拟除虫菊酯降解酶基因的克隆及酶学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
拟除虫菊酯杀虫剂的大量使用给生态环境和人类健康带来很大的危害,已日益引起世界各国科学家的关注。如何清除环境中拟除虫菊酯杀虫剂残留已成为一个迫切需要解决的问题。农药残留的微生物降解因成本低廉、有效、二次污染小等特点,已成为农药残留生物修复的有效措施。
     本文从一拟除虫菊酯生产厂废水处理系统的活性污泥中分离到1株拟除虫菊酯高效降解菌YZ-1。通过形态学特征、生理生化实验和16S rDNA分子进化分析,将菌株YZ-1鉴定为人苍白杆菌(Ochrobactrum anthropi)。
     菌株YZ-1在液体培养基中的最适降解条件为30℃、pH7.0和2.0%的接种量。在此条件下6天内可将50mg/L的高效氯氟氰菊酯降解84%。菌株YZ-1可耐受并降解400mg/L的高效氯氟氰菊酯。添加葡萄糖、蔗糖和酵母提取物等外加碳氮源后,菌株YZ-1对高效氯氟氰菊酯的降解率分别提高到97%,97%和89%;除高效氯氟氰菊酯外,YZ-1还可有效降解多种菊酯类杀虫剂及其中间代谢产物3-苯氧基苯甲酸。代谢产物的薄层层析分析表明,在高效氯氟氰菊酯的降解过程中有3-苯氧基苯甲酸产生。
     为克隆拟除虫菊酯水解基因,构建了菌株YZ-1的基因组文库。在所构建的基因组文库中大约产生了12,000个转化子。通过三步筛选策略获得一个具有菊酯降解活性的阳性转化子,将其命名为ZY-I。测序结果的ORF分析表明,重组质粒中插入片段包含两个ORFs。亚克隆后的功能分析显示仅ORF1具有拟除虫菊酯水解功能,将其命名为pytY。
     pytY基因与Ochrobactrum anthropi ATCC49188中一个假定的酯酶有85%的相似性,而与其它酯酶序列相似性约为30-46%。蛋白家族和保守结构域分析表明,PytY属于酯酶家族,具有典型的“Gly-X-Ser-X-Gly”保守五肽结构。pytY基因与已报道菊酯降解基因在序列上相似性极低,是一个新的菊酯水解酯酶基因,在GenBank中的登录号为JQ025998。
     重组PytY蛋白在30℃时经1mmol/L IPTG诱导实现了高水平表达。SDS-PAGE分析显示在42kDa处出现了特异表达的蛋白条带。表达蛋白经Western Blot验证为诱导表达的特异蛋白。纯化的PytY重组蛋白最适反应温度为35℃,在20-45℃的温度范围内可有效降解高效氯氟氰菊酯,在15-35℃范围较稳定,保温2h后其剩余的相对酶活力均大于80%。PytY在pH6.0-8.0内均可有效降解拟除虫菊酯,最适反应pH为7.5。Na+和Fe2+对酶活性无明显的作用,Mg2+对酶活性有一定的促进作用。K+和Zn2+对酶活性表现出轻微抑制,而Ag+和Hg2+对酶活力产生了强烈的抑制作用。表面活性剂Tween-20和Tween-80对PytY的活性有一定的促进作用。SDS,丝氨酸蛋白酶抑制剂PMSF和组氨酸修饰物DEPC对降解酶的活性有强烈的抑制作用。螯合剂EDTA和1,10-phenanthroline对酶活性的影响不明显。当以高效氯氟氰菊酯为底物时,纯化PytY的Km=2.34mmol/L,最大反应速率Vmax=56.32nmol/min。
Pyrethroids pesticides are widely used throughout the world. With the extensive use of this kind ofpesticides, their residuals have caused some negative impact on ecological environment and humanhealth. Great concerns have been raised about the persistence and degradation of pyrethroids pesticidesresiduals in environment. Therefore, it is urgent to develop an efficient strategy to eliminate pyrethroidsresiduals. In biodegradation of pesticides, microbial degradation is economical, efficient and with fewbyproducts and has become the research focus in degradation of pesticides residuals.
     Strain YZ-1capable of degrading pyrethroids was isolated by enrichment procedure from activatedsludge, which was collected from wastewater treatment system of a pyrethroids manufactory. On thebasis of morphological characteristics, Biolog test and16S rDNA gene sequence analysis,strain YZ-1was identified as Ochrobactrum anthropi.
     In liquid medium, the optimal degrading condition was of30℃, pH7.0and2.0%inoculum size.84%of lambda-cyhalothrin was degraded after6days of incubation under this optimized condition.Strain YZ-1could endure high concentration of lambda-cyhalothrin and grow well in MSM containing400mg/L of lambda-cyhalothrin. The degrading ability of strain YZ-1was enhanced obviously withadditional carbon or nitrogen source. In the presence of glucose, sucrose and yeast extract, degradationof lambda-cyhalothrin were increased to97%,97%和89%, respectively. YZ-1was a broad-spectrumdegrading isolate and was able to degrade beta-cypermethrin, beta-cyfluthrin, permethrin anddaltamethrin except lambda-cyhalothrin.3-phenoxybenzoic acid, a major metabolite of pyrethroids, wasalso degraded by strain YZ-1. Thin layer chromatography analysis of metabolite indicated the produceof3-phenoxybenzoic acid during the degradation of lambda-cyhalothrin.
     In order to clone the pyrethroid-degrading gene, genomic library of strain YZ-1was constructed.Approximate12,000clones were generated in constructed library. The library was screened with athree-step strategy for the target gene. As a result of final screening, one clone which showedpyrethroids degrading ability was obtained and designed as ZY-I. ORF analysis revealed that there weretwo ORFs in recombinant plasmid of ZY-I. These two ORFs were subcloned for functional verification,respectively. Only ORF1was capable of degrading pyrethroids and was named pytY.
     Blast search indicated that pytY shared the highest similarity of85%with a putative esterase fromOchrobactrum anthropi ATCC49188, but30-46%similarity to some other esterases. pytY belonged toesterase family and possessed esterase conserved domain. Multiple sequence alignment with relatedesterase sequences revealed that PytY had typical pentapeptide structure of “Gly-X-Ser-X-Gly”. pytYshowed no sequence similarity with reported pyrethroids degrading gene. It was proved a newpyrethroid-degrading gene with the accession number JQ025998in GenBank.
     The recombinant protein PytY was expressed at a high level after induction with1mmol/L IPTG at30℃. Purified PytY showed a single band on SDS-PAGE with an approximate molecular mass of42kDa. PytY was a protein of specific expression and was confirmed by Western Blot. The optimaltemperature was35℃and more than80%relative activity was remained after keeping2h at each temperature in the range of15-35℃. The optimal pH was7.5and degradation could be performedefficiently in pH range of6.0-8.0. Na+and Fe2+had no effect on enzyme activity. Mg2+promoteddegradation a little. K+and Zn2+could inhibit enzyme activity slightly, but Ag+and Hg2+had a stronginhibitory effect. To some extent, Tween-20and Tween-80increased enzyme activity. However, SDS,PMSF and DEPC showed intense inhibition. Chelating agent EDTA and1,10-phenanthroline had noobvious effect on enzyme activity. Km and Vmax values of purified PytY were2.34mmol/L and56.32nmol/min respectively when lambda-cyhalothrin was used as substrate.
引文
1.陈宗懋.乌龙茶和花茶中的农药残留问题.福建茶叶,2000,4:2-4.
    2.陈少华,罗建军,胡美英,赖开平,耿鹏,肖盈.一株拟除虫菊酯农药降解菌的分离鉴定及其降解特性与途径.环境科学学报,2011,31(8):1616-1626.
    3.程池,杨梅,李金霞,姚粟,胡海蓉. Biolog微生物自动分析系统-细菌鉴定操作规范的研究.食品与发酵工业,2006,32(5):50-54.
    4.贺天祥.新一代菊酯杀虫剂-高效氯氟氰菊酯.江西果树,1996,3:33-34.
    5.华纯.拟除虫菊酯类农药的进展和剂型.世界农药,2009,31(5):39-42.
    6.李海屏.杀虫剂新品种开发进展及特点.江苏化工,2004,32(1):6-11.
    7.李海屏.世界化学杀虫剂新品种开发进展及特点.农业科学技术,2003,5:32-33.
    8.刘君寒,王兆守,何健,王保站,李顺鹏.一株氯氰菊酯降解菌的分离和鉴定.南京农业大学学报,2007,30(3):68-72.
    9.刘玉焕,钟英长.真菌降解有机磷农药乐果的研究.环境科学学报,2000,20(1):95-99.
    10.吴文君,罗万春.农药学.北京:中国农业出版社,2008,12-15.
    11.吴文君,罗万春.农药学.北京:中国农业出版社,2008,45-46.
    12.王兆守,林淦,李秀仙,梁小虾,尤民生.福建农林大学学报,2003,32(2):176-180.
    13.王镜岩,朱圣庚,徐长法.生物化学.北京:高等教育出版社,2002,378-379.
    14.吴乃虎.基因工程原理.北京:科学出版社,1998,305-309.
    15.吴乃虎.基因工程原理.北京:科学出版社,1998,221-224.
    16.许育新,李晓慧,张明星,崔中利,李顺鹏.红球菌CDT3降解氯氰菊酯的特性及途径.中国环境科学,2005,25(4):399~402.
    17.虞云龙,盛国英,傅家谟,宋凤鸣,郑重,葛秀春,陈鹤鑫,樊德方.一株农药降解菌的分离与鉴定.华南理工大学学报,1996,24:183-187.
    18.詹鸿华,黄孔华,杨泗海.甲氰菊酯污染水源引起中毒事件的调查分析.医学动物防治,1999,15(5):267-269.
    19.张颖,袁爱华.农药环境污染及低毒农药研究进展.安徽农业科,2010,38(29):16284-16289.
    20.张战泓,罗源华,刘勇,张松柏,张德咏,罗香文.一株光合细菌分离鉴定及其降解甲氰菊酯特性.湖南农业大学学报,自然科学版,2009,35(4):417-419.
    21.张玲玲,崔德杰,洪永聪,马帅.氯氰菊酯降解放线菌的分离与筛选.青岛农业大学学报,2008,25(4):280-284.
    22. Aemenante PM, Fava F, Kafkewitz. Effect of yeast extract on growth kinetics during aerobicbiodegradation of chlorobenzoic acids. Biotechnol Bioeng1995,47(2):227-233.
    23. Aislabie J, Lloyd-Jones G. A review of bacterial degradation of pesticides. Aust J Soil Res1995,33:925-942.
    24. Al-Makkawy HK, Magdy DM. Persistence and accumulation of some organic insecticides in Nilewater and fish. Resour Conserv Recy1999,27:105-115.
    25. Alexander M. Biodegradation of chemicals of environmental concern. Science1981,211(4478):132-138.
    26. Alexander M. Pollutant that resist the microbes. New Scientist1967,31:439-440.
    27. Anwar S, Liaquat F, Khan QM, Khalis ZM, Iqbal S. Biodegradation of chlorpyrifos and itshydrolysis product3,5,6-trichloro-2-pyridinol by Baccillus pumilus strain C2A1. J Hazard Mater2009,168(1):400-405.
    28. Assaf NA, Turco RF. Accelerated biodegradation of atrazine by a microbial consortium is possiblein culture and soil. Biodegradation1994,5:29-35.
    29. Athanasopoulos PE, Kyriakidis NV, Stavropoulos P. A study on the environmental degradation ofpesticides azinphos methyl and parathion methyl. J Environ Sci Health2004,39(2):297-309.
    30. Aziz CE, Georgiou G, Speitel GE. Cometabolism of chlorinated solvents and binary chlorinatedsolvent mixtures mixtures using M.trichosporium OB3b PP358. Biotechnol Bioeng1999,65(1):100-107.
    31. Barr DP, Augst SD. Pollutant degradation by white rot fungi. Rev Environ Contam Toxicol1994,138:49-72.
    32. Bennett ER, Moore MT, Cooper CM, Smith S, Shields FD, Drouillard KG, Schulz R. Vegetatedagricultural drainage ditches for the mitigation of pyrethroid-associated runoff. Environ ToxicolChem2005,24:2121-2127.
    33. Bouldin JL, Farris JL, Moore MT, Smith JS, Cooper CM. Hydroponic uptake of atrazine andlambda-cyhalothrin in Juncus effusus and Ludwigia peploides. Chemosphere2006,65:1049–1057.
    34. Bouldin JL, Farris JL, Moore MT, Smith SJr, Stephens WW, Cooper CM. Evaluated fate andeffects of atrazine and lambda-cyhalothrin in vegetated and unvegetated microcosms. EnvironToxicol2005,20(5):487-498.
    35. Brown DG, Bodenstein OF, Norton SJ. New potent pyrethroid, bromethrin. J Agric Food Chem1973,21(5):767-769.
    36. Cao Z, Shafer TJ, Crofton KM, Gennings C, Murray TF. Additivity of pyrethroid actions onsodium influx in cerebrocortical neurons in primary culture. Environ Health Perspect2011,119(9):1239-46.
    37. Cao SG, Feng Y, Liu ZB, Ding ZT, Cheng PR. Lipase catalysis in organic solvents. Appl BiochemBiotechnol1992,32:7-13.
    38. Caracciolo B, Bottoni P, Crobe A, Fava L, Funari E, Giuliano G, Silvestri. Microbial degradtion oftwo carbamate insecticides and their main metabolites in soil. Chem Ecol2002,18:245-255.
    39. Casida JE. Pyrethrum flowers and pyrethroid insecticides. Environ Health Perspect1980,34:189-202.
    40. Casida JE, Quistad GB. Golden age of insecticide research: past, present, or future. Annu RevEntomol1998,43:1-16.
    41. Chen SH, Lai KP, Li YN, Hu MY. Biodegradation of deltamethrin and its hydrolysis product3-phenoxybenzaldehyde by a newly isolated Streptomyces aureus strain HP-S-01. Appl MicrobiolBiotechnol2011,90(4):1471-1483.
    42. Chen S, Alexander M. Reasons for the acclimation of2,4-D biodegradation in lake water. JEnviron Qual1989,18(2):153-156.
    43. Chen SH, Hu MY, Liu JJ, Zhong GH, Yang, L, Rizwan-ul-Haq M, Han HT. Biodegradation ofbeta-cypermethrin and3-phenoxybenzoic acid by a novel Ochrobactrum lupini DG-S-01. J HazardMater2011,187(3):433-440.
    44. Cheng TC, Harvey SP, Chen GL. Cloning and expression of a gene encoding a bacterial enzymefor decontamination of organophosphorus nerve agents and nucleotide sequence of the enzyme.Appl Environ Microbiol1996,62(5):1636-1641.
    45. Coats JR, Symonik DM, Bradbury SP, Dyer SD, Timson LK, Atchison GJ. Toxicology of syntheticpyrethroids in aquatic organisms: An overview. Environ Toxicol Chem1989,8(8):671-679.
    46. Comeau Y, Greer CW, R. Samson R. Role of inoculum preparation and density on thebioremediation of2,4-D-contaminated soil by bioaugmentation. Appl Microbiol Biotechnol1993,38(5):681-687.
    47. Cowley GT, Lichtenstein EP. Growth inhibition of soil fungi by insecticides and annulment ofinhibition by yeast extract or nitrogenous nutrients. J Gen Microbiol1970,62:27-34.
    48. Cycon M, Wojcik M, Piotrowska-Seget Z. Biodegradation of the organophosphorus insecticidediazinon by Serratia sp. and Pseudomonas sp. and their use in bioremediation of contaminated soil.Chemosphere2009,76(4):494-501.
    49. Cygler M, Grochulski P, Schrag JB. Structural determinants defining common stereoselectivity oflipases toward secondary alcohols. Can J Microbiol1995,41:289-296.
    50. David ER, Jeffrey RF. A measurement of the neurotoxicity of pyrethroid insecticides. PharmacolTher2006,111:174-193.
    51. Demoute JP. A brief review of the environmental fate and metabolism of pyrethroids. Pestic Sci1989,27(4):375-385
    52. Devos D, Valencia A. Intrisic errors in genome annotation. Trends Genet2001,17(8):429-431.
    53. Elliott M, Janes NF. Synthetic pyrethroids-a new class of insecticide. Chem Soc Rev1978,7:473-505.
    54. Elliott M, Farnham AW, Janex NF, Needham PH, Pulman DA. Potent pyrethroid insecticides frommodified cyclopropane acids. Nature1973,244:456–457.
    55. Feng XH, Li-Tse O, Ogram A. Plasmid-mediation mineralization of carbofuran by Sphingomonassp. strain CF06. Appl Environ Microbiol1997,63(4):1332-1337.
    56. Fetoui H, Makni M, Garoui EM, Zeghal N. Toxic effects of lambda-cyhalothrin, a syntheticpyrethroid pesticide, on the rat kidney: Involement of oxidative stress and protective role ofascorbic acid. Exp Toxicol Pathol2010,62:593-599.
    57. Garrity GM, Brenner DJ, Krieg NR, Staley JT. Bergey’ manual of systematic bacteriology. Theprobacteria, Part B. USA: Springer,2005,389-392.
    58. Girbal L, Rols JL, Lindley ND. Growth rate influences reductive biodegradation of theorganophosphorus pesticide demeton by Corynebacterium glutamicum. Biodegradation2000,11(6):371-376.
    59. Giri S, Sharma GD, Giri A, Prasad B. Fenvalerate-induced chromosome aberrations and sisterchromatid exchanges in the bone marrow cells of mice in vivo. Mutat Res2002,520:125-132.
    60. Glogauer A, Martini VP, Faoro H, Couto GH, Muller-Santos M, Monteiro RA, Mitchell DA, SouzaEMD, Pedrosa FQ, Krieger N. Identification and characterization of a new true lipase isolatedthrough metagenomic approach. Microb Cell Fact2001,10:54.
    61. Guo P, Wang BZ, Hang BJ, Li L, Ali SW, He J, Li SP. Pyrethroid-degrading Sphingobium sp. JZ-2and the purification and characterization of a novel pyrethroid hydrolase. Int Biodeterior Biodegrad2009,63(8):1107-1112.
    62. Halden RU, Tepp SM, Halden BG, Dwyer DF. Degradation of3-phenoxybenzoic acid in soil byPseudomonas pseudoalcaligenes POB310(pPOB) and two modified Pseudomonas strains. ApplEnviron Microbiol1999,65(8):3354-3359.
    63. Hapeman-Somich CJ. Mineralization of pesticide degradation products. Pesticide TransformationProducts1991,459:133-147.
    64. Hemingway J, Hawkes NJ, McCarroll L, Ranson H. The molecular basis of insecticide resistancein mosquitoes. Insect Biochem Mol Biol2004,34(7):653-665.
    65. Henderson KL, Belden JB, Coats JR. Mass balance of metolachlor in a grassed phytoremediation.Environ Sci Technol2007,41:4084–4089.
    66. Horvath RS. Microbial co-metabolism and the degradation of organic compounds in nature.Bacteriol Rev1972,36(2):146-155.
    67. Horvath RS. Cometabolism of the herbicide2,3,6-trichlorobenzoate by natural microbialpopulations. Bull Environ Contam Toxicol1972,7(5):273-276.
    68. Housset P, Dickmann R. A promise fulfilled-pyrethroid development and the benefits foragriculture and human health. Bayer CropSci J2009,62(2):135-145.
    69. Hutber GN, Rogers LJ, Smith AJ. Influence of pesticides on the growth of cyanobacteria. J BasicMicrobiol1979,19(6):397-402.
    70. Jacques Y, Romey G, Cavey MT, Kartalovski B, Lazdunski M. Interaction of pyrethroids with theNa+channel in mammalian neuronal cell in culture. Biochimica et biophysica actabba-bioembranes1980,600(3):882-897.
    71. Jilani S, Khan MA. Isolation, characterization and growth response of pesticides degradingbacteria. J Biol Sci2004,4(1):15-20.
    72. Johnson RM, Wen Z, Schuler MA, Berenbaum MR. Mediation of pyrethroid insecticide toxicity tohoney bees (Hymenoptera: Apidae) by cytochrome P450monooxygenases. J Economic Entomol2006,99(4):1046-1050.
    73. Joshi T, Xu D. Quantitative assessment of relationship between sequence similarity and functionsimilarity. BMC Genomics2007,8:222.
    74. Kang DG, Kim JYH, Cha HJ. Enhanced detoxification of organophosphates using recombinantEscherichia coli with co-expression of organophosphorus hydrolase and bacterial hemoglobin.Biotechnol Lett2002,24:879-883.
    75. Karpouzas DG, Walker A. Factors influencing the ability of pseudomonas putida strains epI andepII to degrade the organophosphate ethoprophos. J Appl Microbiol2000,89(1):40-48.
    76. Katsuda Y. Development of and future prospects for pyrethroid chemistry. pestic Sci1999,55:775-782.
    77. Kawada H, Dida GO, Ohashi K, Komagata O, Kasai S, Tomita T, Sonye G, Maekawa Y, MwateleC, Njenga SM, Mwandawiro C, Minakawa N, Takagi M. Multimodal pyrethroid resistance inmalaria vectors, Anopheles gambiae s.s., Anopheles arabiensis, and Anopheles funestus s.s., inwestern Kenya. PLoS One2011,6(8): e22574. doi:10.1371/journal.pone.0022574.
    78. Khalameyzer V, Fischer I, Boranscheuer T, Altenbuchner J. Screening, nucleotides sequence, andbiochemical characterization of an esterase from Pseudomonas fluorescens with high activitytowards lactones. Appl Environ Microbiol1999,65(2):477-482.
    79. Kolaczinski JH, Curtis CF. Chronic illness as a result of low-level exposure to synthetic pyrethroidinsecticides: a review of the debate. Food Chem Toxicol2004,42(5):697706.
    80. Krumme ML, Boyd SA. Reductive dechlorination of chlorinated phenols in anaerobic upflowbioreactors. Water Res1988,22(2):171-177.
    81. Kumar M, Philip L. Enrichment and isolation of a mixed bacterial culture for completemineralization of endosulfan. J Envioren Sci Health Part B2006,41:81-96.
    82. Levanon D. Roles of fungi and bacteria in the mineralization of the pesticides atrazine, alachlor,malathion and carbofuran in soil. Soil Biol Biochem1993,25(8):1097-1105.
    83. Li G, Wang K, Liu YH. Molecular cloning and characterization of a novel pyrethroid-hydrolyzingesterase originating from the Metagenome. Microb Cell Fact2008,7:38.
    84. Liang WQ, Wang ZY, Li H, Wu PC, Hu JM, Liu YH. Purification and characterization of a novelpyrethroid hydrolase from Aspergillus niger ZD11. J Agric Food Chem2005,53(19):7415-7420.
    85. Lin QS, Chen SH, Hu MY, Ulhaq MR, Yang L, Li H. Biodegradation of cypermethrin by a newlyisolated Actinomycetes HU-S-01form wastewater sludge. Int J Environ Sci Tech2011,8(1):45-46.
    86. Liu N, Yue X. Insecticide resistance and cross-resistance in the house fly (Diptera: Muscidae). JEconomic Entomol2000,93(4):1269-1275.
    87. Liu P, Liu Y, Liu QX, Liu JW. Photodegradation mechanism of deltamethrin and fenvalerate. JEnviron Sci2010,22(7):1123-1128.
    88. Loh KC, Tar PP. Effect of additional carbon sources on biodegradation of phenol. Bull EnvironContam Toxicol2000,64(6):756-763.
    89. Magdoub MNI, Fayed AE, El-Shenawy MA. Persistence of fenvalerate pyrethroid in milk inrelation to lactic acid bacteria. Egyp J Dairy Sci1989,17(2):217-225.
    90. Maloney SE, Maule A, Smith AR. Microbial transformation of the pyrethoid insecticides:permethrin, deltamethrin, fastac, fenvalerate, and fluvalinate. Appl Environ Microbiol1988,54(11):2874-2876.
    91. Maloney SE, Maule A, Smith AR. Transformation of synthetic pyrethroid insecticides by athermophilic Bacillus sp. Arch Microbiol1992,158(4):282-286.
    92. Maloney SE, Maule A, Smith ARW. Purification and preliminary characterization of permethrinasefrom a pyrethroid-transforming strain of bacillus cereus. Appl Environ Microbiol1993,59(7):2007-2013.
    93. Mandar Paingankar, Manish Jain, Dileep Deobagkar. Biodegradation of allethrin, a pyrethroidinsecticide, by an Acidomonas sp. Biotechnol Lett2005,27:1909-1913.
    94. Marchler-Bauer A, Anderson JB, Chitsaz F. CDD: specific functional annotation with theconserved domain database. Nucleic Acids Research2009,37:205-210.
    95. Mikesell MD, Boyd SA. Complete reductive dechlorination and mineralization ofpentachlorophenol by anaerobic microorganisms. Appl Environ Microbil1986,52(4):861-865.
    96. Miyamoto J, Suzuki T, Nakae C. Metabolism of phenothrin or3-phenoxybenzyld-trans-chrysanthemumate in mammals. Pestic Biochem Physiol1974,4(4):438-450.
    97. Moore MT, Bennett ER, Cooper CM, Smith S, Shields FD, Milam CD, Farris JL. Transportand fateof atrazine and lambda-cyhalothrin in an agricultural drainage ditch in the Mississippi Delta, USA.Agric Ecosyst Environ2001,87(3):309–314.
    98. Morolli C, Quaglo F, Rocca GD, Malvisi J, Disalvo A. Evaluation of the toxicity of syntheticpyrethroids to red swamp crayfish (Procambarus clarkia, Girard1852) and comman carp (Cyprinuscarpio, L.1758). Bull Fr Peche Piscic2006,380:1384-1394.
    99. Munhenga G, Masendu HT, Brooke BD, Hunt RH, Koekemoer LK. Pyrethroid resistance in themajor malaria vector Anopheles arabiensis from Gwave, a malaria-endemic area in Zimbabwe.Malar J2008,7:247.
    100. Murugesan AG, Jeyasanthi T, Maheswari S. Isolation and characterization of cypermethrin utilizingbacteria from brinjal cultivated soil. Afr J Microbiol Res2010,4(1):010-013.
    101. Novick NJ, Alexander M. Cometabolism of low concentrations of propachlor, alachlor, andcycloate in sewage and lake water. Appl Environ Microbiol1985,49(4):737-743.
    102. Pahm MA, Alexander M. Selecting inocula for the biodegradation of organic compounds at lowconcentrations. Microbial Ecol1993,25:275-286.
    103. Paingankar M, Jain M, Deobagkar D. Biodegradation of allethrin, a pyrethroid insecticide, by anAcidomonas sp. Biotechnol Lett2005,27:1909-1913.
    104. Park JT, Rollings JE. Biopolymeric substrate structural effects of а-amylase-catalysed amylosedepolymerization. Enzyme and microbial technology1989,11(6):334-340.
    105. Parkin TB. Modeling environmental effects on enhanced carbofuran degradation. Pestic Sci1994,40:163-168.
    106. Patal MN, Gopinathan KP. Lysozyme-sensitive bioemulsifier for immiscible organophosphoruspesticides. Appl Environ Microbiol1986,52:1224-1226.
    107. Qoronfleh MW, Ho T. A modified pET vector that augments heterologous protein expression.Biotechnol Lett1993,15(4):337-340.
    108. Ramadan MA, El-Tayeb OM, Alexander M. Inoculum size as a factor limiting success ofinoculation for biodegradation. Appl Environ Microbiol1990,56(5):1392-1396.
    109. Ramos JL, Duque E, Gallegos MT, Godoy P, Ramos-Gonzalez MI, Rojas A, Teran W, Segura A.Mechanism of solvent tolerance in Gram-negative bacteria. Annu Rev Microbiol2002,56:743-768.
    110. Rani MS, Lakshmi KV, Devi PS, Madhuri RJ, Aruna S, Jyothi K, Narasimha G, Venkateswarlu K.Isolation and characterization of a chlorpyrifos degrading bacterium from agricultural soil and itsgrowth response. Afr J Microbiol Res2008,2:26-31.
    111. Reddy GVB, Joshi DK, Gold MH. Degradation of chlorophenoxyacetic acids by thelignin-degrading fungus Dichomitus squalens. Microbiology1993,143:2353–2360.
    112. Roma-Rodriques C, Santos PM, Benndorf D, Sa-Correia I. Response of Pseudomonas putidaKT2440to phenol at the membrane proteome. J Proteomics2010,73(8):1461-1478.
    113. Saikia N, Gopal M. Biodegradation of beta-cyfluthrin by fungi. J Agric Food Chem2004,52(5):1220-1223.
    114. Saikia N, Das SK, Patel BK, Niwas R, Singh A, Gopal M. Biodegradation of beta-cyfluthrin byPseudomonas stutzeri strain S1. Biodegradation2005,16:581-589.
    115. Serdar CM, Gibson DT. Enzymatic hydrolysis of organophosphates: cloning and expression of aparathion hydrolase gene from Pseudomonas diminuta. Nat Biotechnol1985,3:567-571.
    116. Shimabukuro RH. Detoxification of herbicides. Weed Physiol1985,2:215-240.
    117. Simone GD, Menchise V, Manco G, Mandrich L, Sorrentino N, Lang D, Rossi M, Pedone C. Thecrystal structure of a hyper-thermophilic carboxylesterase form the archaeon Archaeoglobusfulgidus. J Mol Biol2001,314(3):507-518.
    118. Singh DK. Biodegradation and bioremediation of pesticide in soil: concept, method and recentdevelopments. Indian J Microbiol2008,48:35-40.
    119. Singh N, Sethunathan N. Degradation of soil-sorbed carbofuran by an enrichment culture fromcarbofuran-retreated Azolla plot. J Agric Food Chem1992,40:1062-1065.
    120. Singh BK, Walker A, Morgan JAW, Wright DJ. Biodegradation of chlorpyrifos by Enterobacterstrain B-14and its use in bioremediation of contaminated soil. Appl Environ Microbiol2004,70(8):4855-4863.
    121. Singh BK, Walker A, Morgan JAW, Wright DJ. Effects of soil pH on the biodegradation ofchlorpyrifos and isolation of a chlorpyrifos-degrading bacterium. Appl Environ Microbiol2003,69(9):5198-5206.
    122. Singh BK, Walker AW, Wright D. Bioremedial potential of fenamiphos and chlorpyrifos degradingisolates: Influence of different environmental conditions.Soil Biol Biochem2006,38:2682-2693.
    123. Sambrook J, Russell DW. Molecular Cloning: A Laboratory Manual. New York: Cold SpringHarbor Laboratory,2001,1228-1232.
    124. Sogorg MA, Vilanona E. Enzymes involved in the detoxification of organophosphorus, carbamateand pyrethroid insecticides through hydrolysis. Toxicol Lett2002,128(3):215-228.
    125. Stock JE, Huang HZ, Jones PD, Wheelock CE, Morisseau C, Hammock BD. Identification,expression, and purification of a pyrethroid-hydrolyzing carboxylesterae from mouse livermicrosomes. J Biol Chem2004,279(28):29863-29869.
    126. Sun H, Xu XL, Xu LC, Song L, Hong X, Chen JF, Cui LB, Wang XR. Antiandrogenic activity ofpyrethroid pesticides and their metabolite in reporter gene assay. Chemosphere2006,66(3):474-479.
    127. Suzuki TJ. Methylation and hydroxylation of pentachlorophenol by Mycobacterium sp. isolatedfrom soil. J Pestic Sci1983,8:419–428.
    128. Suzuki T, Miyamoto J. Purification and properties of pyrethroid carboxyesterase in rat livermicrosome. Pestic Biochem Physiol1978,8(186):186-198.
    129. Tallur PN, Megadi VB, Ninnekar HZ. Biodegradation of cypermethrin by Micrococcus sp. strainCPN1. Biodegradation,2008,19:77-82.
    130. Tamura K, Dudley J, Nei M, Kumar S. MEGA4: molecular evolutionary genetics analysis (MEGA)software version4.0. Mol Biol Evol2007,24(8):1596-1599.
    131. Thompson JD, Higgins DG, Gibson TJ. CLUSTL W: improving the sensitivity of progressivemultiple sequence alignment through sequence weighting, position-specific gap penalties andweight matrix choice. Nucleic Acids Res1994,22(22):4673-4680.
    132. Trainer VL, McPhee JC, Boutelet-Bochan H, Baker C, Scheuer T, Babin D, Demoute JP, Guedin D,Catterall WA. High affinity binding of pyrethroids to the alpha subunit of brain sodium channels.Mol Pharmacol1997,51(4):651-657.
    133. Topp E, Akhtar MH. Identification and characterization of a pseudomonas strain capable ofmetabolizing phenoxybenzoates. Appl Environ Microbiol1991,57(5):1294-1300.
    134. Vais H, Williamson MS, Devonshire AL, Usherwood PN. The molecular interactions of pyrethroidinsecticides with insect and mammalian sodium channels. Pest Manag Sci2001,57(10):877-888.
    135. Velmurugan B, Selvanayagam M, Cengiz EI, Unlu E. Histopathology of lambda-cyhalothrin ontissues (gill, kidney, liver and intestine) of cirrhinus mrigala. Environ Toxicol Pharmacol2007,24:286-291.
    136. Viran R, Erko Fü, Polat H, Ko ak O. Investigation of acute toxicity of deltamethrin on guppies(Poecilia reticulata). Ecotoxicol Environ Saf2003,55:82-85.
    137. Wang YS, Madsen EL, Alexander M. Microbial degradation by mineralization or cometabolismdetermined by chemical concentration and environment. J Agric Food Chem1985,33(33):495-499.
    138. Wang GL, Zhang J, Wang L, Liang B, Chen K, Li SP, Jiang JD. Cometabolism of DDT by thenewly isolated bacterium, Pseudoxanthomonas sp. WAX. Braz J Microbiol2010,41:431-438.
    139. Wang BZ, Guo P, Hang BJ, Li L, He J, Li SP. Cloning of a novel pyrethroid-hydrolyzingcarboxylesteras gene from Sphingobium sp. JZ-1and characterization of the gene product. ApplEnviron Microbiol2009,75(17):5496-5500.
    140. Wedemeyer G. Dechlorination of1,1,1-trichloro-2,2-bis (p-chlorophenyl) ethane by Aerobacteraerogenes. I. metabolic products. Appl Microbiol1967,15:569-574.
    141. Wilson KH, Blitchington RB, Greene RC. Amplification of bacterial16S ribosomal DNA withpolymerase chain reaction. J Clin Microbiol1990,28(9):1942-1946.
    142. Wu PC, Liu YH, Wang ZY, Zhang XY, Li H, Liang WQ, Luo N, Hu JM, Lu JQ, Luan TG, Cao LX.Molecular cloning, purification, and biochemical characterization of a novelpyrethroid-hydrolyzing esterase from Klebsiella sp. strain ZD112. J Agric Food Chem2006,54(3):836-842.
    143. Xie S, Liu JX, Li L, Qiao CL. Biodegradation of malathion by Acinetobacter johnsonii MA19andoptimization of cometabolism substrates. J Environ Sci2009,21:76-82.
    144. Xie WJ, Zhou JM, Wang HY, Chen XQ. Effect of nitrogen on the degradation of cypermethrin andits metabolite3-phenoxybenzoic acid in soil. Pedosphere2008,18(5):638-644.
    145. Xu GM, Zheng W, Li YY, Wang SH, Zhang JS, Yan YC. Biodegradation of chlorpyrifos and3,5,6-trichloro-2-pyridinol by a newly isolated Paracoccus sp.strain TRP. Int Biodeterior Biodegr2008,62(1):51-56.
    146. Yamamoto BI. Mode of action of pyrethroids, nicotinoids, and rotenoids. Annu Rev Entomol1970,15:257-272.
    147. Yang CR, Jian JZ. Recent advance in biodegradation in China: New microorganism and pathway,biodegradation engineering, and bioenergy from pollutant biodegradation. Process Biochem2010,45:1937-1943.
    148. Yoshio Katsuda. Development of and future prospects for pyrethroid chemistry. Pestic Sci,1999,55:775-782.
    149. Yousef MI. Vitamin E modulates reproductive toxicity of pyrethroid lambda-cyhalothrin in malerabbits. Food Chem Toxicol2010,48:1152-1159.
    150. Zaidi BR, Imam SH, Greene RV. Accelerated Biodegradation of high and low concentrations ofp-Nitrophenol (PNP) by bacterial inoculation in industrial wastewater: The role of inoculun size onacclimation period. Curr Microbiol1996,33(5):292-296.
    151. Zhang ZY, Wang DL, Chi ZJ, Liu XJ, Hong XY. Acute toxicity of organophosphorus andpyrethroid insecticides to Bombyx mori. J Econ Entomol2008,101(2):360-364.
    152. Zhang C, Wang SH, Yan YC. Isomerization and biodegradation of beta-cypermethrin byPseudomonas aeruginosa CH7with biosurfactant production. Bioresour Technol2011,102:7139-7146.
    153. Zhang C, Jia L, Wang SH, Qu J, Li K, Xu LL, Shi YH, Yan YC. Biodegradation ofbeta-cypermethrin by two Serratia spp. with different cell surface hydrophobicity. BioresourTechnol2010,101:3423-3429.
    154. Zhao XH, He J, Wang JN, Song YM, Geng GX, Wang JH. Biodegradtion of swainsonine byAcinetobacter calcoaceticus strain YLZZ-1and its isolation and identification. Biodegradation2009,20(3):331-338.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.