组成.动物学报,1998,44(4):420-429.
    [124]黄旭雄.卤虫的营养.水产科学,2007,26(11):628-631.
    [125]顾军,李国峰,张振华,等.脊尾白虾对水体盐度的适应性试验.水产养殖,2004,25(2):39-40.
    [126]王兴强,曹梅.低盐和低温对脊尾白虾生长和能量收支的影响.水生态学杂志,2010,3(2):66-71.
    [127] Castille F J, Lawrence A. The effect of salinity on the osmotic, sodium and chiorideconcentrations in the hemolymph of euryhaline shrimp of the genus Penaeus. ComparativeBiochemistry and Physiology,1981,168A:75-80.
    [128] Ferraris R P, Parado Estepa F D, Ladfa J M, et al. Effect of salinity on the osmotic, chloride, totalprotein and calcium concenrations in the hemolymph of the prawn Penaeus monodon.Comparative Biochemistry and Physiology,1986,83A:701-708.
    [129] Parado Estepa F D, Ferraris R P, Ladja J M, et al. Responses of intermolt Penaeus indicus tolarge fluctuations in environmental salinity. Aquaculture,1987,64:175-184.
    [130] Lucu C, Devescovi M, Skaramuca B, et al. Gill Na+-K+-ATPase in the spiny lobster Palinuruselephas and other marine osmoconformers adaptiveness of enzymes f rom osmoconformity tohyperregulat ion. Journal of Experimental Marine Biology and Ecology,2000,246:163-178.
    [131]潘鲁青,刘志,姜令绪.盐度、pH变化对凡纳滨对虾鳃丝Na+-K+-ATPase活力的影响.中国海洋大学学报,2004,34(5):787-790.
    [132]金彩霞,潘鲁青.盐度变化对克氏原螯虾渗透调节影响机制的初步研究.水生生物学报,2008,32(6):894-899.
    [133] Allan G L, Maguire G B. Effect of pH and salinity on survival, growth and osmoregulation inPenaeus monodon Fabrieus. Aquaculture,1992,107(1):33-47.
    [134] Vuayan K K, Diwan A D. Influence of temperature, salinity, pH and light on molting and growthin the Indian white prawn, Penaeus indicus (Crustean: Deeapoda: Penaeidae)under laboratoryconditions. Asian Fisheries Science,1995,8(1):63-72.
    [135] Romano N, Zeng Chaoshu. The effects of salinity on the survival, growth and haemolymphosmolality of early juvenile blue swimmer crabs, Portunus pelagicus. Aquaculture,2006,260(1/4):151-162.
    [136]杨其彬,叶乐,温为庚,等.盐度对斑节对虾蜕壳、存活、生长和饲料转化率的影响.南方水产,2008,4(1):16-21.
    [137]穆迎春,王芳,董双林,等.不同盐度波动幅度对中国明对虾稚虾蜕皮和生长的影响.海洋学报,2005,27(2):122-126.
    [138]叶建生,王兴强,马甡,等.盐度突变对凡纳滨对虾非特异性免疫因子的影响.海洋水产研究,2008,29(1):38-43.
    [139]姜令绪,王仁杰,周莉,等.脊尾白虾在不同盐度条件下的行为变化.南方农业学报,2011,42(12):1564-1567.
    [140]王娟,曲克明,刘海英,等.不同溶氧条件下亚硝酸盐和氨氮对中国对虾的急性毒性效应.海洋水产研究,2007,28(6):1-6.
    [141] Chen, J.C., Lin, C.Y. Lethal effects of ammonia on Penaeus chinensis Osbeck juveniles atdifferent salinity levels. Journal of Experimental Marine Biology and Ecology,1992,156:139-148.
    [142] Chen J C, Ting Y Y, Lin J N, et al. Lethal effects of ammonia and nitrite on Penaeus chinensis.Marine Biology,1990a,107:427-431.
    [143]彭自然,臧维玲,高杨,等.氨和亚硝酸盐对凡纳滨对虾幼虾的毒性影响.上海水产大学学报,2004,13(3):274-278.
    [144]孙国铭,汤建华,仲霞铭.氨氮和亚硝酸氮对南美白对虾的毒性研究.水产养殖,2002,1:22-24.
    [145]罗静波,温小波,曹志华,等.氨氮对克氏原鳌虾幼虾的急性毒性研究.长江大学学报:自科版,2006,3(4):183-185.
    [146]胡贤德,孙成波,蔡鹤翔,等.不同盐度条件下氨氮对斑节对虾的毒性试验.广西科学,2009,16(2):206-209.
    [147] Chen J C, Liu P C, Lei S C. Toxicities of ammonia and nitrite to Penaeus monodon adolescents.Aquaculture,1990b,89(2):127-137.
    [148]臧维玲,江敏,张建达,等.亚硝酸盐和氨对罗氏沼虾幼体的毒性.上海水产大学学报,1996,5(1):15-22.
    [149]李建,姜令绪,王文琪,等.氨氮和硫化氢对日本对虾幼体的毒性影响.上海水产大学学报,2007,16(1):22-27.
    [150]王仁杰,姜令绪,李建,等.氨氮和硫化氢对日本对虾幼体生长和变态发育的影响.海洋科学,2007,31(7):51-54.
    [151]雷衍之.养殖水环境化学.北京:中国农业出版社,2004:191-197.
    [152] Racotta I S, Hernandez-Herrera R. Metabolic responses of the white shrimp, Penaeus vannamei,to ambient ammonia. Comparative Biochemistry and Physiology Part A,2000,125:437-443.
    [153] Kleber Campos Miranda-Filho, Grasiela Lopes Le es Pinho, Wilson Wasielesky Jr, et al.Long-term ammonia toxicity to the pink-shrimp Farfantepenaeus paulensis. ComparativeBiochemistry and Physiology Part C,2009,150:377-382.
    [154]姜令绪,潘鲁青,肖国强.氨氮对凡纳对虾免疫指标的影响.中国水产科学,2004,11(6):537-541.
    [155]丁美丽,林林,李光友,等.有机污染对中国对虾体内外环境影响的研究.海洋与湖沼,1997,28(1):7-12.
    [156]孙舰军,丁美丽.氨氮对中国对虾抗病力的影响.海洋与湖沼,1999,30(3):268-272.
    [157]吴中华,刘昌彬,刘存仁,等.中国对虾慢性亚硝酸盐和氨中毒的组织病理学研究.华中师范大学学报(自然科学版),1999,33(1):119-122.
    [158]张克俭.锌和氨氮对对虾肝胰脏的毒性作用.水产学报,1993,17(1):53-59.
    [159]蒋玫,沈新强,李磊,等.氨氮对脊尾白虾幼体存活生长及体内RNA/DNA比值的影响.动物学杂志,2011,46(4):102-108.
    [160] Lin H P, Thuet P, Trilles J P, et al. Effect of ammonia on survival and osmoregulation of variousdevelopment stages of the shrimp Penaeus japonicus. Marine Biology,1993,117:591-598.
    [161]张士璀,孙旭彤,李红岩.卵黄蛋白原研究及其进展.海洋科学,2002,26(7):32-35.
    [162] Byrne B M, G rubber M, Ab G. The evolution of egg yolk protein. Prog Biophys Molbiol,1989,53:33-69.
    [163] Chen J S, Sapp ington T W, Ra ikhel A S. Extensive sequence conservation among insect,nematode, and vertebrate vitellogenins reveals ancient common ancestry. Journal of MolecularEvolution,1997,44:440-451.
    [164]张成锋,刘红,高祥刚,等.中国对虾卵黄蛋白原合成部位的研究.海洋水产研究,2006,27(6):7-13.
    [165] Tom M, Goren M, Ovadia M. Localization of the vitellin and its possible precursors in variousorgans of Parapenaeus longirostris (Crustacea, Decapoda, Penaeidae). International Journal ofInvertebrate Reproduction and Development,1987,12:1-12.
    [166] Paulus J E, Laufer H. Vitellogenocytes in the hepatopancreas of Carcinus maenas and Libiniaemarginata (Decapoda, brachyura). International Journal of Invertebrate Reproduction andDevelopment,1987,11:29-44.
    [167] Han CH, Okumura T, Suzuki Y, Aida K, Hanyu I. Immunocytochemical identification of the siteof vitellogenin synthesis in the freshwater prawn Macrobrachium nipponense. Fisheries Science,1994,60:149-154.
    [168] Soroka Y, Milner Y, Sagi A. The hepatopancreas as a site of yolk protein synthesis in the prawnMacrobrachium rosenbergii. Invertebrate Reproduction and Development,2000,37(1):1-68.
    [169] Lui CW, O’Connor JD. Biosynthesis of crustacea lipovitellin. III. The incorporation of labeledamino acids into the purified lipovitellin of the crab Pachygrapsus crassipes. Journal ofExperimental Zoology,1977,199:105-108.
    [170] Yano I, Chinzei Y. Ovary is the site of vitellogenin synthesis in Kuruma prawn, Penaeusjaponicus. Comparative Biochemistry and Physiology,1987,86B:213-218.
    [171] Lee C Y, Watson R D. In vitro study of vitellogenesis in the blue crab (Callinectes sapidus): Siteand control of vitellin synthesis. Journal of Experimental Zoology,1995,271:364-372.
    [172] Tsutsui N, Kawazoe I, Ohira T, et al. Molecular Characterization of a cDNA EncodingVitellogenin and Its Expression in the Hepatopancreas and Ovary during Vitellogenesis in theKuruma Prawn, Penaeus japonicus. Zoological Science,2000,17(5):651-660.
    [173]高祥刚,刘红,徐佳念,等.日本沼虾卵黄蛋白原合成部位的初步研究.生物技术通报,2006,增刊:438-443.
    [174]李媛媛,蔡生力,刘红.实时荧光定量PCR检测凡纳滨对虾和罗氏沼虾卵黄蛋白原mRNA在卵巢和肝胰腺中的表达.水产学报,2012,36(11):1667-1674.
    [175]梁俊平,李健,刘萍,等.脊尾白虾生物学特性与人工繁育的研究进展.中国农学通报,2012,28(17):109-116.
    [176] Finn R N. Vertebrate yolk complexes and the functional implications of phosvitins and othersubdomains in vitellogenins. Biology of Reproduction,2007,76:926-935.
    [177] Roth Z, Parnes S, Wiel S, et al. N-glycan moieties of the crustacean egg yolk protein and theirglycosylation sites. Glycoconjugate Journal,2010,27:159-169.
    [178] Santhoshi S, Sugumar V, Munuswamy N. Serotonergic stimulation of ovarian maturation andhemolymph vitellogenin in the Indian white shrimp, Fenneropenaeus indicus. Aquaculture,2009,291:192-199.
    [179] Lee F Y and Chang C F. The Concentrations of vitellogenin (vitellin) and protein in hemolymph,ovary and hepatopancreas in different ovarian stages of the freshwater prawn, Macrobrachiumrosenbergii. Comparative Biochemistry and Physiology Part A: Physiology,1997,117(4):433-439.
    [180] Sharrock W J. Yolk proteins of caenorhabditis elegans. Developmental Biology,1983,96:182-188.
    [181] Giorgi F. Differential vitellin polypeptide processing in insect embryos. Micron,1999,30:579-596.
    [182]李兆杰,杨丽君,王静,等.卵黄蛋白原的研究进展.生命科学,2010,22(3):284-290.
    [183] Raikhel A S, Dhadialla T S. Accumulation of yolk proteins in insect oocytes. Annual Review ofEntomology,1992,37:217-251.
    [184]林英,赵萍,侯勇,等.家蚕卵黄原蛋白及其受体基因.动物学报,2005,51(1):117-125.
    [185] Ekaterina S, Snigirevskaya, Thomas W, et al. Internalization and recycling of vitellogeninreceptor in the mosquito oocyte. Cell and Tissue Research,1997,290:175-183.
    [186] Roth Z, Khalaila I. Identification and characterization of the vitellogenin receptor inMacrobrachium rosenbergii and its expression during vitellogenesis. Molecular Reproduction&Development,2012,79:478-487.
    [187] Tiu S H K, Benzie J, Chan S M. From hepatopancreas to ovary, molecular characterization of ashrimp vitellogenin receptor involved in the processing of vitellogenin. Biology of Reproduction,2008,79:66-74.
    [188] Mekuchi M, Ohira T, Kawazoe I, et al. Characterization and expression of the putative ovarianlipoprotein receptor in the Kuruma Prawn, Marsupenaeus japonicus. Zoological Science,2008,25(4):428-437.
    [189] Tufail M, Takeda M. Molecular cloning, characterization and regulation of the cockroachvitellogenin receptor during oogenesis. Insect Molecular Biology,2005,14(4):389-401.
    [190] Thomas W. Sappington, Alexander S. Raikhel. Molecular characteristics of insect vitellogeninsand vitellogenin receptors. Insect Biochemistry and Molecular Biology,1998,28:277-300.
    [191] Liu Q N, Zhu B J, Liu C L, et al. Characterization of vitellogenin receptor (VgR) from theChinese oak silkworm, Antheraea pernyi. Bulletin of Insectology,2011,64(2):167-174.
    [192] Snigirevskaya E S, Sappington1T W, Raikhel A S. Internalization and recycling of vitellogeninreceptor in the mosquito oocyte. Cell Tissue Research,1997,290:175-183.
    [193] Schonbaum C P, Lee S, Mahowald A P. The Drosophila yolkless gene encodes a vitellogeninreceptor belonging to the low density lipoprotein receptor superfamily. Proceedings of theNational Academy of Sciences,1995,92:1485-1489.
    [194] Ciudad L, Piulachs M D, Belle X. Systemic RNAi of the cockroach vitellogenin receptor resultsin a phenotype similar to that of the Drosophila yolkless mutant. FEBS J,2006,273(2):325-335.
    [195] Pousisa C, Santamariaa N, Zupaa R, et al. Expression of vitellogenin receptor gene in the ovaryof wild and captive Atlantic bluefin tuna (Thunnus thynnus). Animal Reproduction Science,2012,132:101-110.
    [196] Hiramatsu N, Chapman R W, Lindzey J K, et al. Molecular Characterization and Expression ofVitellogenin Receptor from White Perch (Morone americana). Biology of Reproduction,2004,70:1720-1730.
    [197] Vargas-Albores F, Jimenez-Vega F, Yepiz-Plascencia G M. Purification and comparison of beta-1,3-glucan binding protein from white shrimp (Penaeus vannamei). Comparative Biochemistry andPhysiology Part B: Biochemistry and Molecular Biology,1997,116:453-458.
    [198] Mekuchi M, Ohira T, Kawazoe I, et al. Characterization and expression of the putative ovarianlipoprotein receptor in the Kuruma prawn, Marsupenaeus japonicus. Zoological science,2008,25:428-437.
    [199] Tufail M, Takeda M. Insect vitellogenin/lipophorin receptors: Molecular structures, role inoogenesis, and regulatory mechanisms. Journal of insect physiology,2009,55:87-103.
    [200] Dhadialla T S, Hays A R, Raikhel A S. Characterization of the solubilized mosquito vitellogeninreceptor. Insect Biochem. Insect Biochemistry and Molecular Biology,1992,22:803-816.
    [201] Sappington T W, Hays A R, Raikhel A S. Mosquito vitellogenin receptor: purification,developmental and biochemical characterization. Insect Biochemistry and Molecular Biology,1995,25:807-817.
    [202] Tufail M, Takeda M. Molecular cloning and developmental expression pattern of the vitellogeninreceptor from the cockroach, Leucophaea maderae. Insect Biochemistry and Molecular Biology,2007,37:235-245.
    [203] Prat F, Coward K, Sumpter J P, et al. Molecular characterization and expression of two ovarianlipoprotein receptors in the rainbow trout, Oncorhynchus mykiss. Biology of Reproduction,1998,58:1146-1153.
    [204] Li A, Sadasivam M, Ding J L. Receptor-ligand interaction between vitellogenin receptor (VtgR)and vitellogenin (Vtg), implications on low density lipoprotein receptor and apolipoprotein B/E.The Journal of Biological Chemistry,2003,278(5):2799-2806.
    [205] Brown M R, Sieglaff D H, Rees H H. Gonadal ecdysteroidogenesis in Arthropoda: occurrenceand regulation. Annual Review of Entomology,2009,54:105-125.
    [206] Tan A, Palli S R. Edysone receptor isoforms play distinct roles in controlling molting andmetamorphosis in the red flour beetle, Tribolium castaneum. Molecular and CellularEndocrinology,2008,291:42-49.
    [207] Lachaise F, Le Roux A, Hubert M, et al. The molting gland of crustaceans: localization, activityand endocrine control. Journal of Crustacean Biology,1993,13:198-234.
    [208] Lafont R, Mathieu M. Steroids in aquatic invertebrates. Ecotoxicology,2007,16:109-130.
    [209] Yao T P, Forman B M, Jiang Z, et al. Functional ecdysone receptor is the product of EcR andUltraspiracle genes. Nature,1993,366:476-479.
    [210] Kim H W, Chang E, Mykles D, Three calpains and ecdysone receptor in the land crab Gecarcinuslateralis: sequences, expression and effects of elevated ecdysteroid induced by eyestalk ablation.Journal of Experimental Biology,2005,208:3177-3197.
    [211] Wu X, Hopkins P M, Palli1S R, et al. Crustacean retinoid-X receptor isoforms: distinctive DNAbinding and receptor–receptor interaction with a cognate ecdysteroid receptor. Molecular andCellular Endocrinology,2004,218:21-38.
    [212] King-Jones K, Thummel C S. Nuclear receptors-a perspective from Drosophila. Nature ReviewsGenetics,2005,6:311-323.
    [213] Verhaegen Y, Parmentier K, Swevers L, et al. The heterodimeric ecdysteroid receptor complex inthe brown shrimp Crangon crangon: EcR and RXR isoform characteristics and sensitivitytowards the marine pollutant tributyltin. General and Comparative Endocrinology,2011,172:158-269.
    [214] Thomas H E, Stunnenberg H G, Stewart A F. Heterodimerization of the drosophila ecdysonereceptor with retinoid X receptor and ultraspiracle. Nature,1993,362:471-475.
    [215]李康,李胜,曹阳.蜕皮激素与其受体ECR-USP的转录调控机制.昆虫学报,2011,54(8):937-937.
    [216] Chung A C K, Durica D, Hopkins P. Tissue-specific patterns and steady-state concentrations ofecdysteroid receptor and retinoid-X-receptor mRNA during the molt cycle of the fiddler crab,Uca pugilator. General and Comparative Endocrinology,1998,109:375-389.
    [217] Verhaegen Y, Parmentier K, Swevers L, et al. The brown shrimp (Crangon crangon L.)ecdysteroid receptor complex: Cloning, structural modeling of the ligand binding domain andfunctional expresssion in an EcR-deficient Drosophila cell line. General and ComparativeEndocrinology,2010,168:415-423.
    [218] Hwang D S, Lee J S, Lee K W, et al. Cloning and expression of ecdysone receptor (EcR) fromthe intertidal copepod Tigriopus japonicus. Comparative Biochemistry and Physiology Part C:Toxicology&Pharmacology,2010,151:303-312.
    [219] Tarrant A M, Behrendt L, Stegeman J J, et al. Ecdysteroid receptor from the American lobsterHomarus americanus: EcR/RXR isoform cloning and ligand-binding properties. General andComparative Endocrinology,2011,173:346-355.
    [220] Talbot W S, Swyryd E A, Hogness D S. Drosophila tissues with different metamorphic responsesto ecdysone express different ecdysone receptor isoforms. Cell,1993,73:1323-1337.
    [221] Guo X, Harmon Ma, Laudet V, et a1. Isolation of a functional eedystereid receptor homologuefrom the ixodid tick Amblyomma americanum. Insect Biochemistry and Molecular Biology,1997,27(11):945-962.
    [222] Takeuchi H, Paul R K, Matsuzaka E, et a1. EcR—A expression in the brain and ovary of thehoneybee Apis mellifera. Zoological Science,2007,24(6):596-603.
    [223] Tan A, Palli S R. Edysone receptor isoforms play distinct roles in controlling molting andmetamorphosis in the red flour beetle, Tribolium castaneum. Molecular and CellularEndocrinology,2008,291:42-49.
    [224] Shirai H, Kamimura M, Fujiwara H. Characterization of core promoter elements for ecdysonereceptor isoforms of the silkworm, Bombyx mori. Insect Biochemistry and Molecular Biology,2007,16:253-264.
    [225] Kato Y, Kobayashi K, Oda S, et al. Cloning and characterization of the ecdysone receptor andultraspiracle protein from the water flea Daphnia magna. Journal of Endocrinology,2007,193:183-194.
    [226]罗荣生,王幽兰,曹梅讯,等.中华绒螯蟹血淋巴20-羟蜕皮酮诱发蜕皮和卵巢发育的作用.动物学报,1990,36(2):157-164.
    [227]赵维信,王义强,欧阳迎春.中国对虾体内20-羟基蜕皮酮含量与生长和性腺发育的关系.台湾海峡,1992,11(4):305-309.
    [228]姜仁良,朱大白.虾蟹类的蜕壳和生长.水产科技情报,1993,20(2):55-57.
    [229] Huberman A. Shrimp endocrinology: A review. Aquaculture,2000,191:191-208.
    [230] Lafont R. The endocrinology of invertebrates. Ecotoxicology,2000,9:41-57.
    [231] Arbeitman M N, Hogness D S. Molecular chaperones active the Drosophila ecdysone receptor,an RXR heterodimer. Cell,2000,101:67-77.
    [232] Jiang S G, Qiu L H, Zhou F L, et al. Molecular cloning and expression analysis of a heat shockprotein (Hsp90) gene from black tiger shrimp (Penaeus monodon). Molecular Biology Reports,2009,36:127-134.
    [233] Zhao W, Chen L, Qin J, et al. MnHSP90cDNA characterization and its expression during theovary development in oriental river prawn, Macrobrachium nipponense. Molecular BiologyReports,2011,38(2):1399-1406.
    [234] Sabbah M, Radanyi C, Redeuilh G, et al. The90kDa heat-shock protein (hsp90) modulates thebinding of the oestrogen receptor to its cognate DNA. Biochem J,1996,314:205-213.
    [235]赵卫红,陈立侨,吕林兰,等.卵黄蛋白原的性质及热休克蛋白90对其合成代谢的调控.盐城工学院学报(自然科学版),2011,24(4):1-8.
    [236]陈辉,王文清,朱小玲.日本沼虾蜕皮激素受体(EcR)的cDNA克隆及其在胚胎发育过程中的表达分析.海洋渔业,2009,31(4):347-356.
    [237] Wilder M N, Okumura T, Aida K, et al. Ecdysteroid fluctuations during embryogenesis in thegiant freshwater prawn, Macrobrachium rosenbergii. General and Comparative Endocrinology,1990,80(1):93-100.
    [238] Subramoniam T. Crustacean ecdysteriods in reproduction and embryogenesis. ComparativeBiochemistry and Physiology Part C,2000,125:135-156.
    [239]朱勇飞,综述,张天宝.热休克蛋白与胚胎发育的关系.国外医学卫生学分册,2004,31(5):287-292.
    [240] Csermely P, Schnaider T, Soti C, et al. The90-kDa molecular chaperone family: structure,function and clinical applications. A comprehensive review. Pharmacology&Therapeutics,1998,79(2):129-168.
    [241] Voss A K, Thomas T, Gruss P. Mice lacking HsP90beta fail to develop a placental labyrinth.Development,2000,127:1-l1.
    [242]王婷婷,陈松林,孟亮,等.大菱鲆热休克蛋白90基因cDNA的克隆及其表达特征.渔业科学进展,2010,31(2):51-59.
    [243] Baker M E. Invertebrate vitellogenin is homologous to human von Willebrand factor.Biochemical Journal,1988,256(3):1059-1061.
    [244] Doolittle R F, Riley M. The amino-terminal sequence of lobster fibrinogen reveals commonancestry with vitellogenins. Biochemical and Biophysical Research Communications,1990,167:16-19.
    [245]张年国,张颖,孙大江,等.卵黄蛋白原的发生、结构及功能研究现状.水产学杂志,2007,20(1):97-106.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.