ZnO基三维有序纳米结构材料的合成及其光学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着半导体工艺技术的发展,人们正积极探索高效率半导体材料。基于ZnO材料诸多众所周知的优点,例如宽的直接带隙(3.37eV)、大的激子束缚能(60meV),这种半导体材料在最近的十年成为了世界性的研究热点之一。人们预测这种半导体材料在光电子学、传感器、透明电极、生物医学等领域具有广泛的潜在的用途,其中最引人注目的便是这种材料有望制成短波长的光发射器件和室温紫外激光器件。然而,到目前为之,这种材料仍然存在的一些缺点阻碍了它在应用研究方面的快速进展。比如,P型ZnO的制备,界面的欧姆接触,以及这种材料常存在的多种缺陷。解决这些问题对拓展ZnO材料使之实用化至关重要。特别需要指出的是,我们对ZnO材料一些基本问题的认识仍然没有统一,例如,尽管前人已经开展了大量的研究工作,但是这种半导体材料中相应的本征缺陷和光学性能究竟如何相关依然存在着诸多争论。因此,合成具有特定结构的ZnO纳米材料并研究其特定的性能是非常必要的工作。
     在过去的十年中,三维(3D)有序纳米结构材料也引起了人们浓厚的研究热情,因为这种材料在分离、催化、传感器、生物科学和光电子学等方面有着潜在的应用价值。这种三维有序结构的纳米材料最重要的应用之一便是光子晶体。光子晶体是一类在光学尺度上具有周期性折射率的有序结构。与半导体晶格对电子波函数的调制相类似,光子晶体材料具有调制相应波长的电磁波的能力。当电磁波在光子晶体材料中传播时,由于存在布拉格散射而受到调制,从而使电磁波能量形成光子禁带结构。如果光子晶体内部的缺陷能够有效控制,原则上人们可以通过设计光子晶体,达到控制光子运动的目的。这为制造有效的瞄准仪和全光学的微芯片等光子学器件提供了研究基础。光子晶体也提供了一个有效的调制真空涨落的环境,这将会对填入光子晶体的发射体的光学行为产生奇妙的影响。
     利用二氧化硅和聚苯乙烯(PS)胶体晶体作为模板来制造三维有序多孔结构是一种简便而有效的办法。在过去的几年里,借助于二氧化硅和聚苯乙烯胶体晶体模板,不同类型的有序复合纳米材料或者有序多孔材料被不断制造出来。虽然对于三维有序材料的制造和合成的研究已经被广泛探究,但是对于这些有序材料的光学性能的研究仍然是缺乏和不系统的。
     另外,在人工制造的光子晶体结构中,不可避免将存在一些缺陷和不完美之处。这些有序结构中的无序因为散射效应可以对荧光谱产生很大影响。但前人的工作主要集中于研究有序结构的禁带效应对光学性能的影响,对光子晶体中存在的无序散射对荧光谱所造成的影响的研究则甚少。
     本论文主要是以合成多功能、多用途和低成本的ZnO基的三维有序纳米结构材料为研究目标,以其诸多潜在应用为背景,从胶体晶体作模板法出发,研制了一系列ZnO基的三维有序纳米结构材料。鉴于三维有序材料及ZnO材料都是有希望的光电材料(这两个体系在短波长激光器的研制方面都有极大的应用价值),因此结合了这两方面优点的ZnO基的三维有序纳米结构复合材料在光电子学应用方面有着良好的前景。其实,这种材料还有其他多方面的应用前景。比如,有序多孔的ZnO薄膜本身就是一种很有潜力的传感器和半导体电极,因为它的表面积特别大,所以有利于提高界面的传输效率。本论文侧重于ZnO基的三维有序纳米结构复合材料的光学性能的研究,并进行了形貌、物相等较全面的表征。在这方面取得的主要工作进展和成果,主要如下:
     1.以胶体晶体模板法为基础,合成了一系列达到光学质量的ZnO基的三维有序纳米结构材料。
     2.研究了ZnO-SiO_2复合蛋白石和ZnO反蛋白石带边发光的激发功率依赖性。发现跟致密的ZnO相比,随着激发功率升高,ZnO有序结构显示了更大的PL红移和宽化现象。我们将这些现象归因于有序结构中的强的激光加热效应。在此基础上,我们建立了一个简单的模型来定量分析试验结果。发现理论和事实吻合得很好。
     3.我们发现电沉积制得的ZnO共振Raman散射谱上的577cm~(-1)振动模式强度同绿光发射强度之间有着很大的关联。经过老化处理或者激光辐照处理后,这两者的强度都明显降低了,并且同时伴随着紫外发光峰的红移。随着电沉积温度的提高,或者N_2气氛中热处理温度的提高,这两者都随之降低。根据这些事实,我们认为这两者都同ZnO表面的氢氧化物相关。
     4.通过变温PL测量,我们研究了ZnO反蛋白石激子发光。发现跟致密的ZnO相比,ZnO反蛋白石发光的强度和热活化能都明显提高。我们认为可能的原因是反蛋白石结构中的介电限域效应和无序散射增强效应。通过变功率PL测量,我们研究了ZnO反蛋白石激子发光。发现通过变功率PL获得的参数与变温PL获得的参数高度一致。这证实了我们提出的理论模型。
     5.在氙灯激发下,我们发现ZnO-SiO_2复合蛋白石的荧光强度,热稳定性,时间稳定性与纯的ZnO纳米晶膜相比都有显著提高。虽然填入蛋白石的ZnO含量很少,但是其发射的荧光已经肉眼可见。我们将荧光增强归因于有序结构中不可避免的无序对入射光多重散射的结果。
     6.在He-Cd激光激发下,通过改变光子禁带位置和膜的厚度,我们研究了ZnO-SiO_2复合蛋白石的光学行为。发现跟纯的ZnO纳米晶膜相比,ZnO-SiO_2复合蛋白石的紫外可见强度比得到了提高。另外,我们发现禁带在410nm的ZnO-SiO_2复合蛋白石的紫外光强度对膜厚很敏感,而禁带在570nm的ZnO-SiO_2复合蛋白石的紫外光强度对膜厚不敏感。
     7.通过不同气氛不同温度热处理研究了H_2O_2电沉积ZnO膜的发光行为。发现高温热处理后的绿带发光峰位比低温热处理的样品峰位波长更短。得出结论,高温处理后的绿光发光机制与低温热处理的不一样。
Research on ZnO has generated great interests in recent years for its promising versatile applications in optoelectronics, transparent conducting materials, sensors and biomedical sciences, especially on short wavelength light-emitting, UV lasing, due to its wide direct gap of 3.37eV, large exciton binding energy of 60 meV at room temperature. However, one important problem should be overcome before ZnO could potentially make inroads into the world of optoelectronics devices: the growth of p-type-conductivity ZnO crystals. Inspite of many decades of investigations, some of the basic properties of ZnO still remain unclear. For example, the nature of the residual n-type conductivity in undoped ZnO films, whether being due to impurities of some native defect or defects, is still under some degree of debate. Interpretations of PL and Raman spectra are still a subject of debates due to the complexity of ZnO microstructure. Therefore, the fabrication of ZnO nanostructures to investigate their RRS and PL spectra is very important.
    There is an increasing interest in three-dimensional (3D) ordered nanostructures due to their growing applications in separations, sensors, catalysisand bioscience, especially in photonic crystals (PCs). Photonic crystals, characterized by a periodically refractive index varying on lengths of the order of the light wavelength, can result in a photonic band-gap that blocks certain frequencies of photons. With controllable defects, photonic crystals have the ability to control the flow of light, which has gained a huge interest for possible applications: such as efficient collimators and all-optical microchips. Photonic crystals also provide an environment that strongly modifies the vacuum fluctuations and has novel influences on optical behaviors of emitting species embedded in photonic crystals. The study of this effect requires efficient emission in the medium and a photonic band gap (PBG) that overlaps the emission spectrum. PC composite materials are currently attracting much attention for their possible applications, and the physics associated with the interaction between their framework and electromagnetic radiation
    Template methods using colloidal crystals such as silica and polystyrene (PS) provide a simple and effective route for fabricating 3D ordered materials. In the last few years, various types of ordered composite material and ordered porous material have been synthesized using SiO_2 opal and PS opal. Although the fabrication of 3D ordered materials has been widely explored, there is still dearth of the systematical investigation of optical properties of these materials.
    Disorder is always present in artificial PC structures and causes considerable random scattering which strongly influences the optical spectra. However, current research is mainly focused on fabrication and optical characterization of stop-bands and there are only a few experimental reports concerning the effect of random scattering
    The aim of this work is to prepare ZnO-based three-dimensional ordered nanostructures by template methods using colloidal crystals and to investigate the effects of the ordered nanostructures on optical performance in these systems. The combination of a PCs structure and efficient emission of ZnO promises potential applications in in optoelectronics. Our works are as follows:
    1. We successfully synthesized ZnO-based three-dimensional ordered composite materials using SiO2-opal template and polystyrene (PS)-opal template.
    2. The UV PL peak of ZnO films with ordered nanostructures exhibit more significant red-shift and broadening than that of compact ZnO nanocrystal film with increasing excitation power, which is due to the stronger local heating effect in ordered ZnO nanostructures. A simple model based on laser heating effects is used to analyze UV PL of ZnO films, which agrees well with the experiment data. It was found that the electron-phonon coupling strengths determined by the ratio of second- to firstorder Raman scattering cross sections from the resonant Raman spectra agree with that determined by laser heating effects from PL spectra, which provides further evidence that our analyses are feasible.
    3. We have investigated resonant Raman scattering (RRS) and photoluminescence of ZnO inverse opal prepared by electrodeposition. The intensities of both 577 cm-1 Raman scattering and green emission get weaker after aging or UV laser irradiation. The RRS and green emission intensities are highly correlated for different samples, regardless of the means of sample treatment. According to the deposition-temperature and annealing-temperature dependences, we propose that the origins of the two peaks are related to surface hydroxide.
    4. We investigated the optical properties of 3D-ordered ZnO nanostructure using temperature-dependent and power-dependent photoluminescence (PL) spectra. Compared with compact ZnO film also prepared by electrodeposition, the 3D-ordered structure exhibits a marked increase of ultraviolet luminescence intensity and thermal activation energy. It was also proved that the PL red-shift with increasing excitation power and PL intensity-reduction at high excitation power is due to the laser heating effect in ZnO nanostructure. Furthermore, our results show that the optical properties of ZnO samples at high temperatures are very different from that at room temperature. At high temperature, ZnO samples exhibit larger thermal activation energies and lower exciton-LO-phonon coupling strengths.
    5. A remarkably enhanced yellow-green photoluminescence (PL) was observed from ZnO nanocrystals infiltrated into SiO_2 opal photonic crystals. It was clearly visible to the naked eye under the excitation of an Xe lamp and had substantially improved thermal stability over pure ZnO nanocrystals. The PL spectrum shape of a ZnO-SiO_2 composite opal can be modified by annealing an SiO_2 opal or choosing an SiO_2 opal with different lattice parameters. The enhancement of PL intensity is interpreted based on the dependence of the PL intensity on the size of SiO_2 microspheres as well as the anisotropy of the photoluminescence excitation (PLE) spectra.
    6. We systematically investigated the photoluminescence (PL) and transmittance
    characteristics of ZnO-SiO_2 opals with varied positions of the stop-band and film thicknesses. An improved ultraviolet (UV) luminescence was observed from ZnO-SiO_2 composites over pure ZnO nanocrystals under 325nm He-Cd laser excitation at room temperature. The UV PL of ZnO nanocrystals in SiO_2 opals with stopbands center of 410nm is sensitive to the thickness of opal films, and the UV PL intensity increases with the film thickness increasing. The PL spectra of ZnO nanocrystals in SiO_2 opals with stop-bands center of 570nm show a suppression of the weak visible band. The experimental results are discussed based on the scattering and/or absorbance in opal crystals. 7. The photoluminescence (PL) properties of ZnO films fabricated by electrodeposition were investigated by using annealing treatment at various temperatures and in different atmospheres. The PL spectra are composed of a dominant UV emission and a weak green emission at room temperature. Our experimental reveals that the optimum annealing condition for UV emission exists at 400 8C in N2 atmosphere. A correlation between the UV PL intensity and Raman scattering intensity is first observed below 500 8C both in N2 and 02 atmosphere under resonant excitation. We suggest the 575 cmK1 Raman peak is strongly affected by a non-radiative center, and the intense UV emission of ZnO annealed at 400 8C in N2 atmosphere is due to the reduction of this center. Two different green emission bands are observed, which show different dependences of the PL intensity on the annealing temperature.
引文
[1] U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoc, J. Appl. Phys. 98 (2005) 041301.
    [2] C. W. Bunn, Proc. Phys. Soc. London 47 (1935) 835.
    [3] H. Braekken and C. Jore, Dct Norske Videnskabers Skrifter The Norwe-gian Science Scripts NR8 (1935) 1 in Norwegian
    [4] R. B. Heller, J. McGannon, and A. H. Weber, J. Appl. Phys. 21 (1950) 1283.
    [5] T. B. Rymer and G. D. Archard, Research London 5 (1952) 292.
    [6] A. Cimino, M. Marezio, and A. Santoro, Naturwiss. 12 (1957) 348.
    [7] T. J. Gray, J. Am. Ceram. Soc. 37 (1954) 534.
    [8] G. P. Mohatny and L. V. Azaroff, J. Chem. Phys. 35 (1961) 1268.
    [9] A. A. Khan, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. A24 (1968) 403.
    [10] R. R. Reeber, J. Appl. Phys. 41 (1970) 5063.
    [11] D. C. Reynolds and T. C. Collins, Phys. Rev. 185 (1969) 1099.
    [12] D. G. Thomas, J. Phys. Chem. Solids 15 (1960) 86.
    
    [13] Y. S. Park, C. W. Litton, T. C. Collins, and D. C. Reynolds, Phys. Rev. 143 (1965) 512
    
    [14] R. J. Collins and D. A. Kleinman, J. Phys. Chem. Solids 11 (1959) 190.
    [15] R. L. Weiher, Phys. Rev. 152 (1966) 736.
    [16] W. S. Bear, Phys. Rev. 154 (1967) 785.
    [17] E. Mollwo, Z. Angew. Phys. 6 (1954) 257.
    [18] W. L. Bond, J. Appl. Phys. 36 (1965) 1674.
    [19] W. Y. Liang and A. D. Yoffe, Phys. Rev. Lett. 20 (1968) 59.
    [20] A. R. Hutson, J. Appl. Phys. 32 (1961) 2287.
    [21] J. L. Freeouf, Phys. Rev. B 7 (1973) 3810.
    [22] O. F. Schirmer and D. Zwingel, Solid State Commun. 8 (1970) 1559.
    [23] J. J. Hopfield and D. G. Thomas, Phys. Rev. Lett. 15 (1965) 22.
    [24] R. E. Stephens and I. H. Malitson, J. Res. Natl. Bur. Stand. 49 (1952) 249.
    [25] Y. S. Park and J. R. Schneider, J. Appl. Phys. 39 (1968) 3049.
    [26] G. Heiland, E. Mollwo, and F. Stockmann, Solid State Phys. 8 (1959) 191.
    [27] T. C. Damen, S. P. S. Porto, and B. Tell, Phys. Rev. 142 (1966) 570.
    [28] C. A. Arguello, D. L. Rousseau, and S. P. S. Porto, Phys. Rev. 181 (1969) 1351.
    [29] R. H. Callender, S. S. Sussman, M. Selders, and R. K. Chang, Phys. Rev.B 7 (1973) 3788.
    [30] J. M. Calleja and M. Cardona, Phys. Rev. B 16 (1977) 3753.
    [31] M. Tsuboi and A. Wada, J. Chem. Phys. 48 (1968) 2615.
    [32] S. P. S. Porto and R. S. Krishnan, J. Chem. Phys. 47 (1967) 1009.
    [33] S. S. Mitra, O. Brafman, W. B. Daniels, and R. K. Crawford, Phys. Rev.186 (1969) 942.
    [34] P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, et al, Solid State Commun., 103 (1997) 459.
    
    [35] C. G. Van de Walk, Phys. Rev. Lett.,, 85 (2000)1012.
    [36] S. F. J. Cox, E. A. Davis, S. P. Cottrell, P. J. C. King, J. S. Lord et al, Phys. Rev. Lett., 86 (2001) 2601.
    [37] D. M. Hofmann, A. Hofstaetter, F. Leiter,et al, Phys. Rev. Lett., 88 (2002) Art.No.045504.
    [38] N. H. Nickel, K. Fleischer, Phys. Rev. Lett., 2003, 90:Art. No.197402.
    [39] H. Cao, et al, Appl. Phys. Lett., 73 (1998) 3656-3658.
    [40] S. L. Cho et al, Appl. Phys. Lett., 73 (1998) 3656-3658.
    [41] J. E.Jaffe, J. A. Snyder, Z. Lin, and A. C. Hess, Phys. Rev. B 62, (2000) 1660.
    [42] A. F. Kohan, G. Ceder, D. Morgan, and C. G. Van deWalle, Phys. Rev. B 61 (2000) 15019.
    [43] E. Ohshima, H. Ogino, I. Niikura, K. Maeda, M. Sato, M. Ito, and T.Fukuda, J. Cryst. Growth 260, (2004) 166.
    [44] Please visit the web site http://www.cermetinc.com/products.htm
    [45] J.-M. Ntep, S. S. Hassani, A. Lusson, A. Tromson-Carli, D. Ballutaud, G.Didier, and R. Triboulet, J. Cryst. Growth 207 (1999) 30.
    [46] D. C. Look, D. C. Reynolds, J. W. Hemski, R. L. Jones, and J. R. Sizelove, Appl. Phys. Lett. 75(1999)811.
    [47] A. Y. Polyakov et al., J. Appl. Phys. 94 (2003) 2895.
    [48] S. O. Kucheyev, J. S. Williams, C. Jagadish, J. Zou, C. Evans, A. J. Nelson, and A. V. Hamza, Phys. Rev. B 67 (2003) 094115.
    [49] X. Gu, M. A. Reshchikov, A. Teke, D. Johnstone, H. Morkoc, B. Nemeth, and J. Nause, Appl. Phys. Lett. 84 (2004) 2268.
    [50] F. Hamdani et al, J. Appl. Phys. 83 (1998) 983.
    [51] S. J. Pearton et al., J. Phys.: Condens. Matter 16 (2004) R209.
    [52] S. J. Pearton, W. H. Heo, M. Ivill, D. P. Norton, and T. Steiner, Semicond. Sci. Technol. 19 (2004) R59.
    [53] Henry White 和 Yungryel Ryu http://optoelectronic.jobui.com/blog/71291.html
    [54] Please visit the web site: http://www.zckj.gov.cn/2006-chengguohuibian.htm
    [55] E. Yablonoviteh, Phys. Rev. Lett. 58 (1987) 2059.
    [56] S. John, Phys, Rev, Lett, 58 (1987) 2486.
    
    [57] K. M. Ho, C. T. Chan, C. M. Sonkoulis Eexistence of a photonic gap in periodic dielectric structures. Phys. Rev. Lett., 65 (1990) 3152.
    [58] E. Yablonoviteh, T. J. Gmitter, K. M. Leung, Photonic band structure: the face-centered-cubic case employing nonspherical atoms. Phys. Rev. Lett., 67 (1991) 2295.
    
    [59] S. John, Phys.Today, May (1991) 32.
    
    [60] J. D. Joannopoulos, P. R. Villeneuuve, S. Fan, Nature, 386 (1997) 143.
    
    [61] A. Scherer, T. Doll, E. Yablonovitch, H. O. Everitt, T. A. Higgins, A special issue in J. Lightwave Technol, 17 (1997) 1928.
    
    [62] C. T. Han, K. M. Ho, C. M. Soukoulis, R. Biswas, M. Sigalas, Europhys. Lett, 16 (1991) 563.
    [63] K. M. Ho, C. T. Han, C. M. Soukoulis, R. Biswas, M. Sigalas, Solid State Commun, 89 (1994) 413.
    
    [64] Y. Fink, A. M. Urbas, M. G. Bawendi, J. D. Joannopoulos, E. L. Thomas, J. lightwave Technol, 17 (1999) 1963.
    [65] A. D. Dinsmore, J. C. Crocker, A. G. Yodh, Curr. Opin. Colloid Interface Sci., 3 (1998) 5.
    [66] J. E. G. J. Wijnhoven, W. L. Vos, Science, 281 (1998) 802.
    [67] B. T. Holland, C. F. Blanford, A. Stein, Science, 281 (1998) 538.
    [68] B. Subramanian, V. N. Manoharan, J. D. Thorne, D. J. Pine, Adv. Mater, 11 (1999) 1261.
    [69] E. Yablonoviteh, J. Opt. Soc. Am. B, 10 (1993) 283.
    [70] 怀素兰,章俞之, 胡行为, 无机材料学报, 16 (2000) 193.
    
    [71] H. Ahug, J. Vuakovic, Optics Express, 13 (2005) 8819.
    [72] A. Mekis, J. H. Chen, I. Kurland, Phys. Rev. Lett, 77 (1996) 3787.
    [73] S. Y. Lin, E. Chow, V. Hietala, Science, 282 (1998) 274.
    [76] E. R. Brown, C. D. Parker, E. Yablonoviteh, J. Opt. Soc. Am. B, 10 (1993) 404.
    [77] E. V. Schwoob, et al. Co mpact wavelength monitoring by lateraoutcoupnng in wedged photonic crystalmuhimode waveguides. Appl. Phys. Lett, 86 (2005) 1071.
    
    [78] S. Mahnkopf, M. Kamp, et al. Tunable distributed feedback laser with photonic crystal mirrors. Appl. Phys. Lett. 82 (2003) 2942.
    [79] G. Subramania et al. Tuning the microcavity resonant wavelength in a two-dimensional photonic crystal by modifying the cavity geometry. Appl. Phys. Lett. 83 (2003) 4491.
    
    [80] F. Miyamaru et al. Large polarization change in twc-dimensional metallic photonic crystals in subterahertz region. Appl. Phys. Lett. 82 (2003) 2569.
    
    [81] F. Iu et al. Electrically tunable liquid-crystal photonic crystal fiber. Appl. Phys. Lett. 85 (2004) 218.
    
    [82] Y. A. Vlasov et al. Nature, 438 (2005) 65.
    [83] B. T. Holland, C. F. Blanford, A. Stein, Science, 281 (1998) 538.
    [84] J. E. G. J. Wijnhoven, W. L. Vos, Science, 281 (1998) 802.
    [85] M. E. Turner, T. J. Trentler, V. L. Colvin, Adv. Mater. 13 (2001) 180.
    [86] O. D. Velev, P. M. Tessier, A. M. Lenhoff, E. W. Kaler, Nature, 401 (1999) 548.
    [87] H. Miguez, F. Meseguer, C. Lopez, M. Holgado, G. Andreasen, A. Mifsud, V. Fornes, Langmuir, 16(2000)4405.
    [88] H. W. Yan, C. F. Blanford, B. T. Holland, W. H. Smyrl, A. Stein, Chem. Mater. 12 (2000) 1134.
    [89] H. W. Yan, C. F. Blanford, W. H. Smyrl, A. Stein, Chem. Comm. (2000) 1477.
    [90] G. Subramania, K. Constant, R. Biswas, M. M. Sigalas, K. M. Ho, Appl. Phys. Lett. 74 (1999) 3933.
    [91] G. Subramania, K. Constant, R. Biswas, M. M. Sigalas, K. M. Ho, Synthetic Metals, 116 (2001) 445.
    [92] Z. Z. Gu, S. Hayami, S. Kubo, G. B. Meng, Y. Ginaga, D. A. Tryk, A. Fujishima, O. Sato, J. Am. Chem. Soc. 123 (2001) 175.
    [93] A. A. Zakhidov, R. H. Baughman, Z. Iqbal, C. X. Cui, I. K. hayrullin, S. O. Dantas, J. Marti, V. G. Ralchenko, Science, 282 (1998) 897.
    [94] H. Miguez, A. Blanco, F. Meseguer, C. Loppez, Phys. Rev. B, 59 (1999) 1563.
    [95] A. Blanco, E. Chomski, G. A. Ozin, O. Toader, H. M. V. Driel, Nature, 405 (2000) 437.
    [96] Yi-Cheng Lee, Tsung-Jung Kuo, Chih-Jung Hsu, Ya-Wen Su, Chia-Chun Chen, Langmuir 18(2002)9942.
    [1] 沈学础,《半导体光学性质》,科学出版社.
    [2] 中国科学技术大学 《固体发光》 编写组.《固体发光》.
    [3] 方容川,《固体光谱学》,中国科学技术大学出版社.
    [4] U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoc, J. Appl. Phys. 98 (2005) 041301.
    [5] D. G. Thomas, J. Phys. Chem. Solids 15, 86 (1960).
    [6] Y. S. Park, C. W. Litton, T. C. Collins, and D. C. Reynolds, Phys. Rev. 143 (1965) 512.
    [7] A. Mang, K. Reimann, and St. Rubenacke, Solid State Commun. 94 (1995) 251.
    [8] D. C. Reynolds, D. C. Look, B. Jogai, C. W. Litton, G. Cantwell, and W. C. Harsch, Phys. Rev. B 60 (1999) 2340.
    [9] W. R. L. Lambrecht, A. V. Rodina, S. Limpijumnong, B. Segall, and B. K. Meyer, Phys. Rev. B 65 (2002) 075207.
    [10] A. Teke, U. Ozgur, S. Dogan, X. Gu, H. Morkoc, B. Nemeth, J. Nause, and H. O. Everitt, Phys. Rev. B 70 (2004) 195207.
    [11] W. Shan, W. Walukiewicz, J. W. Ager Ⅲ, K. M. Yu, H. B. Yuan, H. P. Xin, G. Cantwell, J. J. Song, Appl. Phys. Lett. 86 (2005) 191911.
    [12] L. Bergman, X. B. Chen, J. L. Morrison, J. Huso, A. P. Purdy, J. Appl. Phys., 96 (2004) 675.
    [13] C. F. Li, H. Y. S. uang, L. Malikova, F. H. Pollak, Phys. Rev. B 55 (1997) 9251.
    [14] D. S. Jiang, H. Jung, K. Ploog, J. Appl. Phys. 64 (1988) 1371.
    [15] P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, et al., Solid State Commun., 103 (1997) 459.
    [16] 曾辉,杨亚培,戴基智,饶建珍,陈俊,光学仪器,28 (2006) 86.
    [17] 张蜡宝,熊予莹,费贤翔,康凤,大学物理,25 (2006) 49.
    [18] 张晓玉,姚汉民,杜春雷,等.光电子·激光,15(2004)835.
    [19] 宋俊峰,付艳萍,刘杨,等.半导体光电,2(2000)214.
    [20] Q. Chen, Y. Z. Huang, W. H. Guo, et al.半导体学报,24(2003)1233.
    [1] W. Stober, A. Fink, E. Bohn, J. CoLloid Interface Sci., 26 (1968) 62.
    [2] P. Jiang, J. F, Bertone, K. S. Hwang, V. L. Colvin, Chem. Mater., 11 (1999) 2132.;
    [3] B. T. Holland, C. E Blanford, T. Do,; A. Stein, Chem. Mater., 11 (1999) 795.
    [4] S. L. Kuai, X. F. Hu, A. Hache, V. V. Truong, J. Cryst. Growth, 267 (2004) 317.
    [5] L. Spanhel, M. A. Anderson, J. Am. Chem. Soc. 113 (1991) 2826
    [6] T. Yoshida, D. Komatsu, N. Shimokawa, H. Minoura, Thin Solid Films 451-452 (2004) 166.
    [1] J. F. Galisteo-Lopez, E. Palacios-Lidon, E. Castillo-Martinez, C. Lopez, Phys. Rev. B 68 (2003) 115109.
    [2] A. F. Koenderink, L. Bechger, H. P. Schriemer, A. Lagendijk, W. L. Vos, Phys. Rev. Lett. 88 (2002) 143903.
    [3] P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. L. Vanmaekelbergh, W. L. Vos, Nature 430 (2004) 654.
    [4] S. Wong, V. Kitaev, G. A. Ozin, J. Am. Chem. Soc. 125 (2003) 15589.
    [5] S. G. Romanova, A. V. Fokin, R. M. De La Rue, Appl. Phys. Lett. 74 (1999) 1821.
    [6] J. F. Galisteo-Lopez, F. Lopez-Tejeira, S. Rubio, C. Lopez, J. Sanchez-Dehesa, Appl. Phys. Lett 82 (2003) 4068.
    [7] R. F. Service, 1997 Science 276 895; Y. Z. Yoo, T. Sekiguchi, T. Chikyow, M. Kawasaki, T. Onuma, S. F. Chichibu, J. H. Song, Appl. Phys. Lett. 84 (2004) 502.
    [8] A. F. Koenderink and W. L. Vos, Phys. Rev. Lett. 91 (2003) 213902.
    [9] L. Spanhel, M. A. Anderson, J. Am. Chem. Soc. 113 (1991) 2826
    [10] A. Van Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, A. Meijerink, J. Lumin. 90 (2000) 123; A. Van Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, A. Meijerink, J. Phys. Chem. B 104 (2000) 1715
    [11] H. Miguez, F. Meseguer, C. Lopez, A. Blanco, J. S. Moya, J. Requena, A. Mifsud, and V. Fornes, Adv. Mater. 10 (1998) 481
    [12] M. Megens, J. E. G. J. Wijnhoven, A. Lagendijk, W. L. Vos, J. Opt. Soc. Am. B 16 (1999) 1403
    [13] S. G. Romanov, A. V. Fokin, R. M. De La Rue, Appl. Phys. Lett. 74 (1999) 1821
    [14] V. G. Solovyev, S. G. Romanov, D. N. Chigrin, C. M. Sotomayor Torres, Synthetic Met. 139 (2003) 601
    [15] X. H. H. Wu, A. Yamilov, H. Nob, H. Cao, E. W. Seelig, R. P. H. Chang, J. Opt. Soc. Am. B 21 (2004) 159; F. J. Garciia de Abajo, Phys. Rev. B 60 (1999) 6089
    [16] T. Yamasaki, K. Sumioka, and T. Tsutsui, Appl. Phys. Lett. 76 (2000) 1243
    [17] K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, J. A. Voigt, Appl. Phys. Lett. 68 (1996) 403; A. Van Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, A. Meijerink, J. Lumin. 87-89 (2000) 454; A. Van Dijken, E. A. Meulenkamp, A. Meijerink, J. Lumin. 92 (2001)323
    [18] V. G. Solovyev, S. G. Romanov, D. N. Chigrin, C. M. Sotomayor Torres, Synthetic Met. 139 (2003) 601.
    [19] B. Guo, Z. R. Qiu, K. S. Wong, Appl. Phys. Lett. 82 (2003) 2290.
    [20] H. Miguez, V. Kitaev, G. A. Ozin, Appl. Phys. Lett. 84 (2004) 1239.
    [21] G. A. Emelchenko, A. N. Gruzintsev, V. V. Masalov, E. N. Samarov, A. V. Bazhenov, E. E. Yakimov, J. Opt. A: Pure Appl. Opt. 7 (2005) S213.
    [1] A, Stein, R. C. Schroden, Colloidal crystal templating of three-dimensionally ordered macroporous solids: materials for photonics and beyond. Curt. Opin. Solid State Mater. Sci., 5 (2001) 553.
    [2] K. Lee, S. A. Asher, J. Am. Chem. Soc., 122 (2000) 9534.
    [3] J. H. Holtz, S. A. Asher, Nature, 389 (1997) 829.
    [4] S. A. Asher, V. L. Alexeev, A. V. Goponenko, A. C. Sharma, I. K. Lednev, C. S. Wilcox, D. N. Finegold, J. Am. Chem. Soc., 125 (2003) 3322.
    [5] A. C. Sharma, T. Jana, R. Kesavamoorthy, L. J. Shi, M. A. Virji, D. N. Finegold, S. A. Ashes; J. Am. Chem. Soc., 126 (2004) 2971.
    [6] S. Nishimura, N. Abrams, B. A. Lewis, L. I. Halaoui, T. E. Mallouk, K. D. Benkstein, J. van de Lagemaat, A. J. Frank, J. Am. Chem. Soc., 125 (20036306.
    [7] J. M. Weissman, H. B. Sunkara, A. S. Tse, S. A. Asher, Science, 274 (1996) 959.
    [8] C. Lopez, Adv. Mater., 15 (20031679
    [9] P. Jiang, M. J. McFarland, J. Am. Chem. Soc., 126 (2004) 13778.
    [10] S. Wong, V. Kitaev, G. A. Ozin, J. Am. Chem. Soc., 125 (2003) 15589.
    [11] Y. N. Xia, B. Gates, Y. D. Yin, Y. Lu, Adv. Mater., 12 (2000) 693
    [12] Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A Ohtomo, H. Koinuma and Y. Segawa, Appl. Phys. Lett., 72 (19983270
    [13] V. V. Ursaki, I. M. Tiginyanu, V. V. Zalamai, V. M. Masalov, E. N. Samarov, G. A. Emelchenko, F. Briones, J. Appl. Phys., 96 (2004) 1001
    [14] A. Gruzintsev, V. Volkov, G. A. Emelchcnko, I. A. Karpov, W. M. Maslov, G. M. Michailov, E. E. Yakimov, Thin Solid Films, 459 (2004111.
    [15] V. V. Ursaki, I. M. Tiginyanu, V. V. Zalamai, E. V. Rusu, G. A. Emelchenko, V. M. Masalov, E. N. Samarov, Phys. Rev. B, 70 (2004) 155204.
    [16] S. M. Abrarov, S. U. Yuldashev, S. B. Lee, T. W. Kang, J. lumin., 109 (2004) 25
    [17] Y. L. Yang, B. F. Yang, Z. R u, H. W. Yan, Z. Wang, W. W. Dong, L. S. Xia, W. Q. Liu, J. Zuo, F. Q. Li, J. Phys.: Condens. Matter, 16 (20047277
    [18] T. Sumida Y. Wada, T. Kitamura, S. Yanagida, Chem. Lett. (2001) 38.
    [19] M. Scharrer, X. Wu, A. Yamilov, H. Cao, R. P. H. Chang, Appl. Phys. Lett., 86 (2005) 151113.
    [20] H. W. Yah, Y. L. Yang, Z. P. Fu, B. F. Yang, L. S. Xia, S. Q. Fu, F. Q. Li, Electrochem. Commun., 7 (2005) 1122.
    [21] L. Bergman, X. B. Chen, J. L. Morrison, J. Huso, A. P. Purdy, J. Appl. Phys., 96 (2004) 675.
    [22] K. A. Alim, V. A. Fonoberov, M. Shamsa, A. A. Balandin, J. Appl. Phys., 97 (2005) 124313.
    [23] K. A. Alim, V. A. Fonoberov, A. A. Balandin, Appl. Phys. Lett., 86 (2005) 053103.
    
    |24] X. B. Chen, J. L. Morrison, J. Huso, L. Bergman, A. P. Purdy, J. Appl. Phys., 97 (2005) 024302.
    
    [25] W. Stober, A. Fink, E. Bohn, J. Colloid Interface Sci., 26 (1968) 62. B. T. Holland, C. F. Blanford, T. Do, A. Stein, Chem. Mater., 11 (1999) 795.
    
    [26] P. Jiang, J. F. Bertone, K. S. Hwang, V. L. Colvin, Chem. Mater., 11 (1999) 2132. S. L. Kuai, X. F. Hu, A. Hache, V. V. Truong, J. Cryst. Growth, 267 (2004) 317.
    [27] C. F. Li, Y. S. Huang, L. Malikova, F. H. Pollak, Phys. Rev. B, 55 (1997) 9251.
    [28] D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, M. Y. Shen, T. Goto, Appl. Phys. Lett., 73 (1998) 1038.
    [29] B. Guo, Z. R. Qiu, K. S. Wong, Appl. Phys. Lett., 82 (2003) 2290.
    [30] D. S. Jiang, H. Jung, K. Ploog, J.Appl. Phys., 64 (1988) 1371.
    [31] Y. Zhang, B. X. Lin, X. K. Sun, Z. X. Fu, Appl. Phys. Lett., 86 (2005) 131910.
    [32] V. A. Fonoberov, A. A. Balandin, Phys. Rev. B, 70 (2004) 233205.
    [33] R. P. Wang, G. Xu, P. Jin, Phys. Rev. B, 69 (2004) 113303.
    [34] T. B. Hur, G. S. Jeen, Y. H. Hwang, H. K. Kim, J. Appl. Phys., 94 (2003) 5787.
    [35] C. J. Youn, T. S. Jeong, M. S. Han, J. H. Kim, J. Cryst. Growth, 261 (2004) 526.
    [36] X. T. Zhang, Y. C. Liu, Z. Z. Zhi, J. Y. Zhang, Y. M. Lu, D. Z. Shen, W. Xu, G. Z. Zhong, X. W. Fan, X. G. Kong, J. Phys. D Appl. Phys., 34 (2001) 3430.
    [37] T. Makino, C. H. Chia, N. T. Tuan, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, H. Koinuma, Appl. Phys. Lett., 76 (2000) 3549.
    [38] H. D. Sun, T. Makino, N. T. Tuan, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, H. Koinuma, Appl. Phys. Lett., 78 (2001)2464.
    [39] S. J. Chen, Y. C. Liu, C. L. Shao, R. Mu, Y. M. Lu, J. Y. Zhang, D. Z. Shen, X. W. Fan, Adv. Mater., 17(2005)586.
    [40] M. Colocci, M. Curioli, A. Vinattieri, J. Appl. Phys., 68 (1990) 2809.
    [1] U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoc, J. Appl. Phys. 98 (2005) 041301.
    
    [2] H. M. Cheng, H. C. Hsu, Y. K. Tseng, L. J. Lin, and W. F. Hsieh, J. Phys. Chem. B 109 (2005) 8749.
    [3] K. A. Alim, V. A. Fonoberov, and A. A. Balandin, Appl. Phys. Lett. 86 (2005) 053103.
    [4] Y. J. Xing, Z. H. Xi, Z. Q. Xue, X, D. Zhang, J. H. Song, R. M. Wang, J. Xu, Y. Song, S. L. Zhang, and D. P. Yu, Appl. Phys. Lett. 83 (2003) 1689.
    [5] Z. Q. Chen, A. Kawasuso, Y. Xu, H. Naramoto, X. L. Yuan, T. Sekiguchi, R. Suzuki, and T. Ohdaira, J. Appl. Phys. 97 (2005) 013528.
    [6] Z. Q. Chen, A. Kawasuso, Y. Xu, H. Naramoto, X. L. Yuan, T. Sekiguchi, R. Suzuki, and T. Ohdaira, Phys. Rev. B 71 (2005) 115213.
    [7] A. Kaschner, U. Haboeck, M. Strassburg, M. Strassburg, G. Kaczmarczyk, A. Hoffmann, C. Thomsen, A. Zeuner, H. R. Alves, D. M. Hofmann, and B. K. Meyer, Appl. Phys. Lett. 80, (2002)1909.
    [8] C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E. M. Kaidashev, M. Lorenz, and M. Grundmann, Appl. Phys. Lett. 83 (2003) 1974.
    [9] D. Li, Y. H. Leung, A. B. Djurisic, Z. T. Liu, M. H. Xie, S. L. Shi, S. J. Xu, and W. K. Chan, Appl. Phys. Lett. 85 (2004) 1601.
    [10] F. J. Manjon, B. Mari, J. Serrano, and A. H. Romero, J. Appl. Phys. 97 (2005) 053516.
    [11] H. W. Yan, Y. L. Yang, Z. P. Fu, B. F. Yang, L. S. Xia, S. Q. Fu, and F. Q. Li, Electrochem. Commun. 7(2005)1117.
    [12] L. Spanhel and M. A. Anderson, J. Am. Chem. Soc. 113 (1991) 2826.
    [13] A. van Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, J. Lumin. 87-89, (2000)454.
    [14] N. S. Norberg and D. R. Gamelin, J. Phys. Chem. B 109 (2005) 20810.
    [15] S. Peulon and D. lincot, J. Electrochem. Soc. 145 (1998) 864.
    [16] T. Pauporte and D. Lincot, Electrochimica Acta 45, 3345 (2000); Q. T. Wang, G Z. Wang, J. S. He, X.H. Han, B. Xu and J. G. Hou, Thin Solid Films 492 (2005) 61.
    
    [17] H. Zhou, H. Alves, D. M. Hofmann, W. Kriegseis, B. K. Meyer, G. Kaczmarczyk, and A. Hoffmann, Appl. Phys. Lett. 80 (2002) 210.
    
    [18] X. J. Feng, L. Feng, M. H. Jin, J. Zhai, L. Jiang, and D. B. Zhu, J. Am. Chem. Soc. 126 (2004) 62.
    [1] Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma and Y. Segawa, Appl. Phys. Lett. 72 (1998) 3270.
    [2] Z. Q. Chen, S. Yamamoto, M. Maekawa, A. Kawasuso, X. L. Yuan and T. Sekiguchi, J. Appl. Phys. 94 (2003) 4807.
    [3] A. F. Kohan, G. Ceder, D. Morgan and C. G. Van de Walle, Phys. Rev. B 61 (2000) 15019.
    [4] D. Li, Y. H. Leung, A. B. Djurisic, Z. T. Liu, M. H. Xie, S. L. Shi, S. J. Xu and W. K. Chan, Appl. Phys. Lett. 85 (2004) 1601.
    [5] B. X. Lin, Z. X. Fu and Y. B. Jia, Appl. Phys. Lett. 79 (2001) 943.
    [6] K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant and J. A. Voigt, Appl. Phys. Lett. 68 (1996) 403.
    [7] X. L. Wu, G. G. Siu, C. L. Fu and H. C. Ong, Appl. Phys. Lett. 78 (2001) 2285.
    [8] M. Liu, A. H. Kitai and P. Mascher J. Lumin. 54 (1992) 35.
    [9] R. Dingle, Phys. Rev. Lett. 23 (I969) 579; N. Y. Garces, L. Wang, L. Bai, N. C. Giles, L. E. Halliburton and G. CantweII, Appl. Phys. Lett. 81 (2002) 622.
    [10] Z. Q. Chen, A. Kawasuso, Y. Xu, H. Naramoto, X. L. Yuan, T. Sekiguchi, R. Suzuki and T. Ohdaira, J. Appl. Phys. 97 (2005) 013528.
    [11] H. S. Kang, J. S. Kang, J. W. Kim and S. Y. Lee, J. Appl. Phys. 95 (2004) 1246.
    [12] M. Izaki and T. Omi, Appl. Phys. Lett. 68 (1996) 2439.
    [13] N. Saito, H. Haneda, T. Sekiguchi, T. Ishigaki and K. Koumoto, J. Electrochem. Soc. 151 (2004) H169.
    [14] Y. M. Sun, Ph.D. thesis, University of Science and Technology of China, July, 2000.
    [15] B. X. Lin, Z. X. Fu, Y. B. Jia and G. H. Liao, J. Electrochem. Soc. 148 (2001) G110.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.