镁合金在中性镀液中直接化学镀Ni-P工艺及镀层性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁及镁合金(如AZ91D)具有密度小、比强度高、尺寸稳定性好及良好的磁屏蔽性等一系列特性,正成为现代高新技术领域中最有希望的材料,其性能优于铝基合金。它以其优异的力学性能、物理性能已经广泛应用于航空航天、汽车工业、电子工业等领域。然而,镁合金的耐蚀性和耐磨性差使其应用受到了制约。如何解决这个问题,一直是人们所关注的课题。化学镀镍是近年来广泛运用的一种表面处理方法,其镀层具有结构致密、厚度均匀、硬度高、耐蚀耐磨性好等优点。但在镁合金化学镀镍的工艺中,酸性和碱性镀液都会对镁合金基体造成严重的腐蚀,直接影响镀层的性能。因此,怎么样减小镀液对基体的腐蚀是一个很重要的研究方向,然而对镁基体腐蚀较小的中性化学镀液报道却不多。本文研究了PH值为6.5~7的中性镀液中的镁合金化学镀Ni-P的工艺、镀层性能和相结构,并且在前处理液中没有加入CrO_3,不会产生对人体有害的Cr~(6+),减轻了对环境的压力。
     本文研究了无铬预处理和中性镀液中化学镀Ni-P合金工艺,利用金相显微镜和Axiovert25CA(Zeiss)光学图像分析仪观察镀层的组织和表面形貌及其显微组织,发现镀层表面呈球胞状堆积,胞与胞之间结合较紧密,大胞由若干个“变形”的小胞组成。用WS-97型声发射划痕仪进行划痕试验测定镀层的结合强度,可以看出镁合金基体上化学镀Ni-P镀层的F_c大约为40-60N,镀层与基体结合良好。用电子天平称重并计算镀速,发现主盐浓度、还原剂的浓度、络合剂和温度都会影响镀层的沉积速度。用GDS(辉光放电光谱分析仪)测定镀层成分分布和X射线衍射(XRD)检测相结构,得出镀层磷含量在9.5%~11%之间,X射线衍射分析曲线呈“馒头”状,具有典型非晶态合金的衍射图样,说明镀层呈非晶态结构。
     用磨损试验仪测得Ni-P合金镀层与GCr15钢珠对磨的平均摩擦系数较AZ91D镁合金基摩擦系数有较大减小,经过回火后镀层硬度提高,摩擦系数进一步减小。磨痕形貌表明,镁合金基体在干摩擦条件下的承载能力很差,磨损比较严重,磨痕较宽,并且有多处小块剥落和大量的平行犁沟。经化学镀镍磷后,点蚀略多,磨痕浅而窄,犁沟则浅而细小,耐磨性有所提高。经过400℃回火,犁沟和粘着脱落现象不明显,只是轻微的擦伤,说明Ni-P镀层回火后耐磨性能良好。
     电化学测试表明经过化学镀镍处理后的镁合金试样,在3.5%NaCl水溶液中,其耐蚀性得到了很大的提高,镀镍层的自腐蚀电位为-615mv,比镁合金基体的自腐蚀电位上升了843mv。与原始镀层相比,回火热处理后随着温度的提高,自腐蚀电位呈现先上升后急剧下降的特征。200℃回火后自腐蚀电位提高,钝化现象也很明显,耐腐蚀性能加强;经过300℃、400℃回火后自腐蚀电位下降,耐腐蚀性明显减弱。盐雾测试发现镁合金化学镀镍层连续喷雾8小时未见有明显的腐蚀斑点,耐腐蚀性能良好。喷雾时间达到20小时,镀层局部出现了腐蚀,尤其是试样边缘,有很多白色棉花状腐蚀产物出现。
Magnesium and magnesium alloy(such as AZ91D)had low density,high strength,good size stability and good magnetic shield,which became the most hopeful material in modern high-tech fields.Its performance was superior to aluminum alloy.Because of its mechanical properties and physical properties, it was widely used in aerospace,automotive industry,electronics industry and so on.However,poor corrosion resistance and wear resistance of magnesium and magnesium alloy constraint its use.How to solve this problem,had been a subject of concern to people all the time.Chemical nickel plating was widely used in recent years as a surface treatment methods.Its coating had the benefits of tight structure,uniform thickness,hardness,good corrosion resistance and good wear resistance.However,in the processes of chemical nickel on magnesium alloy,acidic or alkaline solution would cause serious corrosion to magnesium alloy matrix,impacting on the performance of coating directly.So how to reduce corrosion of solution to matrix was also a very important research direction.However,the neutral chemical bath which had small corrosions to magnesium matrix are not widely reported.In this paper,we studied the magnesium alloy electroless Ni-P process in the PH value of 6.5 to 7 neutral bath、the coating performance and structure,and we added none of the CrO_3 to pre-treatment bath,not producing Cr~(6+)which was harmful to human body and reducing the pressure on the environment.
     We had studied the pretreatment on the chromium-free and neutral in the chemical bath Ni-P alloy plating process and use of metallographic microscope and Axiovert25CA(Zeiss)optical image to analyize and observe the coating surface topography and microstructure,finding that the coating surface with the ball cellular accumulation,cellular and cellular combine closely,every large cell was consitiuted of several deformed small cells.From the WS-97-AE-scratch coating for scratch test of the combination of strength,we could see that the matrix of magnesium alloy plating on the chemical coating of Ni-P FC approximately 40-60 N,coating and the matrix combining well.Using electronic weighing scales and calculate plating rate,we found main salt concentration,reductant concentration chelators and temperature would affect the coating deposition rate.Useing of GDS(glow discharge spectrometer)to determine the coating composition and distribution while using of X-ray diffraction(XRD)detect Structures,we came to the conclusion that the phosphorus content in the Coating is in the range of 9.5%to 11%,X-ray diffraction analysis curve was like steamed bread,possessing diffraction pattern of the typical of amorphous alloy,showing that the coating was amorphous structure.
     By wear tester we found the friction coefficient of Ni-P coating and Steel ball's mutual frictions was larger than magnesium alloy AZ91D.After tempering coating hardness reduce,friction coefficient reduced more.Wear track morphology indicate that under the conditions of the dry friction the carrying capacity of magnesium alloy matrix was poor,friction was more serious,trace of friction was wider.Furthermore various small spalling and a large number of parallel plow ditch.After chemical nickel phosphorus,there were slightly more pittings trace of friction is shallow and narrow,plow ditch shallow and small, wear resistance had increased.
     After tempering 400℃,plow ditch and loss of adhesion was not obvious, only minor abrasions,showing after tempering the wear resistance of Ni-P coating had increased.
     Electrochemical tests showed that the sample of magnesium alloy which was done after chemical nickel processing whose corrosion resistance has been greatly improved.Nickel layer of corrosion potential was-615,which had increase by 843 mv compared with magnesium alloys.Compared with the original coating,after tempering heat Treatment,the corrosion potential at first rise after the sharp decline characteristics.
     After tempering at 200℃,the corrosion potential increase,Passivation was also very clear,corrosion resistance has strengthened.Aftertempering at 300℃and 400℃the corrosion potential decline,corrosion resistance significantly weakened。Salt spray test found that magnesium alloy of nickel plating chemical spray for eight hours with no significant corrosion spots,well corrosion resistance.When the spray time was up to 20 hours,Corrosion appeared in local coating,especially in the edge of the sample,a lot of corrosion product like white cotton appeared.
引文
[1]李瑛,余刚,刘跃龙等,镁合金的表面处理及其发展趋势,表面技术,2003,32(2),1-5
    [2]曾小勤,王渠东,吕振宜,丁文江,朱燕萍,镁合金应用新进展,机械工业出版社,1998,1,120
    [3]张奎,曾小勤,镁基轻质合金理论基础及其应用,北京:机械工业出版社,2002,226
    [4]工程材料实用编辑委员会,工程材料使用手册,中国标准出版社,1989,158
    [5]陈力禾,赵慧杰,刘正等,镁合金压铸及其在汽车工业中的应用,机械工业出版社.铸造,1999,368
    [6]曾荣昌,柯伟,徐永波,韩恩厚,朱自勇,Mg合金的最新发展及应用前景,金属学报,2001,1,186
    [7]Roehring Klaus,Taschenbuch der Giesserei-Praxis,2000,2,135
    [8]翟春泉,曾小勤,丁文江等,镁合金的开发应用,机械工程材料,2001,1,5-10
    [9]Heinuzstigeer,镁合金压铸笔记本电脑外壳,特种铸造及有色合金,2000增1
    [10]孙佰勤,镁合金压铸件在汽车行业中的巨大应用潜力,特种铸造及有色合金,1998,3,40-41
    [11]袁序弟,镁合金在汽车工业的应用前景,汽车科技,2002,3,1-4
    [12]贺慧彤,镁合金的环保型表面处理,轻合金加工技术,2002,30,39-40
    [13]RuddAL,The corrosion proteetion aflbrded by rare earth convesion coatings paplied to magnesium,Corrosion Seienee,2000,42,275-280
    [14]Nie JF and Muddle BC.Chaareterization of Sterngthening PreeiPitation Phases in a Mg-Y-Nd Alloy,Aeta Mater,2000(48),1691-1703
    [15]Shigeharu Kmadao,Yo Kojima.Aging characteristica and Tensileproperties of Mg_2Gd_2Y_2Zr alloys,In Mordike B L and HellinnaFeds,Magnesium Alloys and Their APPlieations Verlag:Inofmrations gesellsehatf,1992,169-174
    [16]尹守义,国外镁合金新进展,世界有色金属,1994,79-10
    [17]曹富荣,崔建忠,雷方等,超轻镁合金的发展历史与现状,材料工程,1996,9,3-5
    [18]刘静安,镁合金加工技术发展趋势与开发应用前景,轻合金加工技术,2001,11(29),1-7
    [19]吴振宁,李培杰,刘树勋等,镁合金腐蚀问题研究现状,铸造,2001,110(50),583-586
    [20]RuddAL,The corrosion protection aoffrded by rare earth conversion coating spaplied to magnesium,Corrosion Science2000,42,277-288
    [21]曹小勤,镁合金熔炼阻燃方法与进展,轻合金加工技术,1999,27(9),5-6
    [22]黄晓峰,镁合金压铸过程中的阻燃研究与进展,特种铸造及有色合金,2000,3,45-47
    [23]曾小勤,王渠东,吕宜振等,阻燃镁合金研究,铸造,1999,6,6-7
    [24]NinomiyaR,OjtroTnadKubotaK.ImProred heatresistance of Mg-Al alloys by the Ca addition,Aeta Metall Mater1995,43(2),669-674
    [25]Alex J Zozulin,et al,Metal Finish,1994,March,39
    [26]Froes FH,et al,The science technology and applications of magnesium,1998,9,30
    [27]迟毅,扬萍,林秀峰,具有阳极氧化膜的镁合金电极性能的研究,电化学,1997,13(1),79-85
    [28]蒋百灵,吴国建,张淑芬等,镁合金微弧氧化陶瓷层生长过程及微观结构的研究Ⅰ,材料热处理学报,2002,23(1)1,5-8
    [29]曾爱萍,薛颖,钱宇蜂等,镁合金的化学表面处理,腐蚀与防护,2000,2,55-56
    [30]钱建刚,李荻,郭宝兰,镁合金的化学转化膜,材料保护,2002,3,5-6
    [31]Ryamod F,Deeker The Renaissnace in magnesium,Advaneed Materiel&Progresses,1998,9,31-33
    [32]Martin R Elgar,The surface treatment of magnesium alloys for aerospace paplieations,Finishing Foundry Trade Jomual,1988(7),554-556
    [33]Brown L,UK company leads the way in magnesium plating,Finishing,1994,18(11),22-23
    [34]Standard guide for preparation of magnesium and magnesium alloys for eleetroPlating,ASTMD esignation,B480-88
    [35]潘俊德,范本惠,徐重等,CNpatZL9110208818
    [36]Wnag C Y,yao p,Bradhuest D Hetal,surface modifietion of MgNi Alloy in an acid solution of copper sulfate and sulfuric acid,Jounral of Alloys compounds1999,285,267-271
    [37]Lenonard S.Joesten,Proeess for APPlying A Coating to A Magnesium Alloy Pordufct,US:5683522,1997
    [38]Umehara H,Structure and Corrosion Behavior of Conversion Coating On Magnesium Alloys,Materials Science Forum(Vol350—351)[M].Switzerlnad,Trans Tech Publications,2000,273-282.
    [39]Shikata,Kondou,Nishikawa,et al,Surafce-treated Article of Magnesium or Magnesium Alloys,Method of Surface Preparation and Method of Coating,WO:9947729,1999.
    [40]李宁,屠振密,化学镀实用技术,北京,化学工业出版社,2004(1),1
    [40]税毅,Ni-P镀层研究现状与发展趋势,表面技术,2002(2),1-5
    [41]朱向容,非晶态Ni-P化学镀的发展及应用前景,表面技术,1990,20(1),34-39
    [42]王维东,胡秀莲,磁化处理对Ni-P化学镀层的影响,表面技术,1996,25(2),19-20
    [43]郭忠诚,稀土在Ni-P和Ni-B基化学复合镀中的应用,材料保护,1993,26(5),19-21
    [44]姜晓霞,沈伟,化学镀理论及实践,北京,国防工业出版社,2000
    [45]翟金坤,黄子勋编译,化学镀镍,北京,北京航空学院出版社,1987
    [46]李辉勤,熊金平,张延东等,化学镀镍(译文),中国腐蚀与防护学会咨询服务中心,1993
    [47]Gawrilov,G.G.EleetrolessNiekelPlating,PorteulisPress,Redhill,UK,1979
    [48]Riecel W.Eleertoless Niekle Plating,Englnad:Publieation Lid,1994
    [49]MallovrGO,etal.EleetrolessPlating:Fundamenial&Application[M].Oriando:A ESF,1990
    [50]曾爱萍,薛颖,钱宇蜂等,镁合金的化学表面处理,腐蚀与防护,2000,2,55- 56
    [51]wang Qudong,Luyizhen,ZengXiaole.Currentapplication of Magnesium alloy in manufacturing electronic equipment,Material Guide,2000,14(6),22-24
    [52]霍宏伟,李瑛,王福会,AZ91D镁合金化学镀镍,中国腐蚀与防护学报,2002,22(1),14-17
    [53]戴长松,吴宜勇等,镁及镁合金的化学镀镍,兵器材料科学与工程,1997,20(4),35-47
    [54]储凯,王艳,镀液配方及化学镀工艺对Ni-P合金镀层性能影响,表面技术,2002,31(5),37-39
    [55]刘新宽,向阳辉,胡文彬等,镁合金化学镀镍溶液的老化,中国有色金属报,2003,13(4),1046-1050
    [56]高诚辉,非晶态合金镀及其镀层性能,北京:,科学出版社,2004
    [57]张丕俭,刘艳红,夏振展,低温快速化学镀镍工艺的研究,电镀与环保,2005,25(2),24-26
    [58]孙家枢,金属的磨损编著,北京,冶金工业出版社,1992
    [59]邵荷生,曲敬信,许小棣等编著,摩擦与磨损,北京,煤炭工业出版社,1992
    [60]郑林庆编著,摩擦学原理,北京,高等教育出版社,1997
    [61]张清主编,金属磨损和耐磨材料手册,北京,冶金工业出版社,1991
    [62]蔡泽高,刘以宽,王承忠等编著,金属磨损与断裂,上海,上海交通大学出版社,1985
    [63]梁文萍.Ti_2AlNbO相合金双辉等离子渗Mo、Cr及其性能研究,[学位论文],太原,太原理工大学,2007
    [64]孙秋霞,材料腐蚀与防护,冶金工业出版社,2001
    [65]刘秀晨,安成强主编,金属腐蚀学,北京,国防工业出版社,2002,9
    [66]孙跃,胡津编著,金属腐蚀与控制,哈尔滨,哈尔滨工业出版社,2003,4
    [67]刘永辉,电化学测试技术,北京航空学院,1987
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.