蚯蚓在植物修复重金属污染土壤中的应用可行性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物修复(phytoremediation)这种新兴的绿色生物技术应用于治理重金属污染土壤时,超积累植物生物量小、土壤中重金属生物有效性低是该项技术成功应用的主要限制因素。近年来提出的螯合诱导—植物修复技术虽能提高修复效率,但缺点是环境风险大,成本高。因此,寻求安全、经济的技术途径已成为当前急需研究的课题。
     本文以红黏土红壤、长江冲积物形成的高砂土和香港灰化土为供试土壤,分别加入Cu(0,100,200,400 mg/kg)或Cd(0,5,10,20 mg/kg)模拟土壤污染,设置接种蚯蚓(Pheretima sp.)与不接种蚯蚓处理,通过培养试验、盆栽黑麦草(Lolium multiflorum)试验、接种菌根(Glomus mosseae+Glomus intraradices)实验等,研究蚯蚓对植物生物量和土壤中重金属生物有效性的影响,揭示蚯蚓对土壤—植物系统中重金属化学行为作用机理,为蚯蚓在植物修复技术中的应用与发展提供理论依据。
     供试蚯蚓是对重金属的忍耐品种,但土壤重金属的污染明显抑制蚯蚓的生长。在高砂土和红壤中,蚯蚓对Cd的富集系数分别为2.78~3.41和3.08~3.84,说明蚯蚓对Cd具有明显的富集作用;Cu的富集系数分别为0.13~0.16和0.18~0.28,蚯蚓对Cu则是部分吸收。蚯蚓活动增加了高砂土Cu、Cd各处理中黑麦草地上部分的产量,增产幅度为33%~96%,且随重金属浓度的升高而降低。蚯蚓活动增加红壤Cu处理中黑麦草地上部分的产量,增产幅度为0~40%,对Cd处理中的产量无显著影响。蚯蚓活动显著提高了红壤和高砂土中速效N的含量,增加幅度分别为11%~56%、24%~94%,而对两种土壤上速效P和K的含量以及黑麦草中P、K含量没有明显影响。增加土壤速效N含量,提高植物对N的吸收,进而促进植物生长,是蚯蚓活动增加生物量的机理之一。
     酸性红壤接种蚯蚓后pH显著降低,降低幅度为0.03~0.18个pH单位,而高砂土的pH则略有升高。蚯蚓活动增加了红壤中DTPA-Cu、CaCl_2-Cu和H_2O-Cd的含量;但对高砂土中Cu和Cd的各形态含量没有明显影响。土壤中三种形态的Cd含量与土壤pH均呈负相关,其中CaCl_2-Cd达到极显著水平(-0.950~¨)。蚯蚓通过影响土壤pH,进而影响土壤中重金属的生物有效性,或通过影响土壤pH值,进而影响蚓粪中重金属的生物有效性。蚯蚓活动没有增加黑麦草地上部分重金属含量,但由于生物量的显著增加,增加了黑麦草对Cu的吸收总量。这对提高植物修复效率具有重要意义。
     在灰化土上和设定的Cd浓度范围内,菌根侵染率不受添加Cd浓度的影响,平均
    
    虹蝴在植物修复重金属污染土壤中的应用可行性研究
    侵染率为22%,加入蛆川能使菌根的侵染率提高9%.但接种菌根,对蛆川的生长率影
    响没有呈现明显的规律性.仅接种菌根能显著增加土壤中速效N、P和可溶性有机碳
    的含量以及黑麦草对N、P的吸收,但没有提高黑麦草地上部的产量,原因是菌根侵
    染促进了黑麦草对Cd的吸收,抑制了植物生长。接种菌根不仅能促进黑麦草对Cd的
    吸收,而且还能促进Cd从植物的根部向地上部分转移,这对提高植物修复效率有重
    要意义.
     蛆州与菌根的相互作用,除了增加黑麦草对N的吸收外,在增加土壤速效养分、
    植物对养分的吸收、提高植物产量、降低土壤PH、提高土壤重金属活性和植物对重金
    属的吸收方面没有显著的协同作用。当添加cd的浓度大于10mg/kg时,接种菌根可
    部分地抑制蛆川对植物的增产作用。
     洲粪中H20一Cd和DTPA一cd含量均显著高于相应处理的土壤中的含量,Cacl厂Cd
    含量则显著低于土壤中的含量.蛆川通过摄取含重金属的土壤,经体内研磨消化排泄
    等作用,以及分泌大量粘液蛋白对重金属的络合作用,增加了HZO一Cd和DTPA一Cd的
    含量,这是蛆川提高土壤中重金属活性的主要机理之一同时接种菌根后,川粪中三
    种形态的含量均低于仅接种蛆川的处理,可见接种菌根后部分抑制了蛆洲对土壤中cd
    的活化作用.由于川类中三种形态的cd含量与黑麦草吸收呈极显著的正相关,而圳
    粪中HZO一Cd和DTPA一cd含量均高于土壤中的含量。因此,川粪中有效态Cd是植物吸
    收Cd的重要供源。
     上述研究表明,蛆州在重金属污染土壤上仍能提高土壤速效养分含量,促进植物
    生长;蛆州能通过多种机理活化土壤中重金属,提高其植物有效性,但其作用大小因
    土壤性质而异;菌根真菌与蛆洲虽没有表现出更好的协同作用,但其能促进植物对重
    金属的吸收和转移.因此,蛆圳和菌根有很大潜力提高植物修复的效率,进一步的研
    究需要在超积累植物上进行.
Phytoremediation of heavy metals in contaminated soil has been widely accepted as a cost-effective, environmental-friendly technology. Metal-accumulating plants are usually planted to remove metals from soils by concentrating them in the harvestable parts, while the efficiency depends on the amount of aboveground biomass and the bioavailabililty of metals. Though addition of chelating agents has been shown to increase metal bioavailabililty and phytoremediation efficiency, it costs too much and shows environmental risk.
    Three soils, Red soil from Jiangxi Province, Orthic aquisols from Jiangsu Province and Podzol from Hongkong, were used in the experiments. Soils were amended respectively to contain 0, 100, 200, 400 mg Cu kg-1 and 0, 5, 10 and 20 mg Cd kg-1 by adding appropriate concentrations of CuSO4 and CdCl2. By comparing with treatments with and without earthworm (Pheretima sp.) in earthworm culture experiment ryegrass (Lolium multiflorum) planting experiment and mycorrhiza {Glomus mosseae + Glomus intraradices) inoculation experiment, the objective of this study was to investigate the effects of earthworm on the plant biomass and bioavailability of heavy metal in soils, to show the mechanisms of earthworm effect on chemical behavior of heavy metal in soil-plant system, and to provide theoretic base for the application of earthworm in phytoremediaton.
    The used earthworms can tolerate heavy metals, but their growth was negatively affected by heavy metal pollution in soil. Earthworm enriched Cd significantly but not for Cu, and the Cd enrichment coefficients in Orthic aquisols and Red soil were 2.78~3.41 and 3.08~3.84 respectively, while the Cu enrichment coefficients were only 0.13~0.16 and 0.18~0.28 respectively. In Orthic aquisols with Cu or Cd addition, earthworm activity increased ryegrass aboveground biomass by 33%~96%, but the increment decreased with the increasing heavy metal application in soil. And in Red soil with Cu addition, earthworm activity also increased ryegrass aboveground biomass by about 0~40%, but had little effect in Red soil with Cd addition. Earthworm activity markedly enhanced concentration of available N in Red soil and Orthic aquisols by 11%~56% and 24%~94% respectively, but had little effect on available P and K contents in two soils and P and K content in ryegrass.
    
    
    One of the mechanisms that earthworm activity enhanced plant biomass is by increasing soil available N and plant absorbing N, consequently improving plant growth.
    The pH of Red soil decreased by 0.03-0.18 units in the presence of earthworm, but pH of Orthic aquisols increased slightly. Earthworm activity increased concentrations of DTPA-Cu, CaCl2-Cu and H2O-Cd in Red soil, but had little effect on fractions of Cu and Cd in Orthic aquisols. Soil pH was negatively correlated with each fraction of Cd in soil, and the correlation between soil pH and CaCl2-extractable Cd content was the most significant, the coefficient was -0.950**. So by affecting soil pH, earthworm activity affects bioavailability of heavy metal in soil or in earthworm cast. Though concentration of heavy metal in plant tissue did not increased, total uptake of Cu by ryegrass was enhanced by earthworm activity for the biomass increment. This is important for enhancing efficiency of phytoremediation.
    The mean mycorrhiza infection rate of root was about 22%, and it was not affected by Cd addition in Podzol, but it increased by 9% in the presence of earthworm. But mycorrhiza inoculation had no regular effect on earthworm growth rate. Mycorrhiza inoculation enhanced concentration of available N P and dissoluble organic carbon in soil and increased uptake of N and P by ryegrass, but did not increased ryegrass aboveground biomass. The reason is that mycorrhiza infection improved uptake of Cd by ryegrass, consequently restrained ryegrass growth. Mycorrhiza inoculation improved not only uptake of Cd by ryegrass but also transfer of Cd from root to shoot. This is beneficial to phytoremediation efficiency.
    Except in enhancing uptake of N by ryegrass,
引文
Abdul MM, Abdul R (1996a) Concentrations et croissance de lombriciens et de plantes dans des sols contamines ou non par Cd, Cu, Fe, Pb et Zn: interactions sol-lombricien. Soil Biol Biochern 28(8): 1029-1035
    Abdul MM, Abdul R (1996b) Concentrations et croissance de lombriciens et de plantes dans des sols contamines ou non par Cd, Cu, Fe, Pb et Zn: interactions plante-soilLombricien. Soil Biol Biochem 28(8): 1037-1044
    Abdul MM, Abdul R (1996c) Effet des lombriciens sur L'Absorption du potassium par le raygrass dans des sols contamines par cinq elements traces. Soil Biol Biochem 28(8):1045-1051
    Albuzio A, Ferrari G, Nardi S (1986) Effects of humic substances on nitrate uptake and assimilation in barley seedings. Canadian Journal of Soil Science 66:731-736
    Ames RN, Reid CPP, Porter LK, Cambardella C (1983) Hyphal uptake and transport of nitrogen from two 15N-labelled sources by Glomus mosseae, a vesicular-arbuscular mycorrhizal fungus. New Phytologist 95:381-396
    Anderson TA, Coats JR (1994) Bioremediation Through Rhizosphere Technology. ACS Symposium Series No. 563. American Chemical Society, Washington, DC, USA
    Azcon R, Azcon-Aguilar C, Barea JM (1978) Effect of plant hormones present in bacterial cultures on the formation and responses to VA endomycorrhiza. New Phytol 80:359-364
    Bagyaraj DJ, Menge JA (1978) Interaction between a VA mycorrhiza and Azotobacter and their effects on rhizophere microflora and plant growth. New Phytol 80:567-573
    Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements. A review of their distribution, ecology and phytochemistry. Biorecovery 1: 81-126
    Baker AJM, McGrath RD, Reeves RD, Smith AC (2000) Metal hyperaccumulator plants: A review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. P. 85-107. In: Terry N and Banuelos G (ed.) Phytoremediation of contaminated soil and water. Lewis Publishers, Boca Raton, FL
    Baker AJM, McGrath SP, Sidoli CDM, Reeves RD (1994) The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Resour. Conserv. Recyc. 11:41-49
    
    
    Bansal M, Mukerji KG (1994) Efficacy of root litter as a biofertilizer. Biol Fertil Soils 18:228-230
    Barea J M and Jeffries P (1995) Arbuscular mycorrhizas in sustainable soil plant systems, p. 521-559. In B. Hock, and A. Varma (ed.), Mycorrhiza structure, function, molecular biology and biotechnology. Springer-Verlag, Heidelberg, Germany.
    Bauer-Hilty A, Dallinger R and Berger B (1989) Isolation and partial characterization of a cadmium-binding protein from Lumbricus variegates (Oligochaeta, Annelida). Comp Biochem Physiol 94c: 373-379
    Bengtson G et al. (1992) Evolutionary response of earthworms to long-term metal exposure Oikos, 63(2): 289~297,48 ref
    Beyer W N and Staffard C (1993) Survey and evaluation of contamination in earthworms and in soils derived from dredged material at confined disposal facilities in the Great Lakes region, Environmental Monitoring and assessment, 24(2): 151~165 45 ref
    Bhadauria T, Ramakrishnan PS (1996) Role of earthworms in nitrogen cycling during the cropping phase of shifting agriculture (Jhum) in north-east India. Biol Fertil Soils 22:350-354
    Blaszkowski J (1993) Effects of five Glomus spp.(Zygomycetes) on growth and mineral nutrition of Triticum aestivum L.Acta Mycologica,28(2):201-210
    Blaylock M J, Salt D E., Dushenkov S, et al. (1997) Ⅰ. Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ. Sci. Tectmol. 31: 860-865.
    Bonaventure C, Johnson FM (1997) Healthy environments for healthy people. Bioremediation today and tomorrow. Environ. Health Perspect 105:5-20
    Bonkowski M, Griffiths BS, Ritz K (2000) Food preferences of earthworms for soil fungi. Pedobiologia 44:666-676
    Boyer J, Michellon R, Chabanne A, et al (1999) Effects of trefoil cover crop and earthworm inoculation on maize crop and soil organism in Reunion Island. Biol Fertil Soils 28:364-370
    Boyle M et al (1989) The influence of organic matter on soil aggregation and water infiltration. J Prod Agdc 2:290-299
    Brown G G. (1995) How do earthworm affect microfloral and faunal community diversity? Plant Soil, 170:209~231.
    Brussaard L (1999) On the mechanisms of interactions between earthworm and plants. Pedobiogia 43(6): 880-885
    Burkert B, Robson A (1994) 65Zn uptake in subterranean clover (Trifolium subterraneum
    
    L.) by three vesicular-arbuscular mycorrhizal fungi in a root-free sandy soil. Soil Biology and Biochemistry 26:1117-1124
    Butt KR, Frederickson J, Morris RM (1995) An earthworm cultivation and soil inoculation technique for land restoration. Ecol Eng 4:1-9
    Caroline JL, Trevor GP, Andrew AM, Kirk TS (2003) Interactions between earthworms and arsenic in the soil environment: a review. Environmental Pollution 124:361-373
    Chao CC, Wang YP (1991) Effects of heavy metals on vesicular-arbuscular mycorrhizae and nitrogen fixation of soybean in major soil groups of Taiwan. J Chin Agric Chem Soc 29:290-300
    Chaudhry F M. (1970) Effects of nitrogen, copper and zinc nutrition of wheat, Aust. J. Agric. Res., 2: 865~879.
    Chaudhry TM, Hayes WJ, Khan AG, Khoo CS (1998) Phytoremediation-focusing on accumulator plants that remediate metal contaminated soils. Australasian J. Ecotoxicol. 4:37-51
    Chaudry TM, Hill L, Khan AG; Keuk C (1999) Colonization of iron and zinc-contaminated dumped filter cake waste by microbes, plants and associated mycorrhizae. 276-283. In:Wong MH, Baker AJM (ed.) Remediation and management of degraded land. CRC Press, Boca Raton, FL
    Cheng JM, Wong MH (2002) Effects of earthworms on Zn fractionation in soils. Biol Fertil Soils 36:72-78
    Clay K (1987) Effects of fungel endophytes on the seed and biology of Lolium perenne and Festuca arundinacea. Oecologia,73:358-362
    Cortez J, Hameed R (1988) Effects de la maturation des litieres de raygrass (Lolium perenne L.) dans le sol surleur consommation et leur assimilation par Lumbricus terrestris L. Revue d'Ecologie et de Biologic du Sol 25(4)
    Cortez J, Hameed R, Bouche MB (1989) C and N transfer in soil with or without earthworms fed with 14C-and 15N-labelled wheat straw. Soil Biol Biochem 21(4): 491-497
    Cunningham SD, Berti WR, Huang JW (1995) Phytoremediation of contaminated soils. Trends in Biotech. 13:393-397
    Curl EA (1986) The Rhizosphere. Berlin: Springer Verlag. 209-230
    Curry JP (1998) The ecology of earthworms in reclaimed soils and their influence on soil fertility. In: Edwards CA ed. Earthworm Ecology. St. Lucie Press. 253-261
    
    
    Czupyma C, Mcldean AI, Levy RD, Gold H (1989) In situ immobilization of heavy-metalcontaminated soils. Noyes Deta Comporation, New Jersey
    Dallinger R (1996) Metallothionein research in terrestrial invertebrates: Synopsis and perspectives. Comp Biochem Physiol 113c: 125-133
    Dallinger R, Berger B, Gruber C, Hunziker P and Sturzenbaum S (2000) Metallothioneins in terrestrial invertebrates: structural aspects, biological significance and implications for their use as biomarkers. Cell Mol Biol 46:331-346
    Devliegher W, Verstraete W (1996) Lumbricus terrestris in a soil core experiment: effectd of nutrient enrichment processes (NEP) and gut-associated processes (GAP) on the availability of plant nutrients and heavy metals. Soil Biol Biochem 28:489-496
    Devliegher W, Verstraete W (1997) The effect of Lumbricus terrestfis on soil in relation to plant growth: effect of nutrient enrichment processes (NEP) and associated processes (GAP). Soil Biol Biochem 29:341-346
    Diaz G, Azcón-Aguilar C, Honrubia M (1996) Influence of arbuscular mycorrhizae on heavy metal (Zn and Pb) uptake and growth of Lygeum spartum and Anthyllis Cytisoides. Plant and Soil 180:241-249
    Diaz G, Honrubia M (1993) Infectivity of mine soils from southeast Spain. 2. Myeorrhizal population levels in spoilt sites. Mycorrhiza 4:85-88
    Dushenkov V, Kumar PBAN, Motto H, Radkin I (1995) Rhizofiltration: the use of plants to remove heavy metals from aqueous streams. Environ Sci Technol 29:1239-1245
    Ebbs, SD. and Kochian, LV. (1997) Toxicity of zinc and copper to brassica species: Implication for phytoremediation,J Environ. Qual. 26(3): 776~781
    Ebbs, SD. and Kochian, LV. (1998) Phytoextraction of zinc by oat(Avena Stativa), barley(Hordeam vValgare), and Indian mustard(Brassica juncea).Environ. Sci. Technol. 32(6): 802~806
    Edwards CA (1988) Breakdown of animal, vegetable and industrial organic wastes by earthworm. In: Edwards CA and Neuhauser EP Eds. Earthworms in waste and environmental management. S.P.B. Academic, The Hugue, 21-31
    Edwards CA, Abe T, Striganova BR (1995) Structure and Function of Soil Community. Kkyoto: Kyoto University Press. 86-72
    Edwards CA, Bater JE (1992) The use of earthworms in environmental management. Soil Biol Biochem 24:1683-1689
    
    
    Edwards CA, Bohlen PJ (1996) Biology and Ecology of Earthworm. London: Chapman Hall. 151-168
    Edwards CA, Lofty JR (1972) Biology of Earthworms. Chapman & Hall, London. Edwards CA & Lofty JR, 1973-Pesticides and earthworms. Report of Rothamated Experimentel Station for 1972, Part 1972, 1,212
    Edwards CA, Lofty JR (1978) The influence of arthropods and earthworms upon root growth of direct drilled cereals. Journal of Applied Ecology 15:789-795
    Edwards CA, Lofty JR. (1977) Biology of Earthworms. Second edition. Chapman and Hall, London.
    El-Khherbawy M, Angle JS, heggo A ,Chaney RL (1989) Soil pH, rhizobia, and vesiculararbuscular mycorrhizae inoculation effects on growth and heavy metal uptake of alfalfa (Medicago sativa L.). Biol Fertil Soils 8:61-65
    Elliott HA, Linn JH, Shields GA (1989) Role of Fe in extractive decontamination of Pbpolluted soils. Haz. Waste Haz. Mater 6:223-228
    Ernst WHO (1996) Bioavailability of heavy metals and decontamination of soil by plants. Appl. Geochem. 11:163-167
    Faber BA, Zasoski RJ, Burau RG, Uriu K (1990) Zinc uptake by corn affected by vesiculararbuscular mycorrhizae. Plant Soil 129:121-130
    Fischer E, Koszoruds L (1992) Sub lethal effects, accumulation capacities and elimination rotes of As, Hg and Se in the manure worm, Eisenia fetida (Oligochaeta, Lumbricidae). Pedobiologia 36: 172-178
    Gange A (1993) Translocations of mycorrhizal fungi by earthworms during early succession. Soil Biol. Biochem 25:1021-1026
    George E, Romheld V, Marschner H. (1994) Contribution of mycorrhizai fungi to micronutrient uptake by plants. In: Manthey J A, Crowley D E, Luster D G eds. Biochemistry of Metal Micronutrients in the Rhizosphere. Boca Raton, Florida:CRC Press, Inc, 93~109
    Gildon A, Tinker PB (1981) A heavy metal tolerant strain ofa mycorrhizal fungus. Trans Br Mycol Soc 77:648-649
    Gildon A, Tinker PB (1983) Interactions of vesicular-arbuscular mycorrhizal infection and heavy metals in plants. 1. The effects of heavy metals on the development of vesiculararbuscular mycorrhizas. New Phytol 95:247-261
    Graham JH, Timmer LW, Fardelmann D (1986) Toxicity of fungicidai copper in soil to
    
    Citrus seedings and vesicular-arbuscular mycorrhizal fungi. Phytopathology 76:66-70
    Griffioen WAJ and Ernst EHO (1989) The role of VA-mycorrhiza in the heavy metal tolerance of Agrostis capillaries L. Agric. Ecosyst. Environ. 29, 173-177
    Griffioen WAJ, Ietswaart JH, Ernst WHO (1994) Mycorrhizal infection of an Agrostis capillaries population on a copper contaminated soil. Plant Soil 158:83-89
    Guo Y, George E, Marschner H (1996) Contribution of an arbuscular mycorrhizal fungus to the uptake of cadmium and nickel in bean and maize plants. Plant and Soil 184:195-205
    Hammeed R, Bouche MB, Cortez J (1994) Etudes in situ des transferts d'origine lombricienne (Lumbrieus terrestris L.) vers les plantes. Soil Biol Biochem 26(4): 495-501
    Harley JL, Harley EL (1987) A check-list of mycorrhiza in the British flora. New Phytol 105:1-102
    Harley JL, Smith SE (1983) Mycorrhizal Symbiosis. London: Academic Press
    Hattingh MJ, Gray LE, Gerdemann JW (1973) Uptake and translocation of 32P-labelled phosphate to onion roots by endomycorrhizal fungi. Soil Science 116:383-387
    Hegde RS, Fletcher JS (1996) Influence of plant growth stage and season on the release of root phenolics by mulberry as related to development of phytoremediation technology. Chemosphere 32:2471-2479
    Heggo, A, Angle, JS, Chaney, R.L. (1990) Effects of vesicular-arbuscular mycorrhizal fungi on heavy metal uptake by soybeans. Soil Biol. Biochem. 22, 865-869.
    Hetrick BAD, Wilson GWT, Figge DAH (1994) The influence of mycorrhizal symbiosis and fertilizer zmendments on establishment of vegetation in heavy metal mine spoil. Environ Pollut 86:171-179
    Hu F, Li HX (2000) Organic Matter Decomposition in Red Soil as Affected by Earthworms. Pedosphere, 9:143~148.
    Huang J, Chen J, Berti W R, et al. (1997) Phytoremediation of lead-contaminated soils: role of synthetic chelates in lead phytoremediation. Environ. Sci. Technol. 31: 800~805.
    Ireland MP (1975) The effect of the earthworm Dendrobaena rubida on the solubility of lead, zinc and calcium in heavy metal contaminated soil in Wales. Journal of Soil Science 26:313-318
    Ireland MP (1978) Heavy metal binding properties of earthworm chloragosomes. Acta Biol Acad Sci Hung 29:385-394
    
    
    Ireland MP and Richards KS (1977) The occurrence and localization of heavy metals and glycogen in the earthworms Lumbricus rubellus and Dendrobaena rubida froma heavy metal site. Histochemistry 51:153-166
    Joner EJ, Leyval C (1997) Uptake of ~(109)Cd by roots and hyphae of a Glomus mosseae/Trifolium subterraneum mycorrhiza from soil amended with high and low concentrations of cadmium. New Phytol 135:353-360
    Khan AG, Chaudhry TM, Hayes WJ, Khoo CS, Hill L, Fernandez R, Gallardo P (1998) Physical, chemical and biological characterization of a steelworks waste site at Port Kembla, NSW, Australia. Water, Air Soil Pollut. 104:389-402
    Khan AG, Kuek C, Chaudhry TM, Khoo CS, Hayes WJ (2000) Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere 41: 197-207
    Killham K (1985) Vesicular-arbuscular mycorrhizal mediation of trace and minor element uptake in perennial grasses: relation to livestock herbage. In: Fitter AH, Atkinson D, Read DJ, Usher MB (eds) Ecological interactions in soil: plant, microbes and animals. Blackwell, Palo Alto, Calif, pp 225-232
    Killham K, Firestone MK (1983) Vesicular arbuscular mycorrhial mediation of grass response to acidic and heavy metal depositions. Plant Soil 72:39-48
    Kling J (1997) Phytoremediation of organics moving rapidly into field trials. Environ. Sci. Technol. 31: A129
    Koomen I, McGrath SP, Giller KE (1990) Mycorrhizal infection of clover is delayed in soils contaminated with heavy metals from past sewage sludge applications. Soil Biol Biochem 22:871-873
    Kothari SK, Marschner H, Romheld V (1991) Contribution of the VA mycorrhizal hyphae in acquisition of phosphorus and zinc by maize grown in a calcerous soil. Plant Soil 131:177-185
    Kucey RMN, Janzen HH (1987) Effects of VAM and reduced nutrient availability on growth and phosphorus and micronutrient uptake of wheat and field beans under greenhouse conditions. Plant and Soil 104:71-78
    Kumar P, Dushenkov V, Motto H and Raskin I. (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ. Sci. Technol. 29: 1232~1238.
    Lambert DH, Baker DE, Cole H (1979) The role of mycorrhizae in the interactions of phosphorus with zinc, copper and other elements. Soil Sci Soc AMJ 43:976-980
    
    
    Landberg T, Greger M (1997) Use of willow with high cadmium accumulation properties in soil purification. In: Proceedings of the 3rd international coference on the biogeochemistry of trace elements, 15-20 May 1995, Paris
    Langdon C J, Piearce TG, Meharg AA, Semple KT (2001) Survival and behaviour of the earthworms Lumbricus rubellus and Dendrodrilus rubidus from arsenate-contaminated and non-contaminated sites. Soil Biol Biochem 33:1239-1244
    Lasat MM (2002) Phytoextraction of toxic metals: a review of biological mechanisms. J Environ Qual 31:109-120
    Lavelle P, Lattaud C, Trigo D, et al. (1995) Mutualism and biodiversity in soils. Plant Soil 170:23-33
    Lavelle P, Rangel P, Kanyonyo J. (1983) Intestnal mucus production by two species of tropical earthworm: Millsortia lamtoiana (Megascolecidae) and Pontoscolex corethrurus (Glossoscolecidae). Proc.8th Intl Colloq Soil Zoology, Belgium. 405~410.
    Laverack MS (1963) The physiology of earthworms. In: Kerkut AG Ed. International series monograph on pure and applied biology. Pergamon Press, Oxford, 18-23
    Lebron Ligia, Zou XM, Lodge DJ (1998) Disturbance VA mycorrhizae by earthworm in a pasture and a forest in Puerto Rico. 2nd International Conference on Mycorrhiza, Uppsala, SWEDEN, 5-10 July 1998
    Lee K E. (1985) Earthworms: their ecology and relationships with soils and land uses. Academic Press, Sydney.
    Leyval C, Berthelin J, Schontz D, Weissenhorn I, Morel JL (1991) Influence of endomycorrhizas on maize uptake of Pb, Cu and Cd applied as mineral salts or sewage sludge. In: Farmer JG (ed) Heavy metals in the environment. CEP Consultants, Edinburgh, pp 204-207
    Leyval C, Singh BR, Joner EJ (1995) Occurrence and infectivity of arbuscular mycorrhizal fungi in some Norwegian soils influenced by heavy metals and soil properties. Water Air Soil Pollut 84:203-216
    Leyval C, Turnau K, Haselwandter K (1997) Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza 7:139-153
    Li XL, Christie P (2000) Changes in soil solution Zn and pH and uptake of Zn by arbuscular mycorrhizal red clover in Zn-contarninated soil. Chemosphere 42, 201-207.
    Li XL, Marschner H, George E (1991) Acquisition of phosphorus and copper by VA-
    
    mycorrhizal hyphae and root-to-shoot transport in white clover. Plant and soil 136:49-57
    Linderman RG (1988) Mycorrhizal interactions with rhizophere microflora: the mycorrhizosphere effect. Phytopathology 78:366-371
    Loth FG, Hofner W (1995) Einfluss der VA-Mykorrhiza auf die Schwermetallaufnahme von Haler (Avena sativa L.) in Abhangigheit vom Kontaminationsgrad der Boden. Z Pflanzenemaehr Bodenk 158:339-345
    Manuel CM (2000) Ecology: Concepts and Applications, New York, McGraw-Hill. 150-153
    Markert B (1994) Plants as Biomonitors for Heavy Metal Pollution of the Terrestrial Environment. VCH, Weinheim.
    McBride MB (1989) Reaction controlling heavy metal solubility in soils. Adv Soil Sci 10:1-56
    McEldowney S, Hardman D J, Waite S (1993)Treatment Technologies. In: McEldowney S, Hardman J, Waite S (eds.), Pollution Ecology and Biotreatment Technologies. Longman, Singapore Publishers, Singapore
    McGee PA (1987) Alteration of growth of Solanum opacnm and Plantago drummomdii and inhibition of regrowth of hyphae of vesicular-arbuscular mycorrhizal fungi from dried root pieces by manganese. Plant Soil 101:227-233
    McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 115:495-501
    McNeil KR, Waring S (1992) Vitrification of contaminated soils. In: Rees JF (ed.) Contaminated Land Treatment Technologies, Society of Chemical Industry. Elsevier, London. Pp. 143-159
    Meier J r et al. (1997) Use of plant and earthworm bioassays to evaluate remediation of soil from a site contaminated with polychlorininated biphenyls, Environmental Toxicology and Chemistry 16(5): 928-938 40 ref
    Michael Bonkowski, Cheng WX, Bryan SG, Jrn A, Stefan S (2000)Microbial-faunal interactions in the rhizosphere and effects on plant growth. Eur J Soil Biol 36:135-147
    Miller RM, Jastrow JD (1992) The role of mycorrhizal fungi in soil conservation. In: Bethlenfalvay GJ (eds). Mycorrhizae in sustainable Agricilture. Madison: Special Publication. 54:29-44
    
    
    Moody SA, Briones MJI, Piearce TG, Dighton J (1995) Selective consumption of decomposing wheat straw by earthworms. Soil Biol Biochem 27:1209-1213
    Morgan AJ and Morris B (1982) The accumulation and intracellular compartmentation of cadmium, lead, zinc and calcium in two earthworm species (Dendrobaena rubida and Lumbricus rubellus) living in highly contaminated soil. Histochemistry 75:269-285
    Morgan AJ, Morgan JE, Turner M, Winters C, Yarwood A (1993) Metal relationships of earthworms. In: Ecotoxicology of Metals in Invertebrates (Dallinger R, Rainbow PS, eds), pp.333-358. Lewis Publishers, Boca Raton, FL, USA
    Morgan JE and Morgan AJ (1989) Zinc sequestration by earthworm (Annelida:Oligochaeta) chloragocyte. Histochemistry 90:405-411
    Morgan JE, Morgan AJ (1990) The distribution of cadmium, copper, lead, zinc and calcium in the tissues of the earthworm Lumbricus rubellus sampled from one uncontaminated and 4 polluted soils. Oecologia 84:559-566
    Morgan JE, Morgan JA, Kretzschmar A (1992) Heavy metal concentration in the tissues, ingesta and faeces of ecophysiobiologically different earthworm species. Soil Biol Biochem 24:1691-1697
    Morgan JE, Norey CG, Morgan AJ and Kay J (1989) A comparison of the cadmiumbinding proteins isolated from the posterior alimentary canal of the earthworms Dendrodrilus rubidus and Lumbricus Rubellus. Comp Biochem Physiol 92C: 15-21
    Muscolo A, Felici M, Concheri G, Nardi S (1993) Effect of earthworm humic substances on esterase and peroxidase activity during growth of leaf explants of Nicotiana plumbginifolia. Biology and Fertility of Soils 15:127-131
    Negri MC, Hinchman RR (1996) Plants that remove contaminants from the environment. Lab. Med. 27:36-40
    Pawlowska TE, Blaszkowski, Ruhling A (1996) The mycorrhizal status of plants colonizing a calamine spoil mound in southern Poland. Mycorrhiza 6:499-505
    Piccolo A (1996) Humic Substances in Terrestrial Ecosystems. Elsevier Science BV
    Pizl V, Josens G (1995) Earthworm communities along a gradient of urbanization. Environ Pollut 90:7-14
    Post K, Marschner H, Romheld V (1994) Manganese reduction in the rhizosphere of mycorrhizal and nonmycorrhizal maize. Mycorrhiza 5:119-124
    Raman N, Sambandan S (1998) Distribution of VAM fungi in tannery effluent polluted soils of Tamil Nadu. India Bull Contamin Toxicol 60:142-150
    
    
    Ramseier S, Haerdi W, Honsberger P, Martin M, Cuendet G, Tarradellas J (1989) Bioaccumulation of cadmium by Lumbricus terrestds. Toxical. Environ. Chem 22: 189-196
    Rao PSC, Davis GB, Johnson CD (1996) Technologies for enhanced remediation of contaminated soils and aquifers: an overview, analysis, and case studies. In: Naidu R, Kookana RS, Oliver DP, Rogers S, McLaughlin MJ (eds.) Contaminated and the Soil Environment in the Australia Pacific Region. Kluwer Academic Publishers, London, pp.361-410
    Raskin I, Kumar PBAN, Dushenkov V, Salt DE (1994) Bioconcentration of heavy metals by plants. Current Opin. Biotech. 5:285-290
    Reeves R D and Brooks R R (1983) Hyperaccumulation of lead and zinc by two metal aphytes from mining areas of central Europe. Environ. Pollut. Ser. A. 31:277-285
    Rhee J A (1976) Some aspects of the productivity of orchard in relation to earthworms activities. Ann. Zool. Ecol. Anim. Special publ. 4: 99~108.
    Rogers RD, Williams SE (1986) Vesicular-arbuscular mycorrhiza: influence on plant uptake of caesium and cabalt. Soil Biol Biochem 18:371-376
    Salt DE, Blaylock M, Kumar NPBA, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13:468-474
    Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu. Rev. Plant Physiol. Plant Mol Biol 49:643-668.
    Scheu S (1991) Mucus excretion and carbon turnover of endogeic earthworms. Biol Fertil Soils 12:217-220
    Schuepp H, Dehn B, Sticher H (1987) Interaktionen zwischen VA-Mykorrhizen und Schwermetallbelastungen. Angew Bot 61:85-95
    Sebastien S, Mcbride MB, Norvell WA, et al. (1997) Copper solubility and speciation of in situ contamination soils: effects of copper level, pH and organic matter. Water, Air and Soil Pollution 100:133-140
    Sharpley AN, Syetrs JK, Springett JA (1979) Effect of surface-casting on the transport of phosphorus and nitrogen in surface runoff from pasture. Soil Biology &Biochemistry 11:459-462
    Shetty KG, Hetrick BAD, Figge DAH, Schwab AP (1994) Effects of mycorrhizae and other soil microbes on revegetation of heavy metal contaminated mine spoil. Environ Pollut
    
    86:181-188
    Smith B (1993) Remediation update funding the remedy. Waste Manage. Environ. 4:24-30
    Smith SE, Read DJ (1997) Mycorrhizal Symbiosis. Second ed. Academic Press, London, pp. 127-160\Other-ref.
    Spurgeon DJ, Hopkin SP (1999) Tolerance to zinc in populations of the earthworm Lumbricus rubellus from uncontaminated and metal-contaminated ecosystems. Arch Environ Contain Toxicol 37:332-337
    Spurgeon DJ, Hopkin SP, Jones DT (1994) Effects of cadmium, copper, lead and zinc on growth ,reproduction and survival of the earthworm Eisenia fetida (Savigny): assessing the environmental impact of point-source metal contamination in terrestrial ecosystems. Environ Pollut 84:123-130
    Spurgeon DJ, Svendsen C, Rimmer VR, Hopkin SP, Weeks JM (2000) Relative sensitivity of life-cycle and biomarker responses in four earthworm species exposed to zinc. Environ Tox Chem 7:1800-1808
    St John, Coleman TV, Reid DC, CPP (1983) Growth and spatial distribution of nutrientabsorbing organs: selective placement of soil heterogeneity. Plant and Soil 71:487-493
    Stockdill SMJ, Cossens GG (1969) Earthworms, a must for maximum production. New Zealand Journal of Agriculture 119:61-67
    Subler S, Kitsch AS (1998) Spring dynamics of soil carbon, nitrogen and microbial activity in earthworm middens in a no-till cornfield. Biol Fertil Soils 26:243-249
    Suzuki KT, Yamamura M and Mori T (1980) Cadmium-binging proteins induced in the earthworm. Arch Environm Contain Toxicol 9:415-424
    Svendsen C, Weeks JM (1997a) Relevance and applicability of a simple earthworm biomarker of copper exposure. Ⅰ. Links ecological effects in a laboratory study with Eisenia andrei. Ecotox Environ Safety 36:72-79
    Svendsen C, Weeks JM (1997b) Relevance and applicability of a simple earthworm biomarker of copper exposure. Ⅱ. Validation and application under field conditions in a mesocosm experiment with Lumbricus rubellus. Ecotox Environ Safety 36:80-88
    Syers JK, Sharpley AN, Keeney DR (1979) Cycling of nitrogen by surface-casting earthworms in a pasture ecosystem. Soil Biology & Biochemistry 11: 181-185
    Takács T, Biró B, Vrs I (2001) Arbuscular mycorrhiza effect on heavy metal uptake of ryegrass (Lolium perenne L.) in pot culture with polluted soils. In: Horst WJ, et al. (Eds.) Plant nutrition-Food security and sustainability of ago-ecosystems. 480-481
    
    
    Tang SR, Huang CY, Zhu ZX (1997) Commelina communis L: Copper hyperaccumulator found in Anhui Province of China. Pedosphere 7(3): 207-210
    Thompson JP (1990) Soil sterilization methods to show VA-mycorrhizae aid P and Zn Nutrition of wheat in vertisols. Soil Biol Biochem 22:229-240
    Thompson-Eagle ET, Frankenburger WT (1992) Bioremediation of Soils Contaminated with Selenium. In: Lal R, Stewart BA (eds.) Advances in Soil Sciences. Springer, New York, pp. 261-310
    Timothy BP, Edwin CB (1994) Nitrogen transformations associated with earthworm casts. Soil Biol Biochem 26(9): 1233-1238
    Tisdall JM, Oades JM (1979) Stabilization of soil aggregates by the root systems of ryegrass. Aust J Soil Res 17:429-441
    Tonin C, Vandenkoornhuyse P, Joner EJ, Straczek, Leyval C (2001) Assessment of arbuscular mycorrhizal fungi diversity in the rhizosphere of Viola calaminaria and effect of these fungi on heavy metal uptake by clover. Mycorrhiza 10:161-168
    Tuin BJW, Tels M (1991) Continuous treatment of heavy metal contaminated clay soil by extraction in stirred tanks and counter current column. Environ. Technol. 12:178-190
    van Gestel CAM, van Dis WA (1998) The influence of soil characteristics on the toxicity of four chemicals to earthworm Eisenia fetida andrei (Oligochaeta). Biol Fertil Soil 6: 262-265
    Vassil AD, Kapulink Y, Raskin I et al. (1998) The role of EDTA in lead transport and accumulation by Indian mustard. Plant Physiol 117(20:447~453
    Vidal MT, Azcon-Aguilar C, Barea JM (1996) Effects of heavy metals (Zn, Cd and Cu) on arbuscular mycorrhiza formation. In: Azcon-Aguilar C, Barea JM (eds) Mycorrhizas in integrated systems: from genes to plant development. European Commission, EUR 16728, Luxembourg, pp 487-490
    Vimmersted JP, Finney JH (1973) Impact of earthworm introduction on litter burial and nutrient distribution in Ohio stripmine spoil banks. Soil Sci Soi Amer Proc. 37:388-391
    Wang C L, Michels P C, Dawson S C, et al. (1997) Cadmium removal by a new strain of Pseudomonas aeruginosa in aerobic culture. Appl. Environ. Microbiol. 63:4075~4078
    Wang YP, Chao CC (1992) Effects of vesicular-arbuscular mycorrhizae and heavy metals on the growth of soybean and phosphate and heavy metal uptake by sorbean in major soil groups of Taiwan. J Agric Assoc China New Ser 157:6-20
    
    
    Watanabe ME (1997) Phytoremediation on the brink of commercialization. Environ. Sci. Technol. 31:182-186
    Weeks JM, Svendsen C (1996) Neutral-red retention by lysosomes from earthworm coelomocytes: A simple biomarker for exposure of soil invertebrates. Environ Toxicol Chem 15:1801-1805
    Weissenhorn I, Leyval C (1995) Root colonization of maize by a Cd-sensitive and a Cdtolerant Glomus mosseae and cadmium uptake in sand culture. Plant Soil 175:233-238
    Weissenhorn I, Leyval C, Belgy G, Berthelin J (1995a) Arbuscular mycorrhizal contribution to heavy metal uptake by maize(Zea mays L.) in pot culture with contaminated soil. Mycorrhiza 5:245-251
    Weissenhorn I, Leyval C, Berthelin J (1995c) Bioavailability of heavy metals and abundance of arbuscular mycorrhiza in a soil polluted by atmospheric deposition from a smelter. Biol Fertil Soils 19:22-28
    Weissenhom I, Mench M, Leyval C (1995b) Bioavailability of heavy metals and arbuscular mycorrhiza in a sewage-sludge-amended sandy soil. Soil Biol Biochem 27(3): 287-296
    Wheeler W (1994) Site Remediation: An Australia perspective on best practice. In: Cole J (eds.) Environmental Management Industry Association of Australia Year Bool 1994, Executive Media Pry. Ltd., Waterloo, NSW, Australia, pp. 156-160
    Wilkinson DM, Dickinson NM (1995) Metal resistance in trees: the role of mycorrhizae. Oikos 72:298-300
    Willems JJGM, Marinissen JCY, Blair J (1996) Effects of earthworms on nitrogen mineralization. Biol Fertil Soils 28:57-63
    Winding A, Ronn R, Hendriksen NB (1997) Bacteria and protozoa in soil microhabitats as affected by earthworms. Biol Fertil Soil 24:133-140
    Write SF, Upadhyaya A (1998) A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhiza fungi. Plant and Soil 198: 97-107
    Xian X,邵孝候(1991)PH对污染土壤中Cd,Zn和Pb的化学形态及植物有效性的影响.土壤学进展,19(3):34—37
    Yang XE, Shi WY, Fu QX, et al. (1998) Copper-hyperaccumulators of Chinese native plants: Characteristics and possible use for phyto-remediation. In: Bassam NEL, ed. Sustainable Agriculture for Food, Energy and Industry. London: James and James Publishers 484-489
    
    
    Yu TR (1997) Chemistry of variable charged soils. Oxford University Press, New York
    Zak JC, Danielson RM, Parkinson D (1982) Mycorrhizal fungal spore numbers and species occurrence in two amended mine spoils in Alberta, Canada. Mycologia 74:785-790
    Zhang H, Schrader S (1993) Earthworm effects on selected physical and chemical properties of soil aggregates. Biol Fertil Soil 15:229-234
    Zhu Y, Christie P, Laidlaw AS (2000) Uptake of Zn by arbuscular mycorrhizal white clover from Zn-contaminated soil. Chemosphere, 42, 193-199.
    陈满怀等著.土壤—植物系统中的重金属污染.北京:科学出版社,1996.
    陈能场,陈怀满.重金属在根际中的化学行为.土壤学进展,1993,21(1):9-14
    陈同斌,陈志军.土壤中溶解性有机质及其对污染物吸附和解吸行为的影响.植物营养与肥料学报1998,4(3):201-210
    陈同斌,韦朝阳,黄泽春等.砷超富集植物蜈蚣草及其对砷的富集特性.科学通报47(3):207-210
    城乡建设环境保护部环境保护局主编.环境监测分析方法.北京:中国环境科学出版社,1986.
    邓继福,王振中,张友梅等.重金属污染对土壤动物群落生态影响的研究.环境科学,1996,17(2):1—5
    丁疆华,温琰茂,舒强.土壤环境中镉、锌形态转化的探讨.城市环境与城市生态,2001,14(2):47-49
    戈峰,刘向辉,潘卫东等.蚯蚓在德兴铜矿废弃地生态恢复中的作用.生态学报2001.21(11):1790—1795
    郭永灿,王振中,赖勤等.株洲工业区土壤重金属污染与蚯蚓同工酶的研究.应用生态学报,1995.6(3):317—322
    郭永灿,王振中,张友梅等.重金属对蚯蚓的毒性毒理研究.应用与环境生物学报,1996,2(1):132—140
    韩清鹏,成杰民,周娟等.蚯蚓活动对锌污染土壤中氮素转化影响的研究.江苏农业研究,2001,22(3):34-38.
    胡锋,武心齐,李辉信,吴珊眉.蚯蚓和蚁类活动对红壤性质的影响.见:何圆球,杨艳生主编.红壤生态系统研究(第5集).北京:中国农业科技出版社,1998,276-285.
    胡佩,刘得辉,胡锋.蚓粪中得植物激素及其对绿豆插条不定根发生得促进作用.生态学报,2002,22(8):1211-1214
    
    
    胡秀仁,卢晓清等.养殖蚯蚓处理城市生活垃圾的重金属元素迁移规律研究.上海环境科学,1990,9(7):20-23.
    黄福珍.蚯蚓.北京:农业出版社,1982.
    黄艺,陈有键,陶澍.菌根植物根际环境对污染土壤中Cu、Zn、Pb、Cd形态的影响.应用生态学报,2000,11(3):431-434
    蒋先军,骆永明,赵其国b.土壤重金属污染的植物提取修复技术及其应用前景.农业环境保护,2000,19(3):179-183
    蒋先军,骆永明,赵其国等a.重金属污染土壤的植物修复研究Ⅰ金属富集植物Brassica juncea对铜、锌、铅、镉污染的响应,土壤,2000,32(20):71-74
    金国贤,张莘民.植物根圈污染生态研究进展.农村生态环境,2000,16(3):46-50
    李辉信,胡锋,沈其荣等.接种蚯蚓对秸杆还田土壤碳、氮动态和作物产量的影响.应用生态学报,2002,13(12):1637-1641
    李淑芬,俞元春,何晟.土壤溶解有机碳的研究进展.土壤与环境2002,11(4):422-429
    李晓林,曹一平.VA菌根吸收矿质养分的机制.土壤,1993,25:274-277
    廖继佩,林先贵等.从枝菌根真菌与重金属的相互作用对玉米根际微生物数量和磷酸酶活性的影响.应用与环境生物学报,2002,8(4):408-413
    刘清.重金属形态与生物毒性及生物有效性关系的研究进展.环境科学,1996,47(1):89~92.
    骆永明.金属污染土壤的植物修复.土壤1999,5:261—265
    骆永明.强化植物修复的螯合诱导技术及其环境风险.土壤,2000,32(20):57-61.
    牛明芬,崔玉珍.蚯蚓对垃圾与底泥中镉的富集现象.农村生态环境,1997,13(3):53-54.
    沈宏,曹志洪 长期施肥对不同农田生态系统土壤有效碳库及碳素有效率的影响.热带亚热带土壤科学.1998,7(1):1-5
    史瑞和.土壤农化分析.北京:农业出版社,1996.
    宋勇春,冯固,李晓林.泡囊丛枝菌根对红三叶草根际土壤磷酸酶活性的影响.应用与环境生物学报,2000,6(2):171-175
    唐世荣,黄昌勇,朱祖祥.利用植物修复污染土壤研究进展.环境科学进展,1996,4(6):10-16
    
    
    王振中,张友梅等.土壤重金属污染对蚯蚓影响的研究.环境科学学报,1994,14(2):236~243.
    魏树和,周启星,张凯松,梁继东.根际圈在污染土壤修复中的作用与机理分析.应用生态学报,2003,14(1):143-147
    吴龙华,骆永明,黄焕忠.铜污染土壤修复的有机调控研究Ⅰ水溶性有机物和EDTA对污染红壤中铜的释放作用.土壤,2000,32(20):62~66
    吴龙华,骆永明,卢晓晖,黄焕忠.重金属污染土壤的有机调控研究Ⅱ根际土壤铜的有机活化效应.土壤,2000,32(20):67~70
    杨肖娥,龙新宪,倪吾钟,傅承新.东南景天(Sedum alfredii H)——一种新的锌超积累植物.科学通报2002,47(13):1003—1006
    余贵芬,蒋新,孙磊,王芳,卞永荣.有机物质对土壤镉有效性的影响研究综述.生态学报,2002,22(5):770-776
    俞协治,成杰民.蚯蚓对土壤中铜、镉生物有效性的影响.生态学报,2003,23(5):922-928
    袁可能.土壤化学.北京:农业出版社,1990.
    张敬锁,李花粉,衣纯真等.有机酸对活化土壤中镉和小麦吸收镉的影响.土壤学报,1999,36(1):61-66
    张立宏和许光辉.微生物和蚯蚓的协同作用对土壤肥力影响的研究.生态学报,1990,10(2):116—120
    张友梅,王振中,郭永灿等.土壤污染对蚯蚓的影响.湖南师范大学自然科学学报,1996,19(3):84—90
    朱亮,邵孝侯.耕作层中重金属Cd形态分布规律及植物有效性研究.河海大学学报.1997,25(3):50-56
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.