七氟醚预处理抑制TNF-α诱导的血管内皮细胞炎症反应及机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的(1)建立人脐静脉内皮细胞(HUVEC)体外培养方法,探讨肿瘤坏死因子-a (TNF-a)对HUVEC表达细胞间粘附分子(ICAM-1)、血管细胞间粘附分子(VCAM-1)的影响,筛选出TNF-a诱导粘附分子表达的最适浓度和时间;研究七氟醚预处理对HUVEC表达ICAM-1、VCAM-1及中性粒细胞粘附的影响;(2)研究七氟醚预处理对TNF-a诱导的血管内皮细胞NF-κB信号转导通路激活的影响,为七氟醚预处理抗炎作用的机制提供理论和实验依据;(3)探讨eNOS-NO信号系统对七氟醚预处理在体外培养的血管内皮细胞抗炎效应的影响。
     研究方法实验分为三个部分:(1)原代细胞培养参照参考文献报道方法并加以改进,通过形态学观察和免疫细胞化学法对细胞进行鉴定;应用Western blot及实时荧光定量PCR方法,检测不同浓度TNF-a (0、1ng/ml、2.5ng/ml、10ng/ml、40ng/ml)处理内皮细胞4小时,以及TNF-a (10ng/ml)作用不同时间(0、2h、4h、12h)后ICAM-1、VCAM-1蛋白及mRNA的表达,确定TNF-a诱导血管内皮细胞粘附分子稳定表达的最佳作用浓度和时间;然后将体外培养的HUVEC分为空白对照组、1.5MAC七氟醚组、10ng/ml TNF-a组以及10ng/ml TNF-a+0.5MAC、1.5MAC或2.5MAC七氟醚预处理组,分别检测七氟醚对TNF-a诱导HUVEC表达粘附分子及中性粒细胞粘附的影响。(2)应用核浆分离技术和Western blot方法,观察10ng/mlTNF-a刺激对HUVEC的IκBα、p-IκBα、核浆\胞浆内NF-κB/p65亚基蛋白水平的影响及其时间趋势;将体外培养的HUVEC分为空白对照组、1.5MAC七氟醚单独刺激组、lOng/ml TNF-a单独刺激组以及1.5MAC七氟醚预处理组,检测各组细胞IκB-α、p-IκB-α以及核浆\胞浆内NF-κB/P65亚基蛋白在各自变化高峰时点的水平。(3)分别以0.0.5MAC、1.5MAC和2.5MAC七氟醚预处理体外培养的HUVEC,应用western blot法检测p-eNOS和eNOS的蛋白水平,Griess reagent法检测细胞培养上清液中总NO含量,DAF-FM DA荧光探针法检测细胞内的NO含量;将体外培养的HUVEC分为10ng/ml TNF-a单独刺激组、1.5MAC七氟醚+10ng/ml TNF-a刺激组、eNOS抑制剂L-NAME组,并检测各相应时点的细胞培养上清液中总NO含量、细胞内NO含量以及p-eNOS\eNOS、IκB-a\p-IκB-α、核浆\胞浆内NF-KB/P65蛋白水平以及ICAM-1\VCAM-1的蛋白、mRNA水平和中性粒细胞与HUVEC的粘附率,确定eNOS-NO信号系统是否介导了七氟醚预处理在血管内皮细胞的抗炎作用。
     研究结果(1)改良的HUVEC的体外培养方法是成功的,经相差显微镜观察以及Ⅷ因子染色证实培养的细胞(97.5%)为HUVEC,10ng/ml的TNF-a处理HUVEC后,VCAM-1、ICAM-1在4h明显升高,之后稳定表达,台盼蓝染色显示95%以上细胞存活良好,TNF-a诱导HUVEC稳定表达粘附分子的最佳作用浓度为10ng/ml,时间为4h。与TNF-a单独刺激血管内皮细胞比较,1.5、2.5MAC七氟醚预处理明显降低TNF-a诱导血管内皮细胞的ICAM-1和VCAM-1蛋白及mRNA表达水平,并降低了中性粒细胞粘附率(P<0.05)。(2)10 ng/ml TNF-a刺激内皮细胞后,IκBa发生降解,同时磷酸化水平上调,随之p65亚基向核内移位,IκBa降解及磷酸化水平上调的时间高峰为30分钟,p65亚基入核的高峰时间为60分钟(P<0.01);在各检测指标变化的高峰时点,与空白对照组比较,1.5MAC七氟醚单独刺激组细胞的IKBa蛋白降解、p-IκBa蛋白水平以及NF-KB/p65蛋白亚基的入核没有显著变化,而1.5MAC七氟醚预处理组IκBa蛋白降解、p-IκBa蛋白水平以及NF-KB/p65蛋白亚基的入核较TNF-a单独刺激组的有明显抑制(P<0.05)。(3)与空白对照组比较,1.5MAC和2.5MAC七氟醚预处理组的p-eNOS的表达明显增加,且p-eNOS/eNOS比值有显著性增高(P<0.05),且细胞培养上清液中总NO含量显著增加(P<0.05),细胞内NO含量有明显增加;与七氟醚预处理组比较,L-NAME组的细胞内p-eNOS/eNOS、NO含量及细胞培养上清液中总NO含量明显下降(P<0.05),同时,细胞的IKBa蛋白降解、p-IκBa蛋白表达水平以及NF-KB/p65蛋白亚基的入核、ICAM-1\VCAM-1的蛋白及mRNA水平和中性粒细胞粘附率均有显著性增加(P<0.05)。
     研究结论(1)七氟醚预处理抑制TNF-a诱导的血管内皮细胞粘附分子表达及与中性粒细胞的粘附;(2)七氟醚预处理下调TNF-a诱导的内皮细胞NF-κB信号通路激活,这可能介导了七氟醚预处理在TNF-a诱导的血管内皮细胞炎症反应中的抗炎作用;(3)七氟醚预处理促进血管内皮细胞eNOS磷酸化和随后的NO生成,进而抑制TNF-a诱导的NF-κB信号通路的激活,减轻了血管内皮细胞炎症反应。
Objective (1) To establish culturing technique of HUVECs in vitro. To investigate the effects of TNF-a on the expression of ICAM-1, VCAM-1 of HUVECs and then to decide the optimal action time course and concentration. To investigate the inhibitory effects of sevoflurane pretreatment with different concentration on the expression of ICAM-1, VCAM-1 in TNF-a-induced HUVECs and neutrophils adhesion to HUVECs induced by TNF-a. (2) To investigate the effects of sevoflurane pretreatment on the activity of NF-κB signal transduction pathway in TNF-a-induced HUVECs, so as to provide theoretical and experimental evidence for the mechanism of anti-inflammatory effects of sevoflurane pretreatment. (3) To explore the effects of eNOS-NO signal system on anti-inflammatory effects of sevoflurane pretreatment on vascular endothelial cells in vitro.
     Methods The study is divided into three parts:(1) HUVECs were cultured according to references with minor modifications. Endothelial cells were identified by both morphology and immunocytochemical staining response to factorⅧrelated antigen. We measured the expression of ICAM-1, VCAM-1 of HUVECs induced by TNF-a at different concentrations (0, 1ng/ml,2.5ng/ml, lOng/ml,40ng/ml) by different time course (0, 1h,2h,4h,12h) by methods of Western blot and realtime quantitative chain reaction polymerase (qRT-PCR). Cultured HUVECs in vitro were randomly divided into six groups:vehicle, 1.5MAC sevoflurane, lOng/ml TNF-a,0.5MAC sevoflurane+lOng/ml TNF-a,1.5MAC sevoflurane+10ng/ml TNF-a,2.5MAC sevoflurane +10ng/ml TNF-a, the expression of ICAM-1 and VCAM-1 of HUVECs were detected by methods of Western blot and qRT-PCR and the adhesion ratio of neutrophils to HUVECs was measured by methods of myeloperoxidase. (2) In vitro study was performed on cultured HUVECs subjected to lOng/ml TNF-a, the expression of IκBa, p-IκBa and NF-KB/p65 subunit in nucleus or endochylema at different time course were detected by Western blot; the cultured HUVECs were randomly exposed to one of the following treatments:vehicle,1.5MAC sevoflurane, lOng/ml TNF-a,1.5MAC sevoflurane+10ng/ml TNF-a, the protein levels of IκBα, p-IκBa and NF-κB/P65 subunit in nucleus or endochylema were measured at respective alterative peak time points. (3) HUVECs were randomly exposed to one of the following treatments:vehicle,0.5MAC sevoflurane,1.5MAC sevoflurane,2.5MAC sevoflurane,30 min aftter sevoflurane pretreatment, the protein levels of p-eNOS and eNOS were detected by Western blot, the total NO content in cell medium by methods of Griess reagent and the NO content in vascular endothelial cells by methods of DAF-FM DA fluorescent probe; HUVECs were randomly assigned to receive lOng/ml TNF-a for 4 hours (control),1.5MAC sevoflurane sequently combined with TNF-a in the presence or absence the eNOS inhibitor N-nitro-L-arginine methyl ester (L-NAME; 1mM) pretreatment, the NO content in vascular endothelial cells and cultured medium, the protein levels of p-eNOS\eNOS, IKBa\p-IκBa, NF-κB/p65 subunit in nucleus\endochylema, the protein and mRNA levels of ICAM-1\VCAM-1 in vascular endothelial cells and the adhesion ratio of neutrophils to HUVECs were determined at corresponding time points.
     Results (1) HUVECs presented cobblestone-shaped and a positive immunochemistry reaction (97.5%). The increased expression of ICAM-1, VCAM-1 protein and mRNA levels in TNF-a-induced HUVECs was in a dose-dependent and time-dependent manner, HUVECs subjected to 10ng/ml TNF-a for 4 hours had a stable expression of ICAM-1, VCAM-1 protein and mRNA levels.sevoflurane pretreatment with 1.5MAC and 2.5MAC concentration both siginificantly inhibited the the expression of ICAM-1/VCAM-1 protein and mRNA levels in HUVECs, and the adhesion ratio of PMNs to HUVECs was also down-regulated (P<0.05). (2) Phosphorylation and degradation of IκBa, subsequent nucleus-bound translocation of p65 subunit of NF-κB were activated by lOng/ml TNF-a, the alterative peak time was respectively 30 minutes,60 minutes after TNF-a stimulti (P<0.01).1.5 MAC sevoflurane pretreatment could siginificantly inhibit phosphorylation and degradation of IκBαand nucleus-bound translocation of p65 subunit compared with 10ng/ml TNF-a group (P<0.05). (3) sevoflurane exposure evoked an increased NO content in vascular endothelial cells and cell medium, followed by phosphorylation of eNOS in HUVECs (P<0.05). Compared with sevoflurane pretreatment group, L-NAME decreased p-eNOS/eNOS and NO content both in cells and medium, L-NAME aslo increased phosphorylation and degradation of IκBα, subsequent nucleus-bound translocation of NF-αB p65, mRNA and protein expression of ICAM-1 and VCAM-1 in HUVECs and the adhesion ratio of neutrophils to HUVECs (P<0.05).
     Conclusion (1) Sevoflurane pretreatment inhibited the expression of ICAM-1, VCAM-1 induced by TNF-a and neutrophils adhesion to HUVECs. (2) Sevoflurane pretreatment down-regulated the activation of NF-κB signal pathway induced by TNF-a, which may play a major role in anti-inflammatory effects of sevoflurane pretreatment on vascular endothelial cells in vitro. (3) The anti-inflammatory effects of sevoflurane pretreatment could be mediated by eNOS phosphorylation and subsequent NO release, which inhibited NF-κB signal pathway activation and inflammatory response on TNF-a-induced vascular endothelial cell.
引文
[1]朱惠莲,夏敏,唐志红等.人脐静脉内皮细胞体外培养、鉴定与形态学特征观察.中国临床康复.2004,8(27):5834-5.
    [2]潘春华,罗荣城.一种简便的可杜绝污染的脐带内皮细胞培养方法.中国临床解剖学杂志.2003,21(5):533.
    [3]Jaffe EA, Nachman RL, Becker CG, et al. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest.1973,52(11):2745-56.
    [4]Marin V, Kaplanski G, Gres S., et al. Endothelial cell culture:Protocol to obtain and cultivate human umbilical endothelial cells.Journal of Immunological Methods.2001,254 (1-2):183-90.
    [5]卞杰勇,周岱.人脐静脉内皮细胞体外培养的影响因素.细胞生物学杂志.1997,19(2):66.
    [6]Baudin B, Bruneel A, Bosselut N, et al. A protoco lfor isolation and culture of human umbilical vein endothelial cells. Nature Protocols.2007,2(3):481-5.
    [7]R.I.弗雷谢尼著,章静波,徐存拴,陈实平等译.动物细胞培养-基本技术指南.北京:科学出版社,2008,549-51.
    [8]Galley HF, Webster NR. Physiology of the endothelium. Br J Anaesth.2004,93: 105-13.
    [9]Pober JS, Min W. Endothelial cell dysfunction, injury and death. Handb Exp Pharmacol.2006,176 (2):135-56.
    [10]Ren G, Dewald O, Frangogiannis NG. Inflammatory mechanisms in myocardial infarction. Curr Drug Targets Inflamm Allergy.2003;2:242-256.
    [11]Vinten-Johansen J. Involvement of neutrophils in the pathogenesis of lethal myocardial reperfusion injury. Cardiovasc Res.2004;61:481-497.
    [12]Raja SG, Dreyfus GD. Modulation of systemic inflammatory response after cardiac surgery. Asian Cardiovasc Thorac Ann.2005; 13:382-395
    [13]Rojas M, Woods CR, Mora AL, et al. Endotoxin-induced lung injury in mice: structural, functional, and biochemical responses. Am J Physiol Lung Cell Mol Physiol 2005; 288:L333-41
    [14]Morise Z, Eppihimer M, Granger DN, et al. Effects of lipopolysaccharide on endothelial cell adhesion molecule expression in interleukin-10 deficient mice [J]. Inflammation.1999,23(2):99-110.
    [15]Carter YM, Thomas R, Bargatze R, et al. Intracoronary E-/L-selectin blockade reduces neutrophil infiltration in heart transplantation. Ann Thorac Surg,2002, 74(6):2064-70.
    [16]Wesche DE, Lomas-Neira JL, Perl M, et al. Leukocyte apoptosis and its significance in sepsis and shock. J Leukoc Biol.2005,78(2):325-37.
    [17]Witko-Sarsat V, Rieu P, Descamps-Latscha B, et al. Neutrophils:molecules, functions and pathophysiological aspects. Lab Invest.2000,80(5):617-653.
    [18]Beauchamp P, Richard V, Tamion F, Lallemand F, et al. Protective effects of preconditioning in cultured rat endothelial cells:effects on neutrophil adhesion and expression of ICAM-1 after anoxia and reoxygenation. Circulation.1999; 100(5):541-6.
    [19]Yamazaki T, Yoshinori S, Tamatan T, et al. Expression of intercellular adhesion molecule-1 in rat heart with ischemia/reperfusion and limitation of infarct size by treatment with antibodies against cell adhesion molecules. Am J Pathol 1993; 143:410-8.
    [20]Briaud SA, Ding ZM, Michael LH, et al. Leukocyte trafficking and myocardial reperfusion injury in ICAM-1/P-selectin-knockout mice. Am J Physiol Heart Circ Physiol 2001;280:H60-7.
    [21]Kiew LV, Munavvar AS, Law CH, et al. Effect of antisense oligodeoxynucleotides for ICAM-1 on renal ischaemia-reperfusion injury in the anaesthetised rat. J Physiol,2004,557(Pt 3):981-9.
    [22]Chiang CH. Effects of anti-tumor necrosis factor-alpha and anti-intercellular adhesion molecule-1 antibodies on ischemia/reperfusion lung injury. Chin J Physiol.2006,49:266-74.
    [23]Benson V, McMahon AC, Lowe HC. ICAM-1 in acute myocardial infarction:a potential therapeutic target. Curr Mol Med.2007,7(2):219-27.
    [24]Belosjorow S, Schulz R, Dorge H, et al. Endotoxin and ischemic preconditioning: TNF-a concentration and myocardial infarct development in rabbits. Am J Physiol 1999; 277:H2470-5.
    [25]Kupatt C, Habazettl M, Goedecke A, et al. Tumor necrosis factor-a contributes to ischemia and reperfusion-induced endothelial activation in isolated hearts. Circ Res 1999; 84:392-400.
    [26]Zahler S, Massoudy P, Hartl H, Hahnel C, Meisner H, Becker BF. Acute cardiac inflammatory responses to postischemic reperfusion during cardiopulmonary bypass. Cardiovasc Res.1999;41:722-30.
    [27]Min JK, Kim YM, Kim SW, et al. TNF-related activation-induced cytokine enhances leukocyte adhesiveness:induction of ICAM-1 and VCAM-1 via TNF receptor-associated factor and protein kinase C-dependent NF-kappaB activation in endothelial cells. J Immunol.2005,175(1):531-40.
    [28]Bitsch A, Klene W, Murttada L, et al. A longitudinal prospective study of soluble adhesion molecules in acute stroke. Stroke.1998; 29:2229-35.
    [29]Seal JB, Gewertz BL. Vascular dysfunction in ischemia-reperfusion injury. Ann Vasc Surg,2005,19(4):572-84.
    [30]Weyrich AS, Buerke M, Albertine KH, et al. Time course of coronary vascular endothelial adhesion molecule expression during reperfusion of the ischemic feline myocardium. J Leukoc Biol,1995,57(1):45-50.
    [31]Ziegelstein RC, He C, Hu Q. Hypoxia/reoxygenation stimulates Ca2+-dependent ICAM mRNA expression in human aortic endothelial cells. Biochem Biophys Res Comm 2004,322(1):68-73.
    [32]Cason BA, Gamperl AK, Sloeum RE, et al. Anesthetic-induced preconditioning: Previous administration of isoflurane decreases myocardial infaret size in rabbits. Anesth.1997,87:1182-9
    [33]Kersten JR, Schmeling TJ, Pagel PS, et al. Isoflurane mimics ischemic preconditioning via activation of K(ATP)channels:reduction of myocardial infarct size with an acute memory phase.Anesthesiology 1997;87:361-70
    [34]Zhao P, Zuo Z. Isoflurane preconditioning induces neuroprotection that is inducible nitric oxide synthase-dependent in neonatal rats. Anesth.2004,101: 695-703.
    [35]Payne RS,Akca O,Roewer N,et al.Sevoflurane-induced preconditioning protects against cerebral ischemic neuronal damage in rats.Brain Res 2005; 1034:147-52.
    [36]Lee HT, Ota-Setlik A, Fu Y, et al. Differenitial protective effects of volatile anesthetics against renal isehemia-reperfusion injury in vivo. Anesth.2004,101: 1313-24.
    [37]Plachinta RV, Hayes JK, Cerilli LA, et al. Isoflurane pretreatment inhibits lipopolysaccharide-induced inflammation in rats. Anesthesiology.2003,98(1): 89-95.
    [38]Reutershan J, Chang D, Hayes JK, et al. Protective effects of isoflurane pretreatment in endotoxin induced lung injury. Anesth.2006,104:511-7.
    [39]Steurer M, Schlapfer M, Roth Z'graggen B, et al. The volatile anaesthetic sevoflurane attenuates lipopolysaccharide-induced injury in alveolar macrophages: Clinical and Experimental Immunology.2008,155:224-30.
    [40]Sievert A. Leukocyte depletion as a mechanism for reducing neutrophil-mediated ischemic-reperfusion injury during transplantation. J Extra Corpor Technol.2003, 35(1):48-52.
    [41]Yilmaz G, Granger DN. Leukocyte Recruitment and Ischemic Brain Injury. Neuromolecular Med.2009 Jul 5.
    [42]Kowalski C, Zahler S, Becker BF, et al. Halothane, isoflurane, and sevoflurane reduce postischemic adhesion of neutrophils in the coronary system. Anesth.1997 86(1):188-95.
    [43]Heindl B, Reichle FM, Zahler S, Conzen PF, Becker BF. Sevoflurane and isoflurane protect the reperfused guinea pig heart by reducing postischemic adhesion of polymorphonuclear neutrophils. Anesthesiology.1999b;91:521-30.
    [44]Mobert J, Zahler S, Becker BF, et al. Inhibition of neutrophil activation by volatile anesthetics decreases adhesion to cultured human endothelial cells. Anesthesiology 1999; 90:1372-81.
    [45]Heindl B, Conzen PF, Becker BF. The volatile anesthetic sevoflurane mitigates cardiodepressive effects of platelets in reperfused hearts. Basic Res Cardiol. 1999a;94:102-11.
    [46]Hu G, Salem MR, Crystal GJ. Isoflurane prevents platelets from enhancing neutrophil-induced coronary endothelial dysfunction. Anesth Analg.2005,101: 1261-8.
    [47]Hu G, Salem MR, Crystal GJ. Role of adenosine receptors in volatile anesthetic preconditioning against neutrophil-induced contractile dysfunction in isolated rat hearts. Anesthesiology.2005;103:287-95.
    [48]Hayes JK, Havaleshko DM, Plachinta RV, et al. Isoflurane pretreatment supports hemodynamics and leukocyte rolling velocities in rat mesentery during lipopolysaccharide-induced inflammation. Anesth Analg.2004; 98:999-1006.
    [49]Zhang H, Xue ZQ, Jiang H. The effect of posttreatment with isoflurane versus propofol on pulmonary alveolar capillary barrier in endotoxemic rats. Zhonghua Yi Xue Za Zhi.2005,85(24):1708-13.
    [50]Boost KA, Hofstetter C, Flondor M, et al. Desflurane differentially affects the release of proinflammatory cytokines in plasma and bronchoalveolar fluid of endotoxemic rats. Int Mol Med.2006,17(6):1139-44.
    [51]Samarkandi AH, Mansour AK. Induced preconditioning of cardiac performance in coronary bypass surgery—sevoflurane vs propofol. Middle East J Anesthesiol. 2004;17:833-44.
    [52]Garcia C, Juier K, Bestmann L, et al. Preconditioning with sevoflurane decreases PECAM-1 expression and improves one-year cardiovascular outcome in coronary artery bypass graft surgery. B r J Anaesth,2005,94(2):15921-65.
    [53]Lucchinetti E, Ambrosio S, Aguirre J, et al. Sevoflurane inhalation at sedative concentrations provides endothelial protection against ischemia-reperfusion injury in humans. Anesthesiology.2007; 106:262-8.
    [54]Wacker J, Lucchinetti E, Jamnicki M, Aguirre J, Harter L, Keel M,Zaugg M. Delayed inhibition of agonist-induced granulocyte platelet aggregation after low-dose sevoflurane inhalation in humans. Anesth Analg 2008; 106:1749-58.
    [55]Lucchinetti E, Aguirre J, Feng J, Zhu M, Suter M, Spahn DR,Harter L, Zaugg M. Molecular evidence of late preconditioning after sevoflurane inhalation in healthy volunteers. Anesth Analg 2007;105:629-40.
    [56]杜桂芝,高鸿,吴观生,等.异氟醚预处理对犬心肺转流术相关肺损伤的影响.国际麻醉学与复苏杂志,2007,28(2):97-100
    [57]Yamazaki T, Yoshinori S, Tamatan T, et al. Expression of intercellular adhesion molecule-1 in rat heart with ischemia/reperfusion and limitation of infarct size by treatment with antibodies against cell adhesion molecules. Am J Pathol 1993; 143:410-8.
    [58]ZHU B, XUE ZQ JIANG H, et al. The in vitro effect of desflurane preconditioning on endothelial adhesion molecules and mRNA expression. Anesth Analg 2005;100:1007-13.
    [59]Weber NC, Kandler J, Schlack W, Intermitted pharmacologic pretreatment by xenon, isoflurane, nitrous oxide, and the opioid morphine prevents tumor necrosis factor alpha-induced adhesion molecule expression in human umbilical vein endothelial cells. Anesthesiology.2008; 108(2):199-207.
    [60]de Klaver MJ, Buckingham MG, Rich GF, et al. Isoflurane pretreatment has immediate and delayed protective effects against cytokine-induced injury in endothelial and vascular smooth muscle cells[J]. Anesthesiology 2003; 99: 896-903.
    [61]Li Y, Zhang X, Zhu B, et al. Desflurane preconditioning inhibits endothelial nuclear factor-kappa-B activation by targeting the proximal end of tumor necrosis factor-alpha signaling.Anesth Analg.2008;106(5):1473-9
    [62]de RuijterW, MustersRJ, BoerC,et al. The cardioprotective effect of sevoflurane depends on protein kinase C activation, opening ofmitochondrialK+ATPchannels, and the production of reactive oxygen species[J]. Anesth Analg,2003,97 (5): 1370-6.
    [63]Kevin LG, Novalija E, RiessML,et al. Sevoflurane exposure generates superoxide but leads to decreased superoxide during ischemia and reperfusion in isolated hearts[J]. Anesth Analg,2003,96(4):949-55.
    [64]Yang L, Froio RM, Sciuto TE, et al. ICAM-1 regulates neutrophil adhesion and transcellular migration of TNF-alpha-activated vascular endothelium under flow. Blood,2005,106(2):584-92.
    [65]Li N, Karin M. Is NF-κB the sensor of oxidative stress? FASEB J 1999;13:1137-43.
    [66]Fan H, Sun B, Gu Q, et al. Oxygen radicals trigger activation of NF-κB and AP-1 and upregulation of ICAM-1 in reperfused canine heart. Am J Physiol Heart Circ Physiol.2002; 282:H1778-86.
    [67]Zhang WJ, Frei B. Intracellular metalion chelators inhibit TNFalpha-induced SP-1 activation and adhesion molecule expression in human aortic endothelial cells. Free Radic Biol Med.2003; 34(6):674-82.
    [68]Nichols TC. NF-kappaB and reperfusion injury. Drug News Perspect, 2004,17(2):99-100.
    [69]Tummala PE, Chen XL, Medford RM. NF-κB independent suppression of endothelial vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 gene expression by inhibition of flavin binding proteins and superoxide production.J mol Cell Cardiol.2003; 2(8):1499-508.
    [70]Garg AK, Agrawal BB. Reactive oxygen intermediates in TNF-a signaling. Mol Immunol 2002;39:509-17.
    [71]Yoshida LS, Tsunawaki S. Expression of NADPH oxidases and enhanced H2O2-generating activity in human coronary artery endothelial cells upon induction with tumor necrosis factor-alpha.Int Immunopharmacol.2008; 8(10): 1377-85.
    [72]Min JK, Kim YM, Kim SW, et al. TNF-related activation-induced cytokine enhances leukocyte adhesiveness:induction of ICAM-1 and VCAM-1 via TNF receptor associated factor and protein kinase C-dependent NF-kappaB activation in endothelial cells. J Immunol,2005,175(1):531-40.
    [73]Kumar S, Sharma A, Madan B, et al. Isoliquiritigenin inhibits IkappaB kinase activity and ROS generation to block TNF-alpha induced expression of cell adhesion molecules on human endothelial cells. Biochem Pharmacol.2007; 73(10):1602-12.
    [74]Cao LH, Lee YJ, Kang DG, et al. Effect of Zanthoxylum schinifolium on TNF-a-induced vascular inflammation in human umbilical vein endothelial cells. Vascular Pharmacology,2009,50:200-7.
    [75]Ghosh S and, Karin M. Missing pieces in the NF-kappaB puzzle.Cell,2002.109: S81 S96.
    [76]Karin M, and Lin A. NF-kappaB at the crossroads of life and death. Nat Immunol, 2002,3:221-7.
    [77]Chen CH, Chuang JH, Liu K,et al. Nitric oxide triggers delayed anesthetic preconditioning-induced cardiac protection via activation of nuclear factor-kappaB and upregulation of inducible nitric oxide synthase. Shock.2008; 30(3):241-9
    [78]Tahepold P, Vaage J, Starkopf J, et al. Hyperoxia elicits myocardial protection through a nuclear factor-KB-dependent mechanism in the rat heart. J Thorac Cardiovasc Surg 2003; 125:650-60.
    [79]Boost KA, Leipold T, Scheiermann P, et al. Sevoflurane and isoflurane decrease TNF-alpha-induced gene expression in human monocytic THP-1 cells:potential role of intracellular IkappaBalpha regulation. Int J Mol Med.2009; 23(5):665-71.
    [80]王婷,蒋豪,薛张刚,等.异氟醚对对大鼠肺缺血/再灌注损伤的保护作用.中华麻醉学杂志,2006,26(2):140-3。
    [81]姜琳,王琛,覃琴,等.异氟烷预处理对大鼠心肌缺血再灌注损伤的保护作用[J].复旦学报(医学版),2008,35(4):539-42.
    [82]覃琴,王琛,朱江,等.七氟醚预处理中核因子-κB的激活对大鼠心肌缺血/再灌注损伤的保护作用.中华麻醉学杂志,2008,29(3):197-200.
    [83]刘霞,谢红.七氟烷预处理对心肌缺血再灌注损伤大鼠心肌NF-K Bp50活性表达的影响.国际麻醉学与复苏杂志,2009,30(2):112-5.
    [84]Zhong CY, Zhou YM, Liu H. Nuclear factor-KB and anesthetic preconditioning during miocardial ischemia-reperfusion. Anesthesiology,2004,100:540-6.
    [85]Mullenheim J, EbelD, Frassdorf J, et al. Isoflurane preconditions myocardium against infarction via release of free radicals. Anesthesiology,2002,96(4): 934-40.
    [86]TanakaK, WeihrauchD, KehlF,etal. Mechanism of preconditioning by isoflurane in rabbits:a direct role for reactive oxygen species. Anesthesiology,2002,97(6): 1485-90.
    [87]Kevin LG, FCARCSI, Novalija E, et al. Sevoflurane exposure generates superoxide but leads to decreased superoxide during ischemia and reperfusion in isolated hearts. Anesth Analg 2003; 96:949-55.
    [88]孙艳红,崔湧,王俊科.七氟烷对内毒素诱导大鼠肺组织氧化应激反应的影响[J]中华麻醉学杂志,2006,26(8):735-7.
    [89]Chatterjee A, Catravas JD. Endothelial nitric oxide (NO) and its pathophysiologic regulation. Vascul Pharmacol,2008,49(4-6):134-40.
    [90]Ou J, Fontana JT, Ou Z, Jones DW, Ackerman AW, Oldham KT, Yu J, Sessa WC, Pritchard KA., Jr Heat shock protein 90 and tyrosine kinase regulate eNOS-NO generation but not NO bioactivity. Am J Physiol Heart Circ Physiol.2004; 286:H561-9.
    [91]Bla R,Buda AJ,Flynn DM,et al. Ntric oxide attenuates neutrophil-mediated myocardial contractile dysfunction after ischemia and reperfusion.Cir Res,1996,78:65-72.
    [92]Jones SP, Bolli R. The ubiquitous role of nitric oxide in cardioprotection. J Mol Cell Cardiol 2006; 40:16-23,.
    [93]De Caterina R, Libby P, Peng HB, et al. Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines. J Clin Invest.1995; 96(1): 60-8.
    [94]Jiang MZ, Tsukahara H, Hayakawa K, et al. Effects of antioxidants and NO on TNF-alpha-induced adhesion molecule expression in human pulmonary microvascular endothelial cells. Respir Med,2005,99(5):580-9
    [95]Khan BV, Harrison DG, Olbrych MT, Alexander RW, Medford RM. Nitric oxide regulates vascular cell adhesion molecule-gene expression and redox-sensitive transcriptional events in human vascular endothelial cells. Proc Natl Acad Sci. 1996; 93:9114-9.
    [96]Raat NJ, Shiva S, Gladwin MT. Effects of nitrite on modulating ROS generation following ischemia and reperfusion. Adv Drug Deliv Rev.2009; 61(4):339-50.
    [97]Iwase H, Robin E, Guzy RD, et al. Nitric oxide during ischemia attenuates oxidant stress and cell death during ischemia and reperfusion in cardiomyocytes. Free Radic Biol Med.2007 Aug 15; 43(4):590-9.
    [98]Duranski MR, Greer JJ, Dejam A, et al. Cytoprotective effects of nitrite during in vivo ischemia-reperfusion of the heart and liver. J Clin Invest.2005; 115(5):1232-40.
    [99]Waldow T, Witt W, Ulmer A, et al. Preconditioning by inhaled nitric oxide prevents hyperoxic and ischemia/reperfusion injury in rat lungs. Pulm Pharmacol Ther.2008; 21(2):418-29.
    [100]Beauchamp P, Richard V, Tamion F, et al. Protective effectes of pre-conditioning in cultured rat endothelial cells:Effect on neutronphil adhesion and expression of ICAM-1 after anoxia and reoxygenation.Circulation.1999; 100:541-6.
    [101]Peng HB, Libby P, Liao JK. Induction and stabilization of IKBa by nitric oxide mediates inhibition of NF-κB. J Biol Chem.1995; 270(23):14214-9.
    [102]Kalra D, Baumgarten G, Dibbs Z, et al. Nitric oxide provokes tumor necrosis factor-alpha expression in adult feline myocardium through acGMP-dependent pathway. Circulation.2000; 102:1302-7.
    [103]Maass DL, White J, Horton JW. Nitric oxide donors alter cardiomyocyte cytokine secretion and cardiac function. Crit Care Med.2005; 33:2794-803.
    [104]Kobara M, Tatsumi T, Takeda M, The dual effects of nitric oxide synthase inhibitors on ischemia-reperfusion injury in rat hearts. Basic Res Cardiol. 2003;98(5):319-28.
    [105]Laude K, Favre J, Thuillez C, et al. NO produced by endothelial NO synthase is a mediator of delayed preconditioning-induced endothelial protection. Am J Physiol Heart Circ Physiol,2003,284(6):H2053-60..
    [106]Chen CH, Chuang JH, Liu K, et al. Nitric oxide triggers delayed anesthetic preconditioning-induced cardiac protection via activation of nuclear factor-kappaB and upregulation of inducible nitric oxide synthase. Shock.2008; 30(3):241-9.
    [107]Cirino G, Fiorucci S, Sessa WC. Endothelial nitric oxide synthase:the cinderella ofinflammation? Trends Pharmacol Sci.2003; 24:91-5.
    [108]Muscari C, Bonafe F, Gamberini C, et al. Early preconditioning prevents the loss of endothelial nitric oxide synthase and enhances its activity in the ischemic/reperfused rat heart. Life Sci.2004; 74:1127-37.
    [109]Jheon S, Lee YM, Sung SW, Pulmonary preservation effect of nitroglycerine in isolated rat lung reperfusion model. Transplant Proc.2004;36(7):1933-5.
    [110]Kaminski A, Pohl CB, Sponholz C, et al. Up-regulation of endothelial nitric oxide synthase inhibits pulmonary leukocyte migration following lung ischemia-reperfusion in mice. Am J Pathol.2004; 164(6):2241-9.
    [111]Kaminski A, Kasch C, Zhang L, et al. Endothelial nitric oxide synthase mediates protective effects of hypoxic preconditioning in lungs. Respir Physiol Neurobiol.2007;155(3):280-5.
    [112]Wang Y, Vodovotz Y, Kim PK, et al. Mechanisms Of hepatoprotection by nitric oxide. Ann NY Acad Sci; 2002; 962:415-22.
    [113]Koti RS, Tsui J, Lobos E, Yang W, Seifalian AM, and Davidson BR. Nitric oxide synthase distribution and expression with ischemic preconditioning of the rat liver. FASEB J.2005,19:1155-7.
    [114]Duranski MR, Elrod JW, Calvert JW, et al. Genetic overexpression of eNOS attenuates hepatic ischemia-reperfusion injury.Am J Physiol Heart Circ Physiol. 2006; 291(6):H2980-6.
    [115]Jefayri MK, Grace PA, Mathie RT. Attenuation of reperfusion injury by renal ischaemic preconditioning:the role of nitric oxide. BJU Int.2000; 85(9):1007-13.
    [116]Yamashita J, Ogata M, Itoh M, et al. Role of nitric oxide in the renal protective effects of ischemic preconditioning. J Cardiovasc Pharmacol. 2003;42(3):419-27.
    [117]Yamasowa H, Shimizu S, Inoue T, et al. Endothelial nitric oxide contributes to the renal protective effects of ischemic preconditioning. J Pharmacol Exp Ther. 2005;312(1):153-9.
    [118]Shinmura K, Tang XL, Wang Y, et al. Cyclooxygenase-2 cardioprotective mediates the effects of the late phase of ischemic preconditioning in conscious rabbits [C]. Proc Natl Acad Sci U S A,2000,97(18):10197-202.
    [119]Han HG, Wang ZW, Zhang NB, et al.Role of nitric oxide during early phase myocardial ischemic preconditioning in rats. Chin Med J (Engl),2008,121(13): 1210-4.
    [120]Phillips L, Toledo AH, Lopez-Neblina F, et al. Nitric oxide mechanism of protection in ischemia and reperfusion injury. J Invest Surg,2009,22(1):46-55.
    [121]Toda N, Toda H, Hatano Y. Nitric oxide:involvement in the effects of anesthetic agents.Anesthesiology.2007; 107:822-42.
    [122]Chiari PC, Bienengraeber MW, Weihrauch D, Krolikowski JG, Kersten JR, Warltier DC, Pagel PS. Role of endothelial nitric oxide synthase as a trigger and mediator of isoflurane-induced delayed preconditioning in rabbit myocardium. Anesthesiology.2005; 103:74-83.
    [123]Smul TM, Lange M, Redel A, Burkhard N, Roewer N, Kehl F. Desflurane-induced preconditioning against myocardial infarction is mediated by nitric oxide. Anesthesiology.2006;105:719-25.
    [124]Lucchinetti E, Ambrosio S, Aguirre J, et al. Sevoflurane inhalation at sedative concentrations provides endothelial protection against ischemia-reperfusion injury in humans. Anesthesiology.2007,106(2):262-8.
    [125]Yildirim V, Doganci S, Aydin A, et al. Cardioprotective effects of sevoflurane, isoflurane, and propofol in coronary surgery patients:a randomized controlled study[J]. Heart Surg Forum,2009,12 (1):El-9.
    [126]Krolikowski JG, Weihrauch D, Bienengraeber M, Kersten JR, Warltier DC, Pagel PS. Role of Erkl/2, p70s6K, and eNOS in isoflurane-induced cardioprotection during early reperfusion in vivo. Can J Anesth 2006; 53:174-82.
    [127]Chen JX, Meyrick B. Hypoxia increases Hsp90 binding to eNOS via PI3K-Akt in porcine coronary artery endothelium. Lab Invest.2004; 84:182-90.
    [128]Amour J, Brzezinska AK, Weihrauch D,Role of heat shock protein 90 and endothelial nitric oxide synthase during early anesthetic and ischemic preconditioning. Anesthesiology.2009; 110(2):317-25.
    [1]Galley HF, Webster NR. Physiology of the endothelium. Br J Anaesth 2004; 93:105-13.
    [2]Pober JS, Min W. Endothelial cell dysfunction, injury and death. Handb Exp Pharmacol.2006,176 (2):135-56.
    [3]Giannoudis PV, Tosounidis TI, Kanakaris NK, et al. Quantification and characterization of endothelial injury after trauma. Injury.2007; 38(12): 1373-81.
    [4]Matsuda N, Yamamoto S, Hatakeyama N, et al. Vascular endothelial dysfunction in septic shock. Nippon Yakurigaku Zasshi.2008; 131(2):96-100.
    [5]Nah DY, Rhee MY. The inflammatory response and cardiac repair after myocardial infarction. Korean Circ J.2009; 39(10):393-8.
    [6]Okajima K, Harada N, Nakagawa T. Role of endothelial dysfunction in the development of severe sepsis-the pathomechanism, evaluation by laboratory tests and new therapeutic strategies.Rinsho Byori.2007; 55(3):280-9.
    [7]Baker S J, Reddy P. Transducers of life and death:TNF receptor superfamily and associated proteins. Oncogene,1996,12(1):121~129.
    [8]Fang L et al.Essential role of TNF receptor superfamily 25(TNFRSF25) in the development of allergic lung inflammation.Exp Med,2008,205(5):1037-1048
    [9]Chen PL, Easton A. Apoptotic phenotype alters the capacity of tumor necrosis factor-related apoptosis-inducing ligand to induce human vascular endothelial activation. J Vasc Res.2008; 45(2):111-22.
    [10]Zhou Z, Connell MC, MacEwan DJ. TNFRl-induced NF-kappaB, but not ERK, p38MAPK or JNK activation, mediates TNF-induced ICAM-1 and VCAM-1 expression on endothelial cells. Cell Signal.2007;19(6):1238-48.
    [11]Karsan A. Tumor necrosis factor and endothelial cell death.Trends in Cardiovascular Medicine,1998,8(1):19~24
    [12]Yang CR, Hsieh SL, Ho FM, et al.Decoy receptor 3 increases monocyte adhesion to endothelial cells via NF-κB-dependent up-regulation of intercellular adhesion molecule-1, VCAM-1, and IL-8 expression. J Immunol; 2005,174:1647-56
    [13]KacimiR, Karliner JS, KoudssiF, et al. Expression and regulation of adhesion molecules in Cardiac cells by cytokines response to acute hypoxia [J]. Circ Res, 1998,82(5):576-586.
    [14]Chen KH, Reece LM, Leary JF. Mitochondrial glutathione modulates TNFa-induced endothelial cell dysfunction [J]. Free Radic Biol Med,1999,27 (1):100-109.
    [15]Sievert A. Leukocyte depletion as a mechanism for reducing neutrophil-mediated ischemic-reperfusion injury during transplantation. J Extra Corpor Technol.2003,35(1):48-52.
    [16]Zhang C, Xu X, Potter BJ, et al. TNF-alpha contributes to endothelial dysfunction in ischemia/reperfusion injury. Arterioscler Thromb Vasc Biol 2006; 26:475-480.
    [17]Chiang CH. Effects of anti-tumor necrosis factor-alpha and anti-intercellular adhesion molecule-1 antibodies on ischemia/reperfusion lung injury. Chin J Physiol.2006:49:266-274.
    [18]Cao LH, Lee YJ, Kang DG, et al. Effect of Zanthoxylum schinifolium on TNF-a-induced vascular inflammation in human umbilical vein endothelial cells. Vascular Pharmacology.2009; 50:200-7.
    [19]Kumar S, Sharma A, Madan B, et al. Isoliquiritigenin inhibits IkappaB kinase activity and ROS generation to block TNF-alpha induced expression of cell adhesion molecules on human endothelial cells. Biochem Pharmacol. 2007;73(10):1602-12.
    [20]Min JK, Kim YM, Kim SW, et al. TNF-related activation-induced cytokine enhances leukocyte adhesiveness:induction of ICAM-1 and VCAM-1 via TNF receptor associated factor and protein kinase C-dependent NF-kappaB activation in endothelial cells. J Immunol, 2005,175(1):531-40.
    [21]Plachinta RV, Hayes JK, Cerilli LA, et al. Isoflurane pretreatment inhibits lipopolysaccharide-induced inflammation in rats[J]. Anesthesiology.2003, 98(1):89-95.
    [22]Chen KH, Reece LM, Leary JF. Mitochondrial glutathione modulates TNFa-induced endothelial cell dysfunction [J]. Free Radic Biol Med,1999,27 (1):100-109.
    [23]Serfilippi G, Ferro TJ, Johnson A. Activation of protein kinase C mediates altered pulmonary vasoreactivity induced by tumor necrosis factor-a. Am J Physiol,1994,267:L282~L290.
    [24]Keaney JF Jr. Oxidative stress and the vascular wall:NADPH oxidases take center stage.Circulation.2005,112(17):2585-2588.
    [25]Qamirani E, Ren Y, Kuo L, et al. C-reactive protein inhibits endothelium-dependent NO-mediated dilation in coronary arterioles by activating p38 kinase and NAD(P)H oxidase. Arterioscler Thromb Vasc Biol.2005,25: 995-1001.
    [26]Rao GN, Katki KA, Madamanchi NR, et al. Jung forms the majority of the AP-1 complex and is a target for redox regulation by receptor tyrosine kinase and G protein-coupled receptor agonists in smooth muscle cells. J Biol Chem. 1999,274:6003-6010.
    [27]Van Buul JD, Fernandez-Borja M, Anthony EC, et al. Expression and localization of NOX2 and NOX4 in primary human endothelial cells. Antioxid Redox Signal.2005; 7:308-317.
    [28]Kuroda J, Nakagawa K, Yamasaki T, et al. The superoxide-producing NAD(P)H oxidase Nox4 in the nucleus of human vascular endothelial cells. Genes Cells.2005; 10(12):1139-51.
    [29]Ago T, Kitazono T, Ooboshi H, et al. Nox4 as the major catalytic component of an endothelial NAD(P)H oxidase. Circulation.2004,109:227-233.
    [30]Park HS, Chun JN, Jung HY, et al. Role of NADPH oxidase 4 in lipopolysaccharide-induced proinflammatory responses by human aortic endothelial cells.Cardiovasc Res.2006,72:447-455.
    [31]Touyz RM, Mercure C, He Y, et al. Angiotensin Ⅱ-dependent chronic hypertension and cardiac hypertrophy are unaffected by gp91 phox-containing NADPH oxidase. Hypertension.2005,45:530-537.
    [32]Read MA, Whitley MZ, Gupta S, et al. Tumor necrosis factor alpha-induced E-selectin expression is activated by the nuclear factor-kappaB and c-JUN N-terminal kinase/p38 mitogen-activated protein kinase pathways. J Biol Chem,1997,272(5):2753-61
    [33]Jiang MZ, Tsukahara H, Hayakawa K, et al. Effects of antioxidants and NO on TNF-alpha-induced adhesion molecule expression in human pulmonary microvascular endothelial cells. Respir Med,2005,99(5):580-91.
    [34]Nichols TC. NF-kappaB and reperfusion injury. Drug News Perspect, 2004,17(2):99-10.
    [35]Chen YH, Lin SJ, Chen JW, et al. Magnolol attenuates VCAM-1 expression in vitro in TNF-alpha-treated human aortic endothelial cells and in vivo in the aorta of cholesterol-fed rabbits. Br J Pharmacol.2002; 135(1):37-47.
    [36]Squadrito F, Deodato B, Squadrito G, et al. Gene transfer of IkappaBalpha limits infarct size in a mouse model of myocardial ischemia/reperfusion injury. Lab Invest.2003,83(8):1097-104
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.