固定化包埋硝化菌去除废水中氨氮的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了固定化包埋硝化菌和生物膜在驯化阶段去除氨氮的各种特性,及驯化结束后不同影响因素对其活性及硝化特性的影响。固定化包埋硝化菌在流化床内培养,生物膜反应器内的硝化菌以生物膜的形式附着在软性填料上生长。最后研究了固定化包埋硝化菌处理玉米发酵废水时的硝化能力。
     实验主要针对硝化细菌的驯化、温度和溶解氧对两个反应器硝化反应的影响、不同储存条件对固定化包埋硝化菌活性恢复的影响及固定化包埋硝化菌处理玉米发酵废水的能力几个方面展开。
     主要实验结论如下:
     1)保持系统连续进水的条件下,固定化包埋硝化菌经过37天的驯化,颗粒活性由初期的10 mgNH4-N/L·h上升至23.4mgNH4-N/L·h。生物膜反应器内的硝化菌硝化速率由初期的由开始时的2.0mgNH4-N/L·h升高至结束时的11. 8mgNH4-N/L·h。
     2)同期颗粒活性数据与PCR扩增实验结果表明,对包埋硝化菌进行驯化期间,包埋颗粒内部硝化菌含量明显增加,颗粒内部生物量大幅提高。
     3)溶解氧从4mg/L向2mg/L转变的过程中,固定化包埋硝化菌与生物膜反应器内的的硝化菌硝化能力均受到影响,但流化床的硝化能力要远高于固定床。未降低溶解氧前流化床的氨氮降解负荷最高达34.1mgNH4-N/L·h,而固定床最高仅为11.8mgNH4-N/L·h。降低溶解氧后流化床氨氮降解负荷为28.4mgNH4-N/L·h,固定床为9.5mgNH4-N/L·h。此外,在低溶解氧条件下两反应器均出现一定程度的亚硝酸氮积累情况。
     4)温度从高向低的转变过程中,两反应器内硝化菌硝化速率均有所降低,亚硝酸氮积累现象减轻。温度高时易出现亚硝酸氮积累。
     5)固定化包埋硝化菌在较高活性时放置在4℃下保存后可迅速恢复活性,7天内颗粒活性从储存后取出时的1. 8mgNH4-N/L·h上升至13.8mgNH4-N/L·h。
     6)使用固定化包埋颗粒处理玉米发酵废水中的氨氮,有较好的去除效果,系统连续运行效果稳定。废水中不存在抑制硝化菌活性的物质。当体系进水中氨氮浓度在40mg/L左右,停留时间为2.5h~3.5h之间,溶解氧在4mg/L时,出水氨氮浓度基本上可以达到15mg/L以下,满足排放标准。废水中存在的有机物对硝化反应影响不大。
Ammonia removal features of nitrobacteria in immobilized pellets and bio-film during the acclimation phase were studied and the effects of surrounding factors on their activity were discussed after the acclimation. Immobilized nitrobacteria were cultivated in the fluidized bed while nitrobacteria in the bio-film grew on the elastic plastic media in the fixed bed. The nitro-bacterial degradability of immobilized nitrobacteria in the treatment of the corn distillery wastewater was also investigated.
     The experiments mainly focused on the acclimation of nitro-bacteria, the effects of temperature and DO on the nitro-bacterial degradability of the two reactors, the influence of storage conditions on the nitro-bacteria activity recovery, and the nitro-bacterial degradability of immobilized nitrobacteria in the treatment of corn distillery wastewater.
     The major conclusions were drawn as follows:
     1) In the continuous experiment, the ammonia oxidizing ability of the pellets increased from 10mgNH4-N/L·h to 23.4 mgNH4-N/L·h after 37 days’acclimation while the nitrification ratio of the fixed bed increased from 2.0 mg mgNH4-N/L·h to 11. 8mg mgNH4-N/L·h.
     2) The result of PCR experiment showed that the quantity of the ammonia oxidation bacteria increased substantially during the acclimation.
     3) When DO declined from 4mg/L to 2mg/L, the nitrification ability of two reactors decreased while the nitrification ability of the fluidized bed is far better than that of the fixed bed. DO of 4mg/L enabled both, reactors to reach the maximum nitrification rate of 34.1mgNH4-N/L·h and 11.8mgNH4-N/L·h respectively, while at 2mg/L, the two reactors had lower nitrification rate of 28.4mgNH4-N/L·h and 9.5mgNH4-N/L·h, respectively. Besides, NO2-N accumulation was detected in both reactors.
     4) When the temperature was decreased, both reactors were affected and the NO2-N accumulated less. Higher temperature tended to cause nitrite accumulation more likely.
     5) After long-term storage, the immobilized nitrobacteria kept at 4℃showed quick recovery from an inertia status. Its nitro-degrading rate increased from 1. 8mgNH4-N/L·h to 13.8mgNH4-N/L·h after 7 days’acclimation.
     High nitrogen removal rate and steady operation were obtained when using the immobilized bacteria to treat the corn distillery wastewater. No inhibitive material was found in the wastewater and the organic material in the water had a limited influence on the nitrification rate. At the influent ammonia of 40mg/L, HRT of 2.5h-3.5h, and DO of 4mg/L, the NH4-N concentration in the effluent water was lower than 15mg/L and was able to meet the requirement.
引文
[1]张自杰.排水工程.北京:中国建筑工业出版社. 1996:221-234
    [2]娄金生,谢水波,何少年等.生物脱氮除磷原理与应用[M].长沙:国防科技大学出版社. 2002:4-6
    [3] 2008年中国环境状况公报.环境保护局. 2008.
    [4]徐亚同.废水中氮磷的处理.上海:华东师范大学出版社. 1996:20-23.
    [5]孙锦宜.含氮废水处理技术与饮用[M].北京:化学工业出版社. 2003:35-45.
    [6]徐根良.废水控制及治理工程[M].浙江:浙江大学出版社. 1999:34-36.
    [7]江泉观,纪云晶,常元勋.环境化学毒物防治手册[M].北京:化学工业出版社. 2004:20-25.
    [8]沈耀良,王宝贞.废水生物处理新技术理论与应用[M].北京:中国环境科学出版社. 1999:30-34. [9,17] Dencer A, Fikret, Kargi. Effect nitrification and denitrification processes[J]. Bioprocess Eng. 2000, 23(1): 75-80
    [10] Hp Chu, Jhc Wong, Xy Li. Trihalomethane formation potentials of organic Pollutants in wastewater discharge[J]. Wat.Sci.Teehnol, 2002, 46(11):401-64
    [11]吴剑,齐鄂荣,程晓如.废水生物脱氮技术的研究发展.武汉大学学报. 2002,35(1): 3-5.
    [12]沙之杰,杨勇.短程硝化反硝化生物脱氮技术综述.西昌学院学报. 2008, 22 (3): 7-8.
    [13]施永生.亚硝酸型生物脱氮技术[J].给水排水. 2000, 26(11): 11-13.
    [14]陈娅洁,姚涛,李至荣.包埋固定化硝化菌在不同DO下的硝化规律研究.环境科学与技术[J]. 2006, 29(5): 17-19.
    [15]高大文,彭永臻,王淑莹.控制pH实现短程硝化反硝化生物脱氮技术.哈尔滨工业大学学报. 2005, 37(12):23-25.
    [16]孙扬平.生物脱氮新技术在低碳氮比废水中的应用[J].环境科学与管理: 2007, 32(6): 12-14.
    [18]李丛娜,吕锡武,稻森悠平.同步硝化反硝化脱氮研究[J].给水排水. 2001, 27(1): 22-24.
    [19]任义,王磊,狄雅茹.氨氮废水处理技术进展综述.西安文理学院学报. 2008, 11(3): 16-18.
    [20] Hellinga CAA J C, Mulder J W, Schellen. The sharon process:an innovative method for nitrogen removal fromammonium-richwastewa-ter[J]. Water Research, 1998, 37: 135-142.
    [21]任南琪,王爱杰等.厌氧生物技术原理与应用[M].北京:化学工业出版社. 2004, 35-40.
    [22]高廷耀,顾国维.水污染控制工程[M].北京:高等教育出版社. 2007, 40-47.
    [23]黄骏,陈建中.氮废水处理技术研究进展[J].环境污染治理技术与设备, 2002, 3(2): 65-68.
    [24] Qijie LIU, Xiang HU , Jianlong WANG . Performance Characteristics for Nitrogen Removal in SBR by Aerobic Granules [J]. Chinese J. Chem. Eng.. 2005, 13 (5): 669-672.
    [25]王洪,李海波.氨氮废水生物处理工艺及研究进展河南师范大学学报, 2008, 36(5): 9.
    [26]周少奇,周吉林.生物脱氮新技术研究进展[J].环境污染治理技术与设备[J]. 2000, 1(6): 11-12.
    [27] I.S Hwang, Min, K.S, Choi. Nitrogen removal from piggery waste using the combined SHARON and ANAMMOX process[J]. Water Science and Technology. 2005, 52: 487-494.
    [28]徐冬梅,聂梅生,金承基.亚硝酸型硝化试验研究[J].给水排水. 1999, 25(7): 22-24.
    [29]张爽,姜蔚,徐桂.固定化硝化茵在不同温度下对氨氮的去除效能研究[J].环境科学与管理. 2008, 33(5): 5-6.
    [30]袁林江.聚乙烯醇(PVA)固定化反硝化菌的脱氮特性[J],中国环境科学, 1998, 18, 189-191.
    [31]陈娅洁.包埋固定化硝化菌的亚硝化硝化研究. [硕士论文].上海:上海交通大学. 2004.
    [32] A beling U, Seyfried C F. Anaerobic-aerobic treatment of high-strengthammonia wastewater-nitro-gen removal via nitrite [J ]. Wat1 Sci..Tech.Water Science and Technology. 1992, 26 (5-6) : 1007-1015.
    [33] Hulle Van, Stijn W.H, Volcke.Influence of temperature and pH on the kinetics of the Sharon nitritation process[J]. Journal of Chemical Technology and Biotechnology. 2007, 82(5): 5-8.
    [34] Windey Kim, De Bo Inge, Verstraete Willy. Oxygen-limited autotrophic nitrification-denitrification (OLAND) in a rotating biological contactor treating high-salinity wastewater[J]. Water Research. 2005, 39(18):11-14.
    [35]张丹,徐慧,刘耀平. OLAND生物脱氮系统运行及其硝化菌群的分子生物学检测[J].应用与环境生物学报. 2003, 29(5): 18-19.
    [36]孙红文.藻类固定化技术在环境领域中的应用[J].上海环境科学. 1999, 18(8): 359-359.
    [37]李晔,李凌,张发有.生物固定化技术在含氮废水处理中的研究[J].工业安全与环保. 2004, 30(6): 11-13.
    [38]严小军.细胞固定化的方法及应用[J].海洋科学. 1993, 25(5): 20-22.
    [39]李贤胜,施永生.固定化微生物技术在废水脱氮中的应用[J].云南环境科学. 2006, 25(3): 30-33.
    [40]倪既勤.拉丁美洲沼气能源的开发利用[ J].新能源. 1993, 15 (1): 20-23.
    [41]张彤,曹国民,赵庆样.固定化微生物脱氮技术进展[J].城市环境与城市生态. 2000, 13 (2): 11-13.
    [42] Siegrist S, Lais P.H, Reithaar. Nitrogen loss in a nitrifying totating contrator treating ammoniym rich leachate without organic carbon[J]. Wat.Sci.Technol, 1998, 37(3), 589-591.
    [43]沈耀良,黄勇,赵丹等.固定化微生物污水处理技术[M].北京:化学工业出版社. 2002, 30(4): 14-20.
    [44]王新,李培军,巩宗强等.固定化细胞技术的研究和进展[J].农业环境保护. 2001, 20(2): 120-122.
    [45]王玉建,李红玉.固定化微生物在废水处理中的研究及进展[J].生物技术. 2006, 16(1): 94.
    [46] Tanaka K, Sumina T, Nakamura H et al. Application of nitrification by cells immobilized in polyethylene glycol[J]. Prog. Biotechnol. 1996, 11: 622-632.
    [47]中村.固定化生物脱氮研究[J].公害与对策, 1987, 22(2): 27-30.
    [48] W.A.J.van Benthum, M.D.M.van Loosdrecht, J.J.Heijnen. Control of heterotrophic layer formation on nitrifyingbiofilms in a biofilms airliftsuspension reacter[J]. Biotech. &Bioeng, 1997, 53(3):15-17.
    [49]周定,固定化细胞在废水处理中的应用及前景[J].环境科学. 1993, 14: 51-59.
    [50]市村国宏,光架桥小生.树指ブレボリマ-包括固定化法にょる硝化菌の固定化[J].用水と废水. 1987, 29(8): 2.
    [51]角野立夫.ラァクリルァミド包括固定化法にょ排水处理[J].用水と废水. 1987, 29(8): 13.
    [52] Tramper J, etal. Characterization nitrobacteria gills immobilized in calcium- Malginate[J]. Enzyme and Microbial Technology. 1986, 8(8): 472.
    [53] Louis A SV V. Maja. Five years of nitrate removal, denitrification and carbon dynamics in a denitrification wall[J]. Water Resource. 2001, 35(14): 37-39.
    [54]曹国民,赵庆祥,龚剑丽等.固定化微生物在好氧条件下同时硝化和反硝化[J].环境工程. 2000, 18 (5): 33-35.
    [55]黄正,范玮,李谷.固定化硝化细菌去除养殖废水中氨氮的研究[J].华中科技大学学报. 2002, 31 (1): 17-18.
    [56]任海波,汝少国,赵书云等.养殖废水固定化微生物氮技术研究进展[J].海洋科学. 2004, 28 (4): 33.
    [57] GM Cao, ZhaoQ X, SunX B, etal. Characterization of nitrifying and denitrifying bacteria co-immobilized in PVA and kinet-icsmodel of biological nitrogen removal by co-immobilized cells[J]. Enzyme and MicrobialTechnology. 2002, 30.
    [58]曹国民等.固定化微生物在好氧条件下同时硝化和反硝化[J].环境工程, 2000, 18(5): 17~19.
    [59]屈计宁,金志刚,何群彪.高效硝化细菌的富集技术研究[J].同济大学学报. 1999, 27 (3):36-38.
    [60]杨麒,李小明.固定化微生物技术及其在生物脱氮中的应用[J].江苏环境科技. 2002, 30(5):23-25.
    [61]叶正芳,倪晋仁.污水高效处理和资源化的固定化微生物技术研究[J].应用基础与工程科学学报. 2002, 10 (5): 30-31.
    [62]张彤,赵庆祥,龚剑丽.固定化微生物脱氮[J].上海环境科学. 2000, 19 (5): 5.
    [63]张玲华,邝哲师,张宝玲.高效硝化细菌的富集与分离.浙江农业学报. 2002, 14(6): 27-28.
    [64]叶正芳,倪晋仁.污水处理的固定化微生物与游离微生物性能的比较[ J].应用基础与工程科学学报, 2002, 10(4): 2.
    [65]森直道ラ.包括固定化法微生物を用いた下水かりの窒素除去技术[J].公害と对策. 1991, 27(11): 104.
    [66]葛文准,荣旻辉.固定化微生物法处理氨氮废水[J].上海环境科学. 1995, 14: 10-13.
    [67]吴士良,钱晖,周亚军.生物化学与分子生物学实验教程[M].北京:科学出版社,2004.48.
    [68]黄诒森,张光毅.生物化学与分子生物学[M].北京:科学出版社. 2008: 348.
    [69] Zhou W, Kageyama K, Li F. et al. Monitoring of microbiological water quality by real-time PCR[J]. Environmental Technology, 2007, 28: 546-547.
    [70]闫志明,普红平,阳立平.生物固定化技术研究及应用评述[J].四川化工. 2004, 7(1):13-15.
    [71]俞勇梅.高氨氮废水亚硝化的研究[硕士论文].上海:上海师范大学. 2000.
    [72]陈娅洁,姚涛,李至荣.包埋固定化硝化菌在不同DO下的硝化规律研究.环境科学与技术[J] . 2006, 29(5): 37-40.
    [73] Nenov V, Kamenski D. Model based study of the first stage of biological nitrification[J]. Environment Modeling&Software. 2004, 30(19): 517-524.
    [74] Anthonisen AC, Loehr RC, P rakasam TBS. Inhibition of nitrification of ammonia and nitrous acid[J]. Journal of Water Pollution Control Fed. 1976, 48(5): 835-852.
    [75] Christian F, M arc B, Philipp H. Biological treatment of ammonium-rich wastewater by partial nitritation and subsequent anaerobic ammonium oxidation (anammox) in a pilot plant [J]. Journal of Biotechnology. 2002, 99: 295-306.
    [76] A beling U, Seyfried C F. Anaerobic-aerobic treatment of high-strengthammonia wastewater-nitro-gen removal via nitrite [J]. Wat1 Sci..Tech. Water Science and Technology. 1992, 26 (5-6): 1007-1015.
    [77]沈耀良,黄勇,赵丹.固定化微生物污水处理技术[M].北京化学工业出版社. 2002, 5: 261-268.
    [78] Masatoshi Matsumura, Hiroshi Tsubota, Osafumi Ito. Development of Bioreactors for Denitrification with Immobilized Cells[J]. Journal of fermentation and bioengineering. 1997, 84(2): 144-150.
    [79] Anthonisen, A.C, Loehr, R.C, Prakasam, T.B.S and Srinath E. G, Inhibition of nitrification by ammonia and nitrous acid[J]. Water Pollution Control. 1976, 48(5): 835-852.
    [80] Alleman, J.E, Elevated Nitrite Occurrence In biological Wastewater Treatment Svstems[J]. Water Sci. and Technol , 1985, 17: 409-419.
    [81]刘超翔,胡洪营,彭党聪.短程硝化反硝化工艺处理焦化高氨废水[J].中国给排水. 2003,10:11.
    [82]黄世文,王玲,王全永.工农业发酵废水生物处理及应用研究进展[J].中国生物防治. 2007,9: 30.
    [83]秦人伟.搞好发酵工业的废水治理.全国乳酸行业研讨会论文集. 2000, 9: 22-25.
    [84]刘丹,栾永翔,陈静静.玉米发酵生产酒精废水处理工艺研究与设计[J].净水技术. 2009, 28(2): 53-56.
    [85]胡向尧.酒精生产技术的回顾与探讨[M].北京:中国食品工业协会. 2002: 99.
    [86]李书红,李敏,邵泽川.酒糟废水治理工艺的研究[J].水处理技术. 2001, 27(4): 8.
    [87]王侠,马振忠,齐振久.玉米酒精糟液厌氧消化工艺比较[J].中国沼气. 2000, 18(1): 33-35.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.