网络控制系统分析、建模与稳定性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
网络控制系统(Networked Control Systems, NCS)是指在某个区域现场传感器、控制器以及执行器和通信网络的集合,用以提供设备之间的数据传输,使该区域内不同地点的用户实现资源共享和协调操作,是一种全分布式、网络化的实时反馈系统。网络控制系统因其具有高诊断能力、安装与维护简便、能有效地减少系统的重量和体积、增加系统的灵活性和可靠性等诸多优点,正成为控制领域研究的新热点,也是未来工业控制系统发展的新方向。但是将网络引入控制系统后,由于带宽有限、信道分时复用、数据传输路径不确定等因素的存在会导致信息传输中的等待、阻塞、时序错乱及丢包等现象的发生,不可避免地产生了网络诱导延时。这些受网络通信协议、网络节点驱动方式、数据采样技术等因素影响的网络诱导延时,无论是固定的还是时变的,也无论是有界的还是无界的,都会不同程度地影响控制系统性能,甚至导致系统失稳,给网络控制系统的分析和设计带来很大困难。虽然对于延时系统的分析、建模与稳定性研究近年来已经取得了很大进展,但是由于网络控制系统自身的特点和复杂性,已有的控制理论与方法必须要重新分析和设计才能应用于网络控制系统中。具体而言,就是要在网络控制系统的分析和设计的过程中要考虑控制与通信耦合的情形。因此,要使网络控制系统能够稳定运行并且具有良好的动态性能,就必须建立网络控制系统的数学模型,同时发展与网络控制系统相适应的分析和设计方法,所以本课题的研究具有积极重要的理论研究意义和实际应用价值。
     本文的主要目的是研究网络诱导延时对网络控制系统分析、建模以及稳定性的影响,并进一步探索有效的解决方法,对于网络控制系统的理论研究和实际应用提供了有意借鉴。具体研究成果如下:
     首先,分析了近年来网络控制系统研究中的一些典型研究方法。一方面,这些研究方法中的某些方法已在本论文的研究过程中有所体现,另一方面,对于今后网络控制系统的研究工作有所借鉴。
     其次,较为详细地分析了网络控制系统研究中的基本问题,从中挖掘出本文所感兴趣的研究方向,也为以后的研究工作设定了目标,同时也希望这些基本研究问题能够引起更多同行的重视,继续对网络控制系统进行理论和实际应用研究,进而形成一套完整的适用于网络控制系统自身特点的理论和方法。
     第三,研究了网络控制系统中的网络诱导延时问题,这是网络控制系统研究中的一个基本而又非常重要的问题。具体分析了延时的组成、对于系统稳定性和性能指标的影响、网络传输数据的特点和影响延时的因素等,并给出了网络协议、节点驱动方式和采样周期的选择标准,在此基础上对具有定常延时且延时小于一个采样周期的网络控制系统的稳定性进行了分析和设计。
     第四,研究了网络控制系统的建模问题。首先给出了单输入单输出网络控制系统连续数学模型,在此基础上,建立了带有系统噪声和观测噪声的多传感器多执行器网络控制系统连续数学模型,得到一个存在多个延时的微分方程;建立了短延时、单包传输和多包传输且无数据包丢失情况下的离散数学模型;建立了基于增广状态的任意有界延时的多输入多输出闭环网络控制系统离散数学模型;建立了网络控制系统在四种不同节点驱动方式下的开环离散数学模型和统一离散数学模型,模型拓展了原有延时小于一个采样周期的假设条件,并考虑了系统噪声和观测噪声以及控制器的动态特性;将大于一个采样周期的随机时变网络诱导延时分解成恒定延时(采样周期的整数倍)和随机时变延时(小于一个采样周期)两部分来研究,从而建立了具有结构不确定性的网络控制系统离散时间模型。
     第五,提出了利用区间代数理论来对具有时变采样周期和时变延时的网络控制系统进行建模和稳定性研究。该方法把原始时变的闭环系统模型稳定性分析问题简化为一个时不变矩阵来研究,得出的结论虽然有些保守,但其分析简单方便。
     第六,研究了具有数据包丢失的网络控制系统建模和稳定性问题,主要从理论上推导出了使系统渐近稳定的条件,所得结论还有待于在工程实践中加以检验。首先,在给出了单包传输有数据包丢失的网络控制系统离散数学模型的基础上,建立了多包传输有数据包丢失的网络控制系统综合被控对象离散数学模型和闭环系统离散数学模型。接着,考虑网络诱导延时与数据包丢失同时存在的情况,分别建立了单包传输和多包传输的网络控制系统连续数学模型。在此基础上,对网络信息单包传输时设计了延时无界和延时有界情况下的网络控制系统渐近稳定条件;在多包传输时设计了延时变化率在小于1和小于0情况下的网络控制系统渐进稳定条件。
     最后,通过在节点的发送端或接收端设置队列型缓冲区的办法将随机延时确定化,并针对状态不可测的系统设计了三种延时状态观测器,从理论上证明了只要原系统可观,则观测误差渐近收敛。
Networked Control Systems (NCS) are the combinations of sensors, controllers, actuators in some area and the communication networks, providing the data transmission among the equipments and making different users in different places realize resource share and coordinated operations. Networked control systems are the entirely distributed, networked, real-time feedback control systems. Because of the stronger diagnosis capability, the simple installation and maintenance, reducing the weight and the volume effectively, increasing the agility and the reliability of systems, and so on, networked control systems are becoming the new hot research points and new trends of industrial control systems. When networks are introduced into the control systems, networked-induced delays are produced inevitably by waiting, collision and congestion, making data transmission be in disorder and resulting in data dropout, because of bandwidth constraint, time-sharing multiplexing, uncertainty in transmission path, and so on. The network-induced delays, which are affected by network protocols, driven modes of nodes, data sampling methods, and some other factors, whether it is constant, time-varying, bounded or unbounded, can influence the performances of control systems. Sometimes they can cause system's instability, which brings difficulties to the analysis and designs of NCS. Although the researches have obtained many results in the analysis, modeling, and stability of delay systems, because of the own characteristics and complexities of NCS, the existed control theory and methodology can only be used to NCS after being reanalyzed and redesigned. Specifically, the case coupling of control and communication must be taken into account during the analysis and designs of NCS. It is necessary to establish the mathematic models so as to make NCS be run steadily and have well dynamic performances. At the same time, it is necessary to develop the methodologies of analysis and designs corresponding to NCS. So this dissertation has very important theoretical significance and practical application worth.
     The main purpose of this dissertation is to study the influences of network-induced delay upon the analysis, modeling and stability of NCS, and to explore effective solution methods, so as to provide meaningful use for reference. The following outlines the research results.
     Firstly, some typical research methods of NCS in recent years are analyzed. Some of them are listed in this dissertation. Also they can be used for future research work of NCS.
     Secondly, some basic issues of NCS are analyzed in detail. Some interesting research aspects are dug and can become the future study trends. At the same time, hoping that these issues can arouse the recognition of researchers who can continue to study the theory and practical applications of NCS, the theories and methodologies corresponding to the characteristics of NCS can be made perfectly.
     Thirdly, network-induced delay of NCS is studied. This is a basic and important issue of NCS. The analysis and research of the delay's composition, the influences to the stability and performance indexes of NCS, the characteristics of data transmission in networks and the factors of influencing on delay are investigated. The choice standards of network protocols, driven modes of nodes and sampling period are discussed. Based on the above discussions, the analysis and designs of stability of NCS with deterministic and constant delay which is less than one sampling period are studied.
     Fourthly, the modeling of NCS is presented. Based on the continuous models of single-input-single-output NCS, the general continuous models of multi-input-multi-output (MIMO) NCS with system noise and observation noise are built. The discrete models of short delays, single-packet transmission and multiple-packet transmission with no packets dropout are established. The discrete models of MIMO NCS with any bounded delays based on the augmented states are constructed. The open-loop mathematic models and unified mathematic model of NCS with long time delay are developed when the system is driven by anyone of the four different driven modes. The random time-varying delay is divided into two parts which are constant delay and time-varying delay, and then, discrete uncertain model of NCS is built.
     Fifthly, based on the theory of interval algebra, modeling and stability of NCS with time-varying sampling period and time-varying delay are studied. This method simplifies the stability analysis of original time-varying closed-loop system model which is changed into a time-independent one. The deduced conclusion is simple and effective although it is conservative.
     Sixthly, modeling and stability of NCS with data-packet dropout are studied. The asymptotic stability criteria of NCS are derived theoretically. The achieved conclusions need to be verified in the engineering applications. First of all, based on the discrete model of single-packet transmission with data-packet dropout of NCS, the discrete models of associated plant and closed-loop system considering multiple-packet transmission with data-packet dropout are set up. And then, considering the network-induced delay and data-packet dropout synthetically, asymptotic stability conditions of NCS with unbounded delays and bounded delays based on single-packet transmission are derived. Based on multiple-packet transmission, asymptotic stability conditions with time-delay variate rate which is less than one or less than zero are deduced.
     Finally, the method which can change the random delay into the deterministic delay by means of installing queue buffer at the sending node or receiving node is studied. Three kinds of state observers of NCS whose states are unmeasured are designed. The fact that observer errors are asymptotically convergent is proved theoretically only if original system is observable.
引文
1. Abdelzaher T F, Atkins E M, Shin K G. QoS negotiation in real-time systems and its application to automated flight control [J], IEEE Transactions on Computers,2000, 49(11):1170-1183.
    2. Alefeld G, Herzberger J. Introduction to interval computations [M], USA:Academic Press,1983.
    3. Almeida L, Fonsec P, Fonseca J A. Scheduling and clock synchronization in CAN-based distributed systems [A], International CAN Conference ICC'99,1999:2-4.
    4. Almutairi N B. Adaptive fuzzy modulation for networked PI control systems [D], Carolina:North Carolina State University,2002.
    5. Almutairi N B, Chow M Y, Tipsuwan Y. Network-based controlled DC motor with fuzzy compensation [A], The 27th Annual Conference of the IEEE Industrial Electronics Society, Denver, Colorado,2001:1844-1849.
    6. Almutairi N B, Chow M Y. PI parameterization using adaptive fuzzy modulation (AFM) for networked control systems-Part Ⅰ:Partial adaptation [A], IEEE 28th Annual Conference of the Industrial Electronics Society,2002:3152-3157.
    7. Almutairi N B, Chow M Y. PI parameterization using adaptive fuzzy modulation (AFM) for networked control systems-Part Ⅱ:Full adaptation [A], IEEE 28th Annual Conference of the Industrial Electronics Society,2002:3158-3163.
    8. Anand S, James H A. Optimal rate-based scheduling on multiprocessors [J], Journal of Computer and System Sciences,2006,72(6):1094-1117.
    9. Andrey V S. Analysis and synthesis of networked control systems:Topological entropy, observability, robustness and optimal control [J], Automatica,2006,42(1):51-62.
    10. Anton C. Integrated control and real-time scheduling [D], ISRN LUTFD2/TFRT-1065-SE,2003-2004.
    11. Baillieul J. Special issue on networked control systems [J], IEEE Transactions on Automatic Control,2004,49(9):1421-1423.
    12. Bauer P H, Sichitiu M, Lorand C, et al. Total delay compensation in LAN control systems and implications for scheduling [A], Proceedings of the American Control Conference,2001,6:4300-4305.
    13. Bauer P, Sichitiu M, Premaratne K. On the nature of the time-variant communication delays [A], Proceedings of IASTED Conference Modeling, Identification and Control, Innsbruck, Austria,2001:792-797.
    14. Beldiman O. Networked control systems [D], Department of Electrical and Computer Engineering, Duke University,2001.
    15. Beldiman O, Walsh G C, Bushnell L G. Predictors for networked control systems [A], Proceedings of the ACC, Chicago, Illinois,2000,4:2347-2351.
    16. Branicky M S. Stability of hybrid systems:state of the art [A], Proceedings of IEEE Conference Decision and Control, San Diego,1997:120-125.
    17. Branicky M S, Phillips S M, Zhang W. Scheduling and feedback co-design for networked control systems [A], Proceedings of the 41th IEEE CDC, Las Vegas,2002, 1211-1217.
    18. Branicky M S, Philips S M, Zhang W. Stability of networked control systems:explicit analysis of delay [A], Proceedings of ACC, Chicago, Illinois,2000:2352-2357.
    19. Brockett R W. Stabilization of motor networks [A], Proceeds of the IEEE CDC, New Orleans,1995:1484-1488.
    20. Cardeira C, Mammeri Z. A schedulability analysis of tasks and network traffic in a distributed real-time system [J], Measurement,1995,15(2):71-83.
    21. Casanova V, Salt J. Multirate control implementation for an integrated communication and control system [J], Control Engineering Practice,2003,11(11):1335-1348.
    22. Cervin A. Intepated control and real-time scheduling [D], Department of Automatic Control, Lund Institute of Technology, Sweden,2003.
    23. Chan H, Ozguner U. Closed-loop control of systems over a communications network with queues [J], International Journal of Control,1995,62(3):493-510.
    24. Comer D. Internetworking TCP/IP [M], Englewood Cliffs:Prentice Hall,1995.
    25. Debeljkovic D L, Lazarevic M P, Koruga D, et al. Further results on the stability of linear nonautonomous systems with delayed state defined over finite time interval [A], Proceedings of the American Control Conference,2000:1450-1451.
    26. Delchamps D F. Stabilizing a linear systems with quantized state feedback [J], IEEE Transactions on Automatic Control,1990,35(8):916-924.
    27. Dogruel M, Ozguner U. Stability of a set of matrices:a control theoretic approach [A], Proceedings of the 34th Conference on Decision & Control, New Orleans, LA,1995: 1324-1330.
    28. Feng L L. Analysis, design, modeling and control of networked control systems [D], USA:University of Michigan,2001.
    29. Feng L L, James R M, Dawn M T. Timing delay modeling and sample time selection for networked control systems [A], Proceedings of the ASME 2001, New York,2001: 313-320.
    30. Feng L L, James R M, Dawn M T. Network design consideration for distributed control systems [J], IEEE Transactions on Control System Technology.2002,10(2):297-307.
    31. Feng L L, James R M, Dawm M T. Performance evaluation of control networks: Ethernet, ControlNet, and DeviceNet [J], IEEE Control Systems Magazine,2001,2(1): 66-83.
    32. Feng L L, James R M, Dawm M T. Control performance study of a networked machining cell [A], Proceedings of ACC, Chicago,2000:2337-2341.
    33. Feng L L, James R M, Dawm M T. Implementation of networked machine tools in reconfigurable manufacturing systems [A], Proceedings of 2000 Japan-USA Symposium on Flexible Automation, Ann Arbor,2000:689-695.
    34. Fujimoto H., Hori Y. High-performance servo systems based on multirate sampling control [J], Control Engineering Practice,2002,10(7):773-781.
    35. Georgiadis L, Guerin R, Parekh A K. Optimal multiplexing on a single link:delay and buffer requirements submaintitle [J], IEEE Transactions Information Theory,1997,43 (5):1518-1535.
    36. Gianluca C, Adriaro V. An improved CAN fieldbus for industrial application [J], IEEE Transactions on Industrial Electronics,1997,44(4):553-564.
    37. Goodwin C, Juan C A, Arie F. State estimation for systems having random measurement delays using errors in variables [A], The 15th Triennial World Congress, Barcelona, Illinois, Spain,2000,4:2347-2351.
    38. Goktas F. Distributed control of systems over communication networks [D], University of Pennsylvania, USA,2000.
    39. Grimble M J. LQG controllers for discrete-time multivariable systems with different transport delays in signal channels [A], IEEE Proceeding of Control Theory Application,1998,145(5):449-462.
    40. Grimble M J, Hearns G. LQG controllers for state-space systems with pure transport delays:application to hot strip mills [J], Automatica,1998,34(10):1169-1184.
    41. Halevi Y, Ray A. Integrated communication and control systems:Part Ⅰ-Analysis [J], ASME Journal of Dynamic Systems, Measurement and Control,1988,110(4): 367-373.
    42. Halevi Y, Ray A. Integrated communication and control systems:Part Ⅱ-Design consideration [J], ASME Journal of Dynamic Systems, Measurement and Control,1988, 110(4):374-381.
    43. Halevi Y, Ray A. Performance analysis of integrated communication and control system networks [J], Journal of Dynamic Systems, Measurement, and Control,1990,112(3): 365-371.
    44. Hale J. Theory of functional differential equations [M], New York:Springer-Verlag, 1977.
    45. Hassibi A, Boyd S P, How J P. Control of asynchronous dynamical systems with rate constraints on events [A], Proceedings of the IEEE CDC, Phoenix,1999:1345-1351.
    46. Hristu D. Stabilization of LTI systems with communication constraints [A], Proceedings of the ACC, Chicago,2000:2342-2346.
    47. Hristu D, Morgansen K. Limited communication control [J], System & Control Letters, 1999,37(4):193-205.
    48. Hong S H. Scheduling algorithm of data sampling times in the integrated communication and control systems [J], IEEE Transactions on Control Systems Technology,1995,3(2):225-230.
    49. Hong S H, Kim W H. Bandwidth allocation scheme in CAN protocol [J], IEE Proceedings D, Control Theory and Applications,2000,147(1):37-44.
    50. Hsiao F H, Hwang J D. Stability analysis of uncertain feedback systems with multiple time delays and series nonlinearities [J], Journal of Franklin Institute,1997,334(3): 491-505.
    51. Huang D, Nguang S K. State feedback control of uncertain networked control systems with random time delays [A], IEEE Transactions on Automatic Control,2008,53(3): 829-834.
    52. Ishii H, Basar T. Remote control of LTI systems over networks with state quantization [A], Proceeding of IEEE CDC, Nevada,2002:830-835.
    53. Ishii H, Francis B A. Stabilizing a linear system by switching control with dwell time [A], Proceeding of the 2001 ACC, Arlington, VA, USA,2001,3:1876-1881.
    54. Jiang X F, Han Q L. Delay-dependent robust stability for uncertain linear systems with interval time-varying delay [J], Automatica,2006,42(6):1059-1065.
    55. Jose Y, Pau M, Josep M F. Control loop performance analysis over networked control systems [A], IEEE 28th Annual Conference of the Industrial Electronics Society,2002: 2880-2885.
    56. Kang G S, Chou C C. Design and evaluation of real-time communication for fieldbus-based manufacturing systems [J], IEEE Transaction on Robots and Automation,1996,12(3):357-367.
    57. Kharitonov V L, Zhabko A P. Lyapunov-Krasovskii approach to the robust stability analysis of time-delay systems [J], Automatica,2003,39(1):15-20.
    58. Kim D S, Lee Y S, Kwon W H, et al. Maximum allowable delay bounds in networked control systems [J], Control Engineering Practice,2003,11(11):1301-1313.
    59. Kim D S, Lee Y S, Kwon W H. Scheduling analysis of networked control system [A], Proceedings of IFAC Workshop on New Technologies for Computer Control, Hong Kong,2001:77-82.
    60. Kim Y H, Kwon W H, Park H S. Stability and a scheduling method for network-based control systems [A], Proceedings of the IEEE 22nd International Conference on Industrial Electronics, Control, and Instrumentation,1996:934-939.
    61. Kim Y H, Park H S, Kwon W H. A scheduling method for network-based control systems [A], Proceedings of the 1998 ACC, Philadelphia, PA,1998,2:718-722.
    62. Kolmanovskii V B, Maizenberg T L, Richard J P. Mean square stability of difference equations with a stochastic delay [J], Nonlinear Analysis,2003,52(3):795-804.
    63. Kolmanovskii V B, Niculescu S I, Gu K. Delay effects on stability:A survey [A], The 38th IEEE CDC'99 (Conference on decision and control), Phoenix, AZ,1999: 1993-1998.
    64. Kolmanovskii V B, Nosov V R. Stability of functional differential equations [M], London:Academic Press,1986.
    65. Krtolica R, Ozguner U, Chan H, et al. Stability of linear feedback systems with random communication delays [J], International Journal of Control,1994,59(4):925-953.
    66. Lakshmikantham V, Leela S. Differential and integral inequalities [M], New York: Academic Press,1969.
    67. Lee K C, Lee S. Remote controller design of networked control system using genetic algorithm [A], Proceedings of IEEE International Symposium on Industrial Electronics, Pusan, Korea,2001,3:1845-1850.
    68. Lee S, Lee S H, Lee K C. Remote fuzzy logic control for networked control system [A], The 27th Annual Conference of the IEEE Industrial Electronics Society,2001,3: 1822-1827.
    69. Lee S, Lee S H, Lee K C, et al. Intelligent performance management of networks for advanced manufacturing systems [J], IEEE Transactions on Industrial Electronics,2001, 48(4):731-741.
    70. Li B, Nahrstedt K. A control-based middleware framework for quality-of-service adaptations [J], IEEE Journal on Selected Areas in Communications,1999,17(9): 1632-1650.
    71. Liebeherr J, Wrege D E, Ferrari D. Exact admission control for networks with a bounded delay service [J], IEEE/ACM Transaction on Networking,1996,4(6): 885-901.
    72. Li Q, Mills D L. Jitter-based delay-boundary prediction of wide-area networks [J], IEEE/ACM Transactions on Networking,2001,9(5):578-590.
    73. Li S b, Wang Z, Sun Y X. Fundamental problems of networked control system from the view of control and scheduling [A], IEEE 2002 on the 28th Annual Conference of the Industrial Electronics Society,2002:2503-2508.
    74. Lincoln B, Bernhardsson B. Effcient pruning of search trees in LQR control of switched linear systems [A], Proceedings of the IEEE CDC, Sydney,2000:1828-1833.
    75. Liou L W, Ray A. A stochastic regulator for integrated communication and control systems:Part Ⅰ-Formulation of control law [J], Transactions of the ASME,1991,113(4): 604-611.
    76. Liou L W, Ray A. A stochastic regulator for integrated communication and control systems:Part Ⅱ-Numerical analysis and simulation [J], Transactions of the ASME, 1991,113(6):612-617.
    77. Liou L W, Ray A. An integrated communication and control systems:Part III-nonidentical sensor and controller sampling [J], Journal of Dynamic Systems, Measurement and Control,1990,112(4):357-364.
    78. Liou L W, Ray A. On modeling of integrated communication and control systems [J], IEEE transactions of the ASME,1990,112(6):790-794.
    79. Lonn H, Axelsson J. A comparison of fixed-priority and static cyclic scheduling for distributed automotive control applications [A], Proceedings of the Eleventh Euromicro Conference on Real-Time Systems, York, England,1999:555-560.
    80. Lonn H. A fault tolerant clock synchronization algorithm for systems with low-precision oscillators [A], Proceedings of the European Dependable Computing Conference-3, Prague, Czech Pepublic,1999:65-75.
    81. Lonn H. Synchronization and communication results in safety-critical real-time systems [D], Department of Computer Engineering, Chalmers University of Technology,1999.
    82. Luck R, Ray A. An observer-based compensator for distributed delays [J], Automatica, 1990,26(5):903-908.
    83. Luck R, Ray A. Experimental verification of a delay compensation algorithm for integrated communication and control systems [J], International Journal of Control, 1994,59(6):1357-1372.
    84. Lundelius J, Lynch N. A new fault-tolerant algorithm for clock synchronization [A], Proceedings of the Third Annual ACM Symposium on Principles of Distributed Computing,1984:75-88.
    85. Lu B. Probabilistic design of networked control systems with uncertain time delay [A], Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Seattle WA,2007,9:355-362.
    86. Marinescu B, Bourles H. Robust state-predictive control with separation property:a reduced-state design for control systems with non-equal time delays [J], Automatica, 2000,36(5):555-562.
    87. Montestruque L A, Antsaklis P J. On the model-based control of networked systems [J], Automatica,2003,39(10):1837-1843.
    88. Montestruque L A, Antsaklis P J. State and output feedback control in model-based networked control systems [A], Proceedings of the 41th IEEE CDC,2002,2: 1620-1625.
    89. Montestruque L A, Antsaklis P. Stability of model-based networked control systems with time-varying transmission times [J], IEEE Transactions on Automatic Control, 2004,49(9):1562-1572.
    90. Nair G N, Evans R J. Communication-limited stabilization of linear systems [A], Proceedings of the IEEE 37th CDC, Sydney, Australia,2000:1005-1010.
    91. Nesic D, Teel A R. Input-to-state stability of networked control systems [J], Automatica, 2004,40(12):2121-2128.
    92. Nilsson J B. Real-time control systems with delays [D], Department of Automatic Control, Lund Institute of Technology, Lund, Sweden,1998.
    93. Nilsson J B, Bernhardsson B, Wittenmark B. Stochastic analysis and control of real-time systems with random time delays [J], Automatica,1998,34(1):57-64.
    94. Otanez P G, Parrott T J, Moyne J R, et al. The implications of ethernet as a control network [A], Globe Powertrain Conference, Ann Arbor, MI,2002:1200-1205.
    95. Otanez P G, Moyne J R, Tilbury D M. Using deadbands to reduce communication in networked control systems [A], Proceedings of the ACC,2002:3015-3020.
    96. Park H S, Kim Y H, Kim D S, et al. A scheduling method for network-based control systems [J], IEEE Transactions on Control Systems Technology,2002,10(3):318-330.
    97. Pau M C. Analysis and design of real-time control systems with varying control timing constraints [D], Sweden:Malardalen University,2002.
    98. Persson N, Gustafsson F. Event based sampling with application to vibration analysis in pneumatic tires [A],2001 IEEE International Conference on Acoustics, Speech, and Signal Processing, Salt Lake City,2001,6:3885-3888.
    99. Peter V Z, Richard H M. Networked control design for linear systems [J], Automatica, 2003,39(4):743-750.
    100. Piggin R, Brandt D. Wireless ethernet for industrial applications [J], Assembly Automation, Parts feeding and parts presentation,2006,26(3):205-215.
    101. Piggin R. Developments in real-time control with Ethernet/IP [J], Assembly Automation, Micro Assembly and High Speed Assembly,2007,27(2):109-117.
    102. Quan Z, Chung J M. Statistical admission control for real-time services under earliest deadline first scheduling [J], Computer Networks,2005,48(2):137-154.
    103. Rabelto A, Bhays A. Stability of asynchronous dynamical systems with rate constraints and applications [A], Proceedings of the ACC, Anchorage,2002:1284-1289.
    104. Raja G Static and dynamic polling mechanism for fieldbus networks [J], Operating System Overview,1993,27(1):34-43.
    105. Ray A. Distributed data communication networks for real time process control [J], Chemical Engineering Communications,1988,65(2):139-154.
    106. Ray A. Integrated communication and control Systems:Part Ⅰ-Analysis [J], Journal of Dynamic Systems Measurement and Control,1988,110:367-373.
    107. Ray A. Output feedback control under randomly varying distributed delays [J], Measurement and Control,1994,17(4):701-711.
    108. Ray A. Performance evaluation of medium access control protocols for distributed digital avionics [J], ASME Journal Dynamic Systems, Measurement and Control,1987, 109(4):370-377.
    109. Ray A, Liou L W, Shen J H. State estimation using randomly delayed measurements [J], Journal of Dynamic Systems, Measurement and Control,1993,115:19-26.
    110. Ray A, Shen J H. Control of output feedback systems under randomly varying distributed delays [A], Proceedings of the ACC,1993:1731-1735.
    111. Rehbinder H, Sanfridson M. Scheduling of a limited communication channel for optimal control [J], Automatica,2004,40(3):491-500.
    112. Richard J L, Priya R. Stability of a rate control system with averaged feedback and network delay [J], Automatica,2006,42(10):1817-1820.
    113. Richard J P. Time-delay systems:an overview of some recent advances and open problems [J], Automatica,2003,39(10):1667-1694.
    114. Rodolfo P, Giuseppe L. Holistic analysis of asynchronous real-time transactions with earliest deadline scheduling [J], Journal of Computer and System Sciences,2007,73(2): 186-206.
    115. Rogelio L, Ray A. An observe-based compensator for distributed delays [J], Automatica,1990,26(5):903-908.
    116. Salt J, Albertos P, Tornero J. Digital controller improvement by multirate control [A], Proceedings of the 3rd IEEE Conference on Control Applications,1994:1459-1464.
    117. Schattler H, Joseph B. Time-stamped model predictive control:an algorithm for control of processes with random delays [J], Srinivasagupta, Dept. of Chem. Eng., Washington Univ., St. Louis, MO, USA, Computers & Chemical Engineering,2004,28(8): 1337-1346.
    118. Shakkottai S, Kumar A, Karnik A, et al. TCP performance over end-to-end rate control and stochastic available capacity [J], IEEE/ACM Transactions on Networking,2001, 9(4):377-391.
    119. Sichitiu M, Bauer P, Lorand C, et al. Total delay compensation in LAN control systems and implications for scheduling [A], Proceedings of ACC 2001, Arlington, VA,2001: 4300-4305.
    120. Sichitiu M L, Bauer P H. Stability of discrete time-variant linear delay systems and applications to network control [A], Proceeding of the 8th IEEE International Conference on Electronics, Circuits and Systems, Malta, USA,2001,2:985-989.
    121. Stubbs A, Dullerud G E. Networked control of distributed systems [J], Proceedings of the 40th IEEE CDC,2001:203-204.
    122. Sun Q, Zhang H, Zhang J H. A time-stamp based solution for collective resource acquisition in a distributed system [J], Proceedings of the 33rd Annual Hawaii International Conference on System Sciences, Naui, HI, USA,2000,2(2):1880-1890.
    123. Tanenbaum A S. Computer network [M], Englewood Cliffs:Prentice Hall,1996.
    124. Tarn T J, Xi N. Planning and control of internet-based teleoperation [A], Proceedings of SPIE:Telemanipulator and Telepresence Technologies V, Boston, MA,1998:189-193.
    125. Tipsuwan Y, Chow M Y. Network-based controller adaptation based on QoS negotiation and deterioration [A], The 27th Annual Conference of the IEEE Industrial Electronics Society, Denver, CO,2001,3:1794-1799.
    126. Tover E, Vasques F. A communication support for real-time distributed computer controlled systems [A], Proceeding of IEE International Workshop on Discrete Event Systems,1998:178-183.
    127. Varsakelis D H. Feedback control systems as users of a shared network:communication sequences that guarantee stability [A], Proceedings of IEEE CDC, Orlando, Florida, 2001:3631-3636.
    128. Velasco M, Marti P, Villa R, et al. Stability of networked control systems with bounded sampling rates and time delays [A], The 31th Annual Conference of the IEEE Industrial Electronics Society, Raleigh, North Carolina,2005:1-6.
    129. Verriest E I. Stability of systems with state-dependent and random delays [J], IMA Journal on Mathematical Control and Information,2002,19(1-2):103-114.
    130. Walsh G C, Beldiman O, Bushnell L. Asymptotic behavior of nonlinear networked control systems [J], IEEE Transactions on Automatic Control,2001,46(7):1093-1097.
    131. Walsh G C, Beldiman O, Bushnell L. Asymptotic behavior of networked control systems [A], Proceedings of the 1999 IEEE International Conference on Control Applications, Hawaii, USA,1999:1448-1453.
    132. Walsh G C, Ye H. Scheduling of networked control systems [J], IEEE Control Systems Magazine,2001,21(1):57-65.
    133. Walsh G C, Ye H, Bushnell L. Stability analysis of networked control systems [J], IEEE Transactions on Control Systems Technology,2002,10(3):438-446.
    134. Wang G X, Wang Z M. Dynamic output feedback of linear networked control systems [J], Automation and Remote Control,2008,69(3):412-418.
    135. Wang L, Hamdi M. Analysis of multimedia access protocol for shared medium network [A], Conf Record/IEEE Global Telecommunications Conf, San Francisco,2000: 1176-1180.
    136. Webb E. Ethernet for space flight applications [A],2002 IEEE Aerospace Conference Proceedings, Big Sky, MT, USA,2002,4:1927-1934.
    137. Wong W S, Brockett R W. Systems with finite communication bandwidth constraints-Part I:state estimation problems [J], IEEE Transactions on Automatic Control,1997, 42(9):1294-1299.
    138. Xiong J L, James L. Stabilization of linear systems over networks with bounded packet loss [J], Automatica,2007,43(1):80-87.
    139. Xu Y B, Guo Y Z, Wang H G, et al. Distributed control system in water plant based on ControlNet [A], Proceedings of the 4th World Congress on Intelligent Control and Automation,2002:3113-3117.
    140. Yang T C, Yu H, Fei M R, et al. Networked control systems:a historical review and current research topics [J], Measurement and Control,2005,38(1):12-17.
    141. Ye H, Walsh G C, Bushnell L. Wireless local area networks in the manufacturing industry [A], Proceedings of the ACC, Chicago, Illinois,2000:2363-2367.
    142. Yepez J, Marti P, Fuertes J M. Control loop scheduling paradigm in distributed control systems [A], The 29th Annual Conference of the IEEE Industrial Electronics Society, 2003,2:1441-1446.
    143. Yook J K, Tilbury D M, Soparkar N R. A design methodology for distributed control systems to optimize performance in the presence of time delays [A], Proceedings of the American Control Conference,2000:1959-1964.
    144. Yook J K, Tilbury D M, Soparkar N R. Trading computation for bandwidth:reducing communication in distributed control systems using state estimators [J], IEEE Transactions on Control Systems Technology,2002,10(4):503-518.
    145. Zhang L, Dimitrios H V. Communication and control co-design for networked control systems [J], Automatica,2006,42(6):953-958.
    146. Zhang W. Stability analysis of networked control systems [D], Department of Electrical Engineering and Computer Science, Case Western Reserve University, American,2001.
    147. Zhang W, Branicky M S. Stability of networked control systems with time-varying transmission period [A], Proceedings of Allerton Conference Communication, Control, and Computing, Urbana, IL,2001:60-66.
    148. Zhang W, Branicky M S, Phillips S M. Stability of networked control systems [J], IEEE Control Systems Magazine,2001,21(1):84-99.
    149. Zhang Q Z, Zhang W D. Time-stamped predictive functional control in networked control systems [J], Control Theory and Applications,2006,23(1):126-130.
    150. Zhang X M, Han Q L. A new finite sum inequality approach to delay-dependent H-infinity control of discrete-time systems with time-varying delay [J], International Jurnal of Robust and Nonlinear Control,2008,18(6):630-647.
    151. Zhang Y W, Sheng J, Qin S J, et al. Fault diagnosis and isolation of multi-input-multi-output networked control systems [J], Industrial and Engineering Chemistry Research,2008,47(8):2636-2642.
    152. Zhen W, Li C H, Xie J Y. Improved control scheme with online delay evaluation for networked control systems [A], Proceedings of the 4th World Congress on Intelligent Control and Automation, Shanghai, P.R.China,2002,2:1319-1323.
    153. Zhivoglyadov P V, Middleton R H. Networked control design for linear systems [J], Automatica,2003,39(4):743-750.
    154. Zhou Y, Wang Z, Yuan M Z, et al. The communication media access control mode of fieldbuses [J], Industrial Instrumentation and Automation,2001,3:61-64.
    155.但斌,刘飞.网络化集成制造及其系统研究[J],系统工程与电子技术,2001,23(8):12-14+83.
    156.顾洪军,张佐,吴秋峰.网络控制系统的实时特性分析及数据传输技术[J],计算机工程与应用,2001,37(6):38-40.
    157.顾洪军,张佐,吴秋峰.网络控制系统的机理描述模型[J],控制与决策,2000,15(5):634-636.
    158.顾洪军,张佐,吴秋峰.控制系统的网络化发展[J],工业仪表与自动化装置,2000,1:62-65.
    159.何坚强,张唤春.基于遗传算法的网络控制系统调度优化研究[J],工业仪表与自动化装置,2004,4:37-42.
    160.姜培刚,姜偕富,李春文等.基于LMI方法的网络化控制系统的H∞鲁棒控制[J],控制与决策,2004,19(1):17-31.
    161.刘鲁源,万仁君,李斌.基于TTCAN协议的网络控制系统静态调度算法[J],控制与决策,2004,19(7):814-816.
    162.彭刚.网络延时和负荷变化对基于网络的遥操作机器人系统的影响和解决方法[J],计算机工程与应用,2002,38(11):12-15+52.
    163.任长清,吴平东,王晓峰等.基于互联网的液压远程控制系统延时预测算法研究[J],北京理工大学学报,2002,22(1):85-89.
    164.王晓峰,吴平东,任长清等.基于TCP/IP网络的远程伺服控制系统中的动态模 糊控制器[J],计算机应用,2002,22(11):83-85.
    165.魏震.网络控制系统在线时延估计及其控制的综合研究[D],上海:交通大学,2002.
    166.谢希仁.计算机网络[M],北京:电子工业出版社,1999.
    167.杨丽曼,李运华,袁海斌.网络控制系统的时延分析及数据传输技术研究[J],控制与决策,2004,19(4):361-366+382.
    168.阳宪惠.现场总线技术及其应用[M],北京:清华大学出版社,1999.
    169.于之训,陈辉堂,王月娟.基于Markov延迟特性的闭环网络控制系统研究[J],控制理论与应用,2002,19(2):263-267.
    170.于之训,陈辉堂,王月娟.时延网络控制系统均方指数稳定的研究[J],控制与决策,2000,15(3):278-281+289.
    171.于之训,陈辉堂,王月娟.基于H∞和μ综合的闭环网络控制系统的设计[J],同济大学学报(自然科学版),2001,29(3):307-311.
    172.俞立.鲁棒控制—线性矩阵不等式处理方法[M],北京:清华大学出版社,2002.
    173.张结斌,文代刚.基于Internet/Intranet分布式网络控制系统的实现[J],自动化与仪表,1999,14(4):1-4.
    174.朱其新,胡寿松,刘亚.无限时间长时延网络控制系统的随机最优控制[J],控制理论与应用,2004,21(3):321-326.
    175.朱其新,胡寿松.网络控制系统的分析和建模[J],信息与控制,2003,32(1):5-8.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.