包埋固定化微生物技术在工业废水高效硝化处理中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
最新颁布的国家“十二五”环境保护规划首次将氨氮列为了重要的减排指标,新建污水处理厂氨氮的达标排放以及旧污水处理厂提高氨氮去除效率的改造都需要高效的氨氮处理技术,本文分别以工业园区综合废水和高氨氮化工废水为研究对象,研究固定化包埋微生物技术在工业废水高效硝化处理中的应用,目的是为污水处理厂提高氨氮去除效率提供新的思路,并推广固定化包埋微生物技术在工业废水中的应用。实验得出的主要结论如下:
     1.包埋颗粒用模拟废水进行驯化,易于驯化,经过21天的驯化,氨氮去除负荷由8.3mgNH_4~+-N/L-pellet?h提高到110.2mgNH_4~+-N/L-pellet?h。
     2.包埋颗粒与活性污泥的混合体系能够较好的适应工业园区的综合废水,氨氮去除率达97%以上,COD去除率达86%。
     3.温度对包埋颗粒与活性污泥体系中氨氮去除效率的影响小于传统的活性污泥法,而且随着体系的持续运行,包埋颗粒会慢慢适应低温的环境。
     4.溶解氧对包埋颗粒与活性污泥体系中氨氮去除效率的影响比较大,为了保证活性污泥和包埋颗粒混合体系中氨氮的去除效率,整个体系的DO应该要大于4mg/L。
     5.MBBR载体与包埋颗粒的对比实验表明:包埋颗粒的反应器运行稳定后氨氮去除效率为95%,高于MBBR载体的80%;包埋颗粒的反应器TN去除效率达到90%,高于MBBR(移动床生物膜反应器)载体的75%。
     6.包埋颗粒与A/O工艺结合处理高氨氮化工废水实验表明:在进水碱度和反硝化碳源充足的条件下,氨氮去除率达98%以上、COD去除率达95%以上。出水COD、氨氮达《污水综合排放标准》(GB 8978-1996)一级排放标准的要求。
     7.向A/O工艺好氧段投加包埋颗粒后,经过22d的驯化,氨氮去除效率由70%提高到98%;达到相同的出水氨氮浓度,HRT由36h降低至20h;投加包埋颗粒后能有效的提高系统的氨氮去除效率,而且载体投加简单易行,适合原有污水厂的升级改造,无需扩建反应池即可使出水氨氮达标。
The latest national twelfth five planning about environmental protection listed the ammonia nitrogen as the important reduce emissions index at the first time. The efficient ammonia nitrogen treatment technology is required in both new treatment plants and the reconstruction of the old plants. This thesis focuses on treating the mixed industrial wastewater and high ammonia nitrogen chemical wastewater, studies on the application of embedded immobilized microorganisms technology effect on nitrification treatment in industrial wastewater. The purpose of the research is to provide a new thinking for improving ammonia nitrogen removal efficiency and to popularize the embedded immobilized technology application of industrial wastewater. The main conclusions are as follows:
     1. Embedded pellets is easy to acclimation by synthetic wastewater, 21 days later, the nitrification ability of the embedded pellets is increased from 8.3mgNH_4~+-N/L-pellet?h to 23.4mgNH_4~+-N/L-pellet?h.
     2. The mixed system combined embedded pellets with activity sludge can well adapt to the mixed wastewater. The removal rate of NH_4~+-N is more than 97% and the removal rate of COD is more than 86%.
     3. Temperature had a less influence on the removal rate of NH_4~+-N in mixed system combined embedded pellets with activity sludge than traditional activated sludge process. And with the system continued operated, embedded pellets will be slowly adapted to the low temperature conditions.
     4. In the mixed system, DO had a great influence on the removal rate of NH_4~+-N, The removal rate of NH_4~+-N could meet the requirement when DO>4.
     5. Contrast experiment between MBBR carrier and embedded pellets shows that the removal rate of NH_4~+-N is 95% with the stable embedded pellets mixed system, better than the MBBR(Moving Bed Biofilm Reactor) carrier which is 80%, and removal rate of TN is 90%, better than about MBBR reactor which is 75%.
     6. The experiment of treating the high ammonia chemical wastewater with immobilized microorganisms combined with A/O process indicated that: on the condition of enough carbon sources and alkalinity, the removal rate of NH_4~+-N is more than 98% and the removal rate of COD is more than 95%. The effluent meets the first level criteria specified in Integrated Wastewater Discharge Standard(GB8978-1996).
     7. With the Dosing the embedded pellets into the aeration zone of A/O process, the removal rate of NH_4~+-N is increased from 70% to 98% after 22 days’acclimation and HRT can be decreased from 36h to 24h when meet the same effluent NH_4~+-N. Dosing the embedded pellets can effectively improve the removal rate of NH_4~+-N, and carrier additive is simple. It is suitable for the reconstruction of the old plants. The effluent can meet criteria without reconstructing the tank.
引文
[1] WORLD WATER COUNCIL.World water vision 2025[M]. Eart hscan Publications Ltd,2000.
    [2]李雪松,伍新木.我国水资源循环经济发展与创新体系构建[J].长江流域资源与环境,2007,16 (3) :297~301.
    [3]张利平.中国水资源状况与水资源安全问题分析[J].长江流域资源与环境, 2009,18(2):116~119
    [4]中国环境状况公报[J].北京:中国环境年鉴,2010
    [5]杨玉珍.水环境中氨氮危害和分析方法及常用处理工艺[J].山西建筑,2010,36(20):356~357
    [6]李国锋.废水中氨氮的去除[学位论文].大庆:大庆石油学院, 2005
    [7]江泉观,纪云晶,常元勋.环境化学毒物防治手册[M].北京:化学工业出版社,2004:20~25
    [8]孙锦宜.含氮废水处理技术与饮用[M].北京:化学工业出版社. 2003:35~45
    [9]仝武刚,王继徽.高浓度氨氮废水治理技术[J].污染防治技术,2002,15(2):24~27
    [10]金彪.吹脱技术净化石油污染地下水实验[J].环境科学,2000,21(4):102~105
    [11]陈秀芳.离子交换法在废水处理中的应用[J].科技情报开发与经济,2004,14(7):148~155
    [12]许国强,曾光明.氨氮废水处理技术现状及发展[J].湖南有色金属,2002,18(2):29~33
    [13] Dencer AlikFikret. Effect nitrification and denitrification processes. Bioprocess Eng. 2000, 23(1): 75~80
    [14] Holman J B, Wareham D G. COD、ammonia and dissolved oxygen time profiles in the simultaneous nitrification/denitrification process. Biochemical Engineering,2005,22(2):125~133
    [15]周少奇,周吉林.生物脱氮新技术研究进展[J].环境污染治理技术与设备,2000,1(6):11~12
    [16]周少奇,张鸿郭,等.垃圾渗滤液厌氧氨氧化与反硝化的协同作用[J].华南理工大学学报,2008,36(3):73—75
    [17] Hulle Van, Stijn W.H, Volcke.Influence of temperature and pH on the kinetics of the Sharon nitritation process[J]. Journal of Chemical Technology and Biotechnology. 2007,82(5):5~8
    [18]张自杰,等.排水工程下册(第四版)[M].中国建筑工业出版社,2000:243~312
    [19]武江津,等.三废处理工程技术手册(废水卷)[M].化学工业出版社,2000:564~567
    [20]王建龙,等.固定化微生物技术在难降解有机物治理中的研究进展[J].环境科学研究, 1999,12:60~64
    [21]陈铭,周晓云.固定化细胞技术在有机废水中的应用与前景.水处理技术,1997,23(2):98
    [22]李晔,等.生物固定化技术在含氮废水处理中的研究[J].工业安全与环保保,2004,30(6):18
    [23] Tanaka K, Sumina T, Nakamura H. Application of nitrification by cells immobilized in polyethylene glycol[J]. Prog. Biotechnol,1996,11:622~632
    [24]蒋宇红,黄霞等.几种固定化细胞载体的比较[J].环境科学,1993,14(2):11~15
    [25]周定.固定化细胞在废水处理中的应用及前景[J].环境科学,1993,14:51~59
    [26]葛文准,荣旻辉.固定化微生物法处理氨氮废水[J].上海环境科学,1995,14,10~13
    [27]王磊,兰淑澄.固定化硝化菌去除氨氮的研究[J].环境科学,1997,2:18~20
    [28]黄正,范玮,李谷.固定化硝化细菌去除养殖废水中氨氮的研究[J].华中科技大学学报,2002,31(1):17~18
    [29]任海波,汝少国,赵书云等.养殖废水固定化微生物氮技术研究进展[J].海洋科学,2004,28(4):33
    [30]赵兴利,兰淑澄.固定化硝化菌去除废水中氨氮工艺的研究[J].环境科学,1999,20(1):39~42
    [31]叶正芳,倪晋仁.污水处理的固定化微生物与游离微生物性能的比较[J].应用基础与工程科学学报,2002,10(4):2
    [32]余冬冬,金勇威,张振家,等.包埋固定化微生物处理微污染水源的试验研究[J].中国给水排水,2008,24(13):85~88
    [33]夏瑜,张振家,王璐.包埋固定化菌深度处理污水厂出水的研究[J].中国给水排水,2008,24(21):49~51
    [34]王璐,张振家,等.包埋固定化微生物技术在城市给水厂地表水源水质生物处理中的应用研究[D].上海:上海交通大学,2008
    [35]邓岩岩,张振家,等.固定化包埋硝化菌去除废水中氨氮的研究[D].上海:上海交通大学,2010
    [36]冯雅男,等.包埋固定化硝化菌去除氨氮的试验研究[J].水处理技术2010,36(11):74~76
    [37]杜英豪,黎耀,陶清.传统活性污泥法的脱氮除磷改造实践[J].给水排水,2000,26(9):9~11
    [38] Masatoshi Matsumura, Hiroshi Tsubota, Osafumi Ito. Development of Bioreactors for Denitrification with Immobilized Cells[J]. Journal of fermentation and bioengineering,1997, 84(2):144~150
    [39]郑平,等.固定化硝化细菌耐低温机理的研究[J].生物工程学报,1997,13(3):334~338
    [40]彭永臻,王淑莹.运行温度对间歇式活性污泥法影响的研究[J].环境科学从刊,1997,10(4):30~35
    [41]陈娅洁,姚涛,李至荣.包埋固定化硝化菌在不同DO下的硝化规律研究[J].环境科学与技术,2006,29(5):37~40
    [42]给水排水设计手册[M].化学工业出版社,2000:564~567
    [43] Bjom Rusten,et a1.Biological pretreatment of a chemical plant wastewater in high rate movingbed biofilm reactors[J]. Wat Sci Tech,1999,39(10-11):257~264
    [44]郑平,徐向阳,胡宝兰.新型生物脱氮理论和技术[M].北京:科学出版社,2004:170~190
    [45]张鹏,等. MBBR法处理城市污水去除污染物的特性研究[J].水处理技术,2009,35(10):91~95
    [46]刘建广,等.序批式移动床生物膜反应器处理高氨氮废水[J].山东建筑大学学报,2008,23(2):150~153
    [47]韩喜莲,王艳,李绍勇.悬浮填料对污水脱氮的影响分析[J].甘肃科学学报,2007,19(2):147~150.
    [48] Munch E V,Lant P,Keller J.Simultaneous nitrification and denitrification in bench~scale sequencing batch reactors[J]. WarRes,1996,30(2):277~284.
    [49]王荣昌,文湘华,钱易.流动床生物膜反应器在污水处理中的应用研究现状[J].环境污染治理技术与设备,2003,4(7):79~85
    [50] Rusten B,HellstrEm B G,HellstrEm F,et a1.Pilot and preliminary design of moving bed biofilm reactors nitrogen removal at the FREVAR wastewater treatment [J]. Wat Sci and Tech,2000,41(4,5):13~20.
    [51] Chistensson, Magnus, Welander,et a1. Treatment of municipal wastewater in a hybrid process using a new suspended cartier witll large surface area [J]. Water Science Technol,2004,49(11~12):207~214.
    [52]王献平,李韧.吹脱+A/O工艺处理氮肥企业高氨氮废水的工程实践[J].环境工程,2007,25(5):102~104.
    [53]牛国芳.浅析一种氮肥厂终端废水处理工艺[J].化学工程与设备,2008,3:135~137.
    [54]闻建平,等.鼓泡塔生物反应器处理化肥工业含氨废水的实验研究[J].化学反应工程与工艺,2001,17(2):159~163.
    [55]闻建平,潘磊.多导流筒、低高径比气升环流反应器处理化肥厂氨氮废水的中试研究[J].小氮肥,2004,5:16~17..
    [56]万琼,叶正芳,等.固定化生物流化床处理尿素厂废水的中试研究[J].给水排水,2006,32(8):44~47.
    [57]方士,等. PH值对高浓度氨氮废水亚硝化/反亚硝化反应速率的影响[J].高校化学工程学报,2001,15(4):346~349.
    [58]陈旭良,等.硝化系统碱度特征与调控对策的研究[J].浙江大学学报,2006,32(3):318~322.
    [59]阎宁,等.甲醇与葡萄糖为碳源在反硝化过程中的比较[J].上海师范大学报,2002,31(3):41~44.
    [60]邓岩岩,张振家,周伟丽,等.包埋固定化硝化菌驯化阶段特性的研究[J].水处理技术,2010,36(6):73~76
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.