Gα_(13)在调控细胞肌动蛋白骨架和细胞迁移中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
异源三聚体G蛋白(Heterotrimeric G-Proteins)是非常关键的细胞信号转导因子。除了传导来自G蛋白偶联受体(G Protein-Coupled Receptors, GPCRs)的信号以外,异源三聚体G蛋白还能介导很多来自非G蛋白偶联受体的生理功能。之前我们研究小组已经证明一个异源三聚体G蛋白的成员,Gα13,是生长因子受体诱导的细胞肌动蛋白骨架重分布过程,如环状细胞膜波皱(Dorsal Ruffle)形成和消失以及细胞迁移所必需的。Gα13所介导的环状膜波皱形成和细胞迁移等生理过程是由生长因子激活受体酪氨酸激酶(Receptor Tyrosine Kinases, RTKs)所诱导的,不依赖于G蛋白偶联受体。然而,受体酪酸激酶将信号传导到Gα13的机制尚不清楚。
     这里我们证明Ric-8A蛋白,一个某些异源三聚体G蛋白的非受体的鸟苷酸交换因子(Guanine Nucleotide Exchange Factor, GEF),在连接受体酪氨酸激酶和Gα13之间起到了关键作用。利用RNA干扰实现的Ric-8A蛋白表达水平的下调减慢了血小板衍生生长因子(Platelet-Derived Growth Factor, PDGF)所诱导的细胞环状膜波皱的形成、消失,以及细胞迁移。血小板衍生生长因子能够刺激细胞内Ric-8A蛋白的活性。并且纯化的Ric-8A蛋白能够与纯化的Gα13蛋白以一种依赖于鸟苷酸结合状态的方式直接相互作用。Ric-8A的缺失阻碍了Gα13的正常膜转运。因此Ric-8A在生长因子诱导的细胞骨架蛋白重分布中起着非常关键的作用。
     我们还研究了Gα13与Ab1之间的相互作用机制,以及它们的相互作用对于细胞肌动蛋白骨架和细胞迁移的重要作用。我们的研究揭示了两种蛋白之间的相互作用位点,以及当它们的相互作用被抑制时肌动蛋白重分布、细胞膜波皱的消失和细胞迁移等细胞生理过程都受到影响。这可能为解释细胞迁移过程的调控提供思路。
Heterotrimeric G proteins are critical transducers of cellular signaling. In addition to their classic roles in relaying signals from G protein-coupled receptors (GPCRs), heterotrimeric G proteins also mediate physiological functions from non-GPCRs. Previously we have shown that Gα13, a member of the heterotrimeric G proteins, is essential for growth factor receptor-induced actin cytoskeletal reorganization such as dynamic dorsal ruffle turnover and cell migration. These Gα13-mediated dorsal ruffle turnover and cell migration by growth factors acting on their receptor tyrosine kinases (RTKs) are independent of GPCRs. However, the mechanism by which RTKs signal to Gα13is not known. Here we show that Ric-8A, a non-receptor guanine nucleotide exchange factor for some heterotrimeric G proteins, is critical for coupling RTKs to Gα13. Down-regulation of Ric-8A protein levels in cells by RNA interference slowed down platelet-derived growth factor (PDGF)-induced dorsal ruffle turnover and inhibited PDGF-initiated cell migration. PDGF was able to increase the activity of Ric-8A in cells. Furthermore, purified Ric-8A proteins directly interact with purified Gα13protein in a nucleotide-dependent manner. Deficiency of Ric-8A prevented the membrane translocation of Gα13. Hence, Ric-8A is critical for growth factor receptor-induced actin cytoskeletal reorganization.
     We also studied the interaction mechanism of Gα13and the tyrosine kinase Abl and the role of this interaction in cytoskeleton reorganization and cell migration. Inhibition of this interaction affected both dorsal ruffle turn over and cell migration. Both Gα13and Abl are important regulator of actin cytoskeleton and cell migration, but their function may be different, or even opposite. The novel interaction we described here may shed light on how do they coordinate each other and regulate cell migration together.
引文
1. Wilkie, T.M. & Kinch, L. New roles for Galpha and RGS proteins: communication continues despite pulling sisters apart. Curr Biol 15, R843-854 (2005).
    2. Dorsam, R.T. & Gutkind, J.S. G-protein-coupled receptors and cancer. Nat Rev Cancer 7,79-94 (2007).
    3. Gilman, A.G. G proteins:transducers of receptor-generated signals. Annu Rev Biochem 56,34 (1987).
    4. Oldham, W.M. & Hamm, H.E. Heterotrimeric G protein activation by G-protein-coupled receptors. Nat Rev Mol Cell Biol 9,60-71 (2008).
    5. Oldham, W.M. & Hamm, H.E. Structural basis of function in heterotrimeric G proteins. Q Rev Biophys 39,117-166 (2006).
    6. Pierce, K.L., Premont, R.T. & Lefkowitz, R.J. Seven-transmembrane receptors. Nat Rev Mol Cell Biol 3,639-650 (2002).
    7. George, S.R., O'Dowd, B.F. & Lee, S.P. G-protein-coupled receptor oligomerization and its potential for drug discovery. Nat Rev Drug Diseov 1,808-820 (2002).
    8. Palczewski, K. et al. Crystal structure of rhodopsin:A G protein-coupled receptor. Science 289,739-745 (2000).
    9. Murakami, M. & Kouyama, T. Crystal structure of squid rhodopsin. Nature 453, 363-367 (2008).
    10. Rasmussen, S.G. et al. Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. Nature 450,383-387 (2007).
    11. Cherezov, V. et al. High-resolution crystal structure of an engineerd human beta2-adrenergic G protein-coupled receptor. Science 318,1258-1265 (2007).
    12. Rosenbaum, D.M. et al. GPCR engineering yields high-resolution structural insights into beta2-adrenergic receptor function. Science 318,1266-1273 (2007).
    13. Chien, E.Y. et al. Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist. Science 330,1091-1095.
    14. Choe, H.W. et al. Crystal structure of metarhodopsin Ⅱ. Nature 471,651-655.
    15. Rasmussen, S.G. et al. Structure of a nanobody-stabilized active state of the beta(2) adrenoceptor. Nature 469,175-180.
    16. Rosenbaum, D.M. et al. Structure and function of an irreversible agonist-beta(2) adrenoceptor complex. Nature 469,236-240.
    17. Standfuss, J. et al. The structural basis of agonist-induced activation in constitutively active rhodopsin. Nature 471,656-660.
    18. Warne, T. et al. The structural basis for agonist and partial agonist action on a beta(1)-adrenergic receptor. Nature 469,241-244.
    19. Xu, F. et al. Structure of an agonist-bound human A2A adenosine receptor. Science 332,322-327.
    20. Strathmann, M.P.& Simon, M.I. G alpha 12 and G alpha 13 subunits define a fourth class of G protein alpha subunits. Proc Natl Acad Sci U S A 88,5582-5586 (1991).
    21. Civelli, O., Bouvier, M., Devi, L.A. & Bartfai, T. The state of GPCR research in 2004. Nat Rev Drug Discov 3,575,577-626 (2004).
    22. Kozasa, T. Mechanism of beta-gamma effector interaction., in Handbook of Cell Signaling, (eds. R.A. Bradshaw & E.A. Dennis) 639-643Boston, MA:Academic; 2004).
    23. Robishaw, J.D. Specificity of G protein betagamma dimer signaling., in Handbook of Cell Signaling, (eds. R.A. Bradshaw & E.A. Dennis) 623-629Boston, MA:Academic; 2004).
    24. Neves, S.R., Ram, P.T. & Iyengar, R. G protein pathways. Science 296,1636-1639 (2002).
    25. Voyno-Yasenetskaya, T.A., Pace, A.M. & Bourne, H.R. Mutant alpha subunits of G12 and G13 proteins induce neoplastic transformation of Rat-1 fibroblasts. Oncogene 9,2559-2565 (1994).
    26. Xu, N., Bradley, L., Ambdukar, I. & Gutkind, J.S. A mutant alpha subunit of G12 potentiates the eicosanoid pathway and is highly oncogenic in NIH 3T3 cells. Proc Natl Acad Sci U S A 90,6741-6745 (1993).
    27. Xu, N., Voyno-Yasenetskaya, T. & Gutkind, J.S. Potent transforming activity of the G13 alpha subunit defines a novel family of oncogenes. Biochem Biophys Res Commun 201,603-609 (1994).
    28. Buhl, A.M., Johnson, N. L., Dhanasekaran, N. & Johnson, G.L. G alpha 12 and G alpha 13 stimulate Rho-dependent stress fiber formation and focal adhesion assembly. JBiol Chem 270,24631-24634 (1995).
    29. Fromm, C., Coso, O.A., Montaner, S., Xu, N. & Gutkind, J.S. The small GTP-binding protein Rho links G protein-coupled receptors and Galpha12 to the serum response element and to cellular transformation. Proc Natl Acad Sci U S A 94, 10098-10103 (1997).
    30. Mao, J., Yuan, H., Xie, W., Simon, M.I. & Wu, D. Specific involvement of G proteins in regulation of serum response factor-mediated gene transcription by different receptors. JBiol Chem 273,27118-27123 (1998).
    31. Gu, J.L., Muller, S., Mancino, V., Offermanns, S. & Simon, M.I. Interaction of G alpha(12) with G alpha(13) and G alpha(q) signaling pathways. Proc Natl Acad Sci USA 99,9352-9357 (2002).
    32. Offermanns, S., Mancino, V., Revel, J.P. & Simon, M.I. Vascular system defects and impaired cell chemokinesis as a result of Galpha13 deficiency. Science 275, 533-536 (1997).
    33. Hart, M.J. et al. Direct stimulation of the guanine nucleotide exchange activity of p115 RhoGEF by Galphal3. Science 280,2112-2114 (1998).
    34. Kozasa, T. et al. p115 RhoGEF, a GTPase activating protein for Galphal2 and Galpha13. Science 280,2109-2111 (1998).
    35. Fukuhara, S., Murga, C., Zohar, M., Igishi, T. & Gutkind, J.S. A novel PDZ domain containing guanine nucleotide exchange factor links heterotrimeric G proteins to Rho. JBiol Chem 274,5868-5879 (1999).
    36. Fukuhara, S., Chikumi, H. & Gutkind, J.S. Leukemia-associated Rho guanine nucleotide exchange factor (LARG) links heterotrimeric G proteins of the G(12) family to Rho. FEBS Lett 485,183-188 (2000).
    37. Meigs, T.E., Fields, T.A., McKee, D.D. & Casey, P.J. Interaction of Galpha 12 and Galpha 13 with the cytoplasmic domain of cadherin provides a mechanism for beta -catenin release. Proc Natl Acad Sci U S A98,519-524 (2001).
    38. Vaiskunaite, R. et al. Conformational activation of radixin by G13 protein alpha subunit. J Biol Chem 275,26206-26212 (2000).
    39. Liu, G. & Voyno-Yasenetskaya, T.A. Radixin stimulates Racl and Ca2+/calmodulin-dependent kinase, CaMKII:cross-talk with Galphal3 signaling. JBiol Chem 280,39042-39049 (2005).
    40. Jiang, Y. et al. The G protein G alphal2 stimulates Bruton's tyrosine kinase and a rasGAP through a conserved PH/BM domain. Nature 395,808-813 (1998).
    41. Mao, J. et al. Tec/Bmx non-receptor tyrosine kinases are involved in regulation of Rho and serum response factor by Galphal2/13. EMBOJ17,5638-5646 (1998).
    42. Shi, C.S., Sinnarajah, S., Cho, H., Kozasa, T. & Kehrl, J.H. G13alpha-mediated PYK2 activation. PYK2 is a mediator of G13alpha -induced serum response element-dependent transcription. JBiol Chem 275,24470-24476 (2000).
    43. Yamaguchi, Y., Katoh, H., Mori, K. & Negishi, M. Galpha(12) and Galpha(13) interact with Ser/Thr protein phosphatase type 5 and stimulate its phosphatase activity. Curr Biol 12,1353-1358 (2002).
    44. Zhu, D., Kosik, K.S., Meigs, T.E., Yanamadala, V. & Denker, B.M.Galphal2 directly interacts with PP2A:evidence FOR Galphal2-stimulated PP2A phosphatase activity and dephosphorylation of microtubule-associated protein, tau. JB iol Chem 279,54983-54986 (2004).
    45. Zhu, D., Tate, R.I., Ruediger, R., Meigs, T.E. & Denker, B.M. Domains necessary for Galphal2 binding and stimulation of protein phosphatase-2A (PP2A):Is Galpha 12 a novel regulatory subunit of PP2A? Mol Pharmacol 71,1268-1276 (2007).
    46. Diviani, D., Soderling, J. & Scott, J.D. AKAP-Lbc anchors protein Kinase A and nucleates Galpha 12-selective Rho-mediated stress fiber formation. J Biol Chem 276,44247-44257(2001).
    47. Niu, J. et al. Interaction of heterotrimeric G13 protein with an A-kinase-anchoring protein 110 (AKAP110) mediates cAMP-independent PKA activation. Curr Biol 11,1686-1690(2001).
    48. Meyer, T.N., Schwesinger, C. & Denker, B.M. Zonula occludens-1 is a scaffolding protein for signaling molecules. Galpha(12) directly binds to the Src homology 3 domain and regulates paracellular permeability in epithelial cells. J Biol Chem 277,24855-24858 (2002).
    49. Sabath, E. et al. Galpha 12 regulates protein interactions within the MDCK cell tight junction and inhibits tight-junction assembly. J Cell Sci 121,814-824 (2008).
    50. Vaiskunaite, R., Kozasa, T. & Voyno-Yasenetskaya, T.A. Interaction between the G alpha subunit of heterotrimeric G(12) protein and Hsp90 is required for G alpha(12) signaling. JBiol Chem 276,46088-46093 (2001).
    51. Moratz, C. et al. Regulator of G protein signaling 1 (RGS1) markedly impairs Gi alpha signaling responses of B lymphocytes. J Immunol 164,1829-1838 (2000).
    52. Johnson, E.N. et al. RGS16 inhibits signalling through the G alpha 13-Rho axis. Nat Cell Biol 5,1095-1103 (2003).
    53. Stemmle, L.N., Fields, T.A. & Casey, P.J. The regulator of G protein signaling domain of axin selectively interacts with Galpha12 but not Galpha13. Mol Pharmacol 70,1461-1468(2006).
    54. Kurose, H. Galpha12 and Galpha13 as key regulatory mediator in signal transduction. Life Sci 74,155-161 (2003).
    55. Kelly, P., Casey, P.J. & Meigs, T.E. Biologic functions of the G12 subfamily of heterotrimeric g proteins:growth, migration, and metastasis. Biochemistry 46, 6677-6687 (2007).
    56. Vara Prasad, M.V., Shore, S.K. & Dhanasekaran, N. Activated mutant of G alpha 13 induces Egr-1, c-fos, and transformation in NIH 3T3 cells. Oncogene 9,2425-2429 (1994).
    57. Martin, C.B. et al. The thrombin receptor, PAR-1, causes transformation by activation of Rho-mediated signaling pathways. Oncogene 20,1953-1963 (2001).
    58. Aragay, A.M. et al. G12 requirement for thrombin-stimulated gene expression and DNA synthesis in 1321N1 astrocytoma cells. J Biol Chem 270,20073-20077 (1995).
    59. Chan, A.M. et al. Expression cDNA cloning of a transforming gene encoding the wild-type G alpha 12 gene product. Mol Cell Biol 13,762-768 (1993).
    60. Jiang, H., Wu, D. & Simon, M.I. The transforming activity of activated G alpha 12. FEBS Lett 330,319-322 (1993).
    61. Kelly, P. et al. The G12 family of heterotrimeric G proteins promotes breast cancer invasion and metastasis. Proc Natl Acad Sci U S A 103,8173-8178 (2006).
    62. Parks, S. & Wieschaus, E. The Drosophila gastrulation gene concertina encodes a G alpha-like protein. Cell 64,447-458 (1991).
    63. Radhika, V., Onesime, D., Ha, J.H. & Dhanasekaran, N. Galphal3 stimulates cell migration through cortactin-interacting protein Hax-1. J Biol Chem 279,49406-49413 (2004).
    64. Goulimari, P. et al. Galpha12/13 is essential for directed cell migration and localized Rho-Dial function. J Biol Chem 280,42242-42251 (2005).
    65. Xu, J. et al. Divergent signals and cytoskeletal assemblies regulate self-organizing polarity in neutrophils. Cell 114,201-214 (2003).
    66. Kaplan, D.D., Meigs, T.E. & Casey, P.J. Distinct regions of the cadherin cytoplasmic domain are essential for functional interaction with Galpha 12 and beta-catenin. JBiol Chem 276,44037-44043 (2001).
    67. Girkontaite, I. et al. Lsc is required for marginal zone B cells, regulation of lymphocyte motility and immune responses. Nat Immunol 2,855-862 (2001).
    68. Graler, M.H. et al. The sphingosine 1-phosphate receptor S1P4 regulates cell shape and motility via coupling to Gi and G12/13. J Cell Biochem 89,507-519 (2003).
    69. Ruppel, K.M. et al. Essential role for Galpha13 in endothelial cells during embryonic development. Proc Natl A cad Sci U S A 102,8281-8286 (2005).
    70. Kelly, P. et al. A role for the G12 family of heterotrimeric G proteins in prostate cancer invasion. JBiol Chem 281,26483-26490 (2006).
    71. Bian, D., Mahanivong, C., Yu, J., Frisch, S.M. & Pan, Z.K. The G12/13-RhoA signaling pathway contributes to efficient lysophosphatidic acid-stimulated cell migration. Oncogene 25,2234-2244 (2006).
    72. Moers, A. et al. G13 is an essential mediator of platelet activation in hemostasis and thrombosis. Nat Med 9,1418-1422 (2003).
    73. Gohla, A., Schultz, G.& Offermanns, S. Role for G(12)/G(13) in agonist-induced vascular smooth muscle cell contraction. Circ Res 87,221-227 (2000).
    74. Maruyama, Y. et al. Galpha(12/13) mediates alpha(1)-adrenergic receptor-induced cardiac hypertrophy. Circ Res 91,961-969 (2002).
    75. Berestetskaya, Y.V., Faure, M.P., Ichijo, H. & Voyno-Yasenetskaya, T.A. Regulation of apoptosis by alpha-subunits of G12 and G13 proteins via apoptosis signal-regulating kinase-1. JBiol Chem 273,27816-27823 (1998).
    76. Althoefer, H., Eversole-Cire, P. & Simon, M.I. Constitutively active Galphaq and Galphal3 trigger apoptosis through different pathways. J Biol Chem 272,24380-24386 (1997).
    77. Katoh, H. et al. Constitutively active Galphal2, Galphal3, and Galphaq induce Rho-dependent neurite retraction through different signaling pathways. J Biol Chem 273,28700-28707 (1998).
    78. Kranenburg, O. et al. Activation of RhoA by lysophosphatidic acid and Galphal2/13 subunits in neuronal cells:induction of neurite retraction. Mol Biol Cell 10,1851-1857(1999).
    79. Jho, E.H. & Malbon, C.C. Galpha12 and Galpha13 mediate differentiation of P19 mouse embryonal carcinoma cells in response to retinoic acid. J Biol Chem 272, 24461-24467 (1997).
    80. Siehler, S. G12/13-dependent signaling of G-protein-coupled receptors:disease context and impact on drug discovery. Expert Opin Drug Discov 2,1591-1604 (2007).
    81. Lin, F. et al. Essential roles of G{alpha} 12/13 signaling in distinct cell behaviors driving zebrafish convergence and extension gastrulation movements. J Cell Biol 169,777-787 (2005).
    82. Shan, D. et al. The G protein G alpha(13) is required for growth factor-induced cell migration. Dev Cell 10,707-718 (2006).
    83. Juneja, J. & Casey, P.J. Role of G12 proteins in oncogenesis and metastasis. Br J Pharmacol 158,32-40 (2009).
    84. Goulimari, P., Knieling, H., Engel, U. & Grosse, R. Cell Polarity and Microtubule Dynamics. Mol Biol Cell 19,30-40 (2008).
    85. Bian, D. et al. The G12/13-RhoA signaling pathway contributes to efficient lysophosphatidic acid-stimulated cell migration. Oncogene 25,2234-2244 (2006).
    86. Moers, A., Nurnberg, A., Goebbels, S., Wettschureck, N. & Offermanns, S. Galpha12/Galphal3 deficiency causes localized overmigration of neurons in the developing cerebral and cerebellar cortices. Mol Cell Biol 28,1480-1488 (2008).
    87. Tan, W., Martin, D. & Gutkind, J.S. The Galphal3-Rho signaling axis is required for SDF-1-induced migration through CXCR4. J Biol Chem 281,39542-39549 (2006).
    88. Rieken, S., Sassmann, A., Herroeder, S. & Wallenwein, B. G12/G13 family G proteins regulate marginal zone B cell maturation, migration, and polarization. J Immunol 177,2985-2993 (2006).
    89. Takashima, S., Sugimoto, N., Takuwa, N., Okamoto, Y. & Yoshioka, K. G12/13 and Gq mediate S1P2-induced inhibition of Rac and migration in vascular smooth muscle in a manner dependent on Rho but not Rho kinase. Cardiovasc Res 79, 689-697 (2008).
    90. Malchinkhuu, E., Sato, K., Maehama, T., Mogi, C. & Tomura, H. S1P(2) receptors mediate inhibition of glioma cell migration through Rho signaling pathways independent of PTEN. Biochem Biophys Res Commun 366,963-968 (2008).
    91. Iguchi, T., Sakata, K., Yoshizaki, K., Tago, K. & Mizuno, N. Orphan G protein-coupled receptor GPR56 regulates neural progenitor cell migration via a G alpha 12/13 and Rho pathway. JBiol Chem 283,14469-14478 (2008).
    92. Huang, L.J., Durick, K., Weiner, J.A., Chun, J. & Taylor, S.S. D-AKAP2, a novel protein kinase A anchoring protein with a putative RGS domain. Proc Natl Acad Sci USA 94,11184-11189(1997).
    93. Druey, K.M., Blumer, K.J., Kang, V.H. & Kehrl, J.H. Inhibition of G-protein-mediated MAP kinase activation by a new mammalian gene family. Nature 379, 742-746(1996).
    94. Yan, Y., Chi, P.P. & Bourne, H.R. RGS4 inhibits Gq-mediated activation of mitogen-activated protein kinase and phosphoinositide synthesis. JBiol Chem 272, 11924-11927(1997).
    95. Saitoh, O., Kubo, Y., Miyatani, Y., Asano, T. & Nakata, H. RGS8 accelerates G-protein-mediated modulation of K+ currents. Nature 390,525-529 (1997).
    96. Doupnik, C.A., Davidson, N., Lester, H.A. & Kofuji, P. RGS proteins reconstitute the rapid gating kinetics of gbetagamma-activated inwardly rectifying K+ channels. Proc Natl Acad Sci U S A 94,10461-10466(1997).
    97. Traynor, J.R. & Neubig, R.R. Regulators of G protein signaling & drugs of abuse. Mol Interv 5,30-41 (2005).
    98. Neubig, R.R. & Siderovski, D.P. Regulators of G-protein signalling as new central nervous system drug targets. Nat Rev Drug Discov 1,187-197 (2002).
    99. De Vries, L., Elenko, E., Hubler, L., Jones, T.L. & Farquhar, M.G. GAIP is membrane-anchored by palmitoylation and interacts with the activated (GTP-bound) form of G alpha i subunits. Proc Natl Acad Sci U S A 93,15203-15208 (1996).
    100. Hepler, J.R., Berman, D.M., Gilman, A.G. & Kozasa, T. RGS4 and GAIP are GTPase-activating proteins for Gq alpha and block activation of phospholipase C beta by gamma-thio-GTP-Gq alpha. Proc Natl Acad Sci USA 94,428-432 (1997).
    101. Jordan, J.D., Carey, K.D., Stork, P.J. & Iyengar, R. Modulation of rap activity by direct interaction of Galpha(o) with Rapl GTPase-activating protein. JBiol Chem 274,21507-21510(1999).
    102. Wang, J. et al. RGSZ1, a Gz-selective RGS protein in brain. Structure, membrane association, regulation by Galphaz phosphorylation, and relationship to a Gz gtpase-activating protein subfamily. JBiol Chem 273,26014-26025 (1998).
    103. Glick, J.L., Meigs, T.E., Miron, A. & Casey, P.J. RGSZ1, a Gz-selective regulator of G protein signaling whose action is sensitive to the phosphorylation state of Gzalpha. JBiol Chem 273,26008-26013 (1998).
    104. Berman, D.M., Wilkie, T.M. & Gilman, A.G. GAIP and RGS4 are GTPase-activating proteins for the Gi subfamily of G protein alpha subunits. Cell 86,445-452(1996).
    105. Watson, N., Linder, M.E., Druey, K.M., Kehrl, J.H. & Blumer, K.J. RGS family members:GTPase-activating proteins for heterotrimeric G-protein alpha-subunits. Nature 383,172-175(1996).
    106. Xu, X. et al. RGS proteins determine signaling specificity of Gq-coupled receptors. JBiol Chem 274,3549-3556 (1999).
    107. Ingi, T. et al. Dynamic regulation of RGS2 suggests a novel mechanism in G-protein signaling and neuronal plasticity. JNeurosci 18,7178-7188 (1998).
    108. Sinnarajah, S. et al. RGS2 regulates signal transduction in olfactory neurons by attenuating activation of adenylyl cyclase Ⅲ. Nature 409,1051-1055 (2001).
    109. Scheschonka, A. et al. RGS3 is a GTPase-activating protein for g(ialpha) and g(qalpha) and a potent inhibitor of signaling by GTPase-deficient forms of g(qalpha) and g(11 alpha). Mol Pharmacol 58,719-728 (2000).
    110. Zhou, J. et al. Characterization of RGS5 in regulation of G protein-coupled receptor signaling. Life Sci 68,1457-1469 (2001).
    111. Johnson, E.N. & Druey, K.M. Functional characterization of the G protein regulator RGS13.J Biol Chem 277,16768-16774 (2002).
    112. Druey, K.M. et al. Amino-terminal cysteine residues of RGS 16 are required for palmitoylation and modulation of Gi-and Gq-mediated signaling. J Biol Chem 274,18836-18842(1999).
    113. Park, I.K. et al. Molecular cloning and characterization of a novel regulator of G-protein signaling from mouse hematopoietic stem cells. JBiol Chem 276,915-923 (2001).
    114. He, W., Cowan, C.W. & Wensel, T.G. RGS9, a GTPase accelerator for phototransduction. Neuron 20,95-102 (1998).
    115. Posner, B.A., Gilman, A.G. & Harris, B.A. Regulators of G protein signaling 6 and 7. Purification of complexes with gbeta5 and assessment of their effects on g protein-mediated signaling pathways. JBiol Chem 274,31087-31093(1999).
    116. Lan, K.L., Zhong, H., Nanamori, M. & Neubig, R.R. Rapid kinetics of regulator of G-protein signaling (RGS)-mediated Galphai and Galphao deactivation. Galpha specificity of RGS4 AND RGS7. JBiol Chem 275,33497-33503 (2000).
    117. Snow, B.E. et al. A G protein gamma subunit-like domain shared between RGS11 and other RGS proteins specifies binding to Gbeta5 subunits. Proc Natl Acad Sci USA 95,13307-13312 (1998).
    118. Snow, B.E. et al. GTPase activating specificity of RGS 12 and binding specificity of an alternatively spliced PDZ (PSD-95/Dlg/ZO-1) domain. J Biol Chem 273, 17749-17755(1998).
    119. Hunt, T.W., Fields, T.A., Casey, P.J. & Peralta, E.G. RGS 10 is a selective activator of G alpha i GTPase activity. Nature 383,175-177 (1996).
    120. Hollinger, S., Taylor, J.B., Goldman, E.H. & Hepler, J.R. RGS 14 is a bifunctional regulator of Galphai/o activity that exists in multiple populations in brain. J Neurochem 79,941-949 (2001).
    121. Carman, C.V. et al. Selective regulation of Galpha(q/11) by an RGS domain in the G protein-coupled receptor kinase, GRK2. J Biol Chem 274,34483-34492 (1999).
    122. Picascia, A., Capobianco, L., Iacovelli, L. & De Blasi, A. Analysis of differential modulatory activities of GRK2 and GRK4 on Galphaq-coupled receptor signaling. Methods Enzymol 390,337-353 (2004).
    123. Zheng, B. et al. RGS-PX1, a GAP for GalphaS and sorting nexin in vesicular trafficking. Science 294,1939-1942 (2001).
    124. De Vries, L., Mousli, M., Wurmser, A. & Farquhar, M.G. GAIP, a protein that specifically interacts with the trimeric G protein G alpha i3, is a member of a protein family with a highly conserved core domain. Proc Natl Acad Sci U S A 92, 11916-11920(1995).
    125. Sahai, E. & Marshall, C.J. RHO-GTPases and cancer. Nat Rev Cancer 2,133-142 (2002).
    126. Takai, Y., Sasaki, T. & Matozaki, T. Small GTP-binding proteins. Physiol Rev 81, 153-208 (2001).
    127. Colicelli, J. Human RAS superfamily proteins and related GTPases.Sci STKE 2004, RE 13 (2004).
    128. Bos, J.L., Rehmann, H. & Wittinghofer, A. GEFs and GAPs:critical elements in the control of small G proteins. Cell 129,865-877 (2007).
    129. Suzuki, N., Nakamura, S., Mano, H. & Kozasa, T. Galpha 12 activates Rho GTPase through tyrosine-phosphorylated leukemia-associated RhoGEF. Proc Natl Acad Sci USA 100,733-738 (2003).
    130. Pantaloni, D., Le Clainche, C. & Carlier, M.F. Mechanism of actin-based motility. Science 292,1502-1506 (2001).
    131. Ridley, A.J. et al. Cell migration:integrating signals from front to back. Science 302,1704-1709(2003).
    132. Lauffenburger, D.A. & Horwitz, A.F. Cell migration:a physically integrated molecular process. Cell 84,359-369 (1996).
    133. Pollard, T.D. & Borisy, G.G. Cellular motility driven by assembly and disassembly of actin filaments. Cell 112,453-465 (2003).
    134. Gupta, G.P. & Massague, J. Cancer metastasis:building a framework. Cell 127, 679-695 (2006).
    135. Suetsugu, S., Miki, H. & Takenawa, T. Spatial and temporal regulation of actin polymerization for cytoskeleton formation through Arp2/3 complex and WASP/WAVE proteins. CellMotil Cytoskeleton 51,113-122 (2002).
    136. Paavilainen, V.O., Bertling, E., Falck, S. & Lappalainen, P. Regulation of cytoskeletal dynamics by actin-monomer-binding proteins. Trends Cell Biol 14, 386-394 (2004).
    137. Goley, E.D. & Welch, M.D. The ARP2/3 complex:an actin nucleator comes of age. Nat Rev Mol Cell Biol 7,713-726 (2006).
    138. Machesky, L.M., Atkinson, S.J., Ampe, C., Vandekerckhove, J. & Pollard, T.D. Purification of a cortical complex containing two unconventional actins from Acanthamoeba by affinity chromatography on profilin-agarose. J Cell Biol 127, 107-115(1994).
    139. Kovar, D.R. Molecular details of formin-mediated actin assembly. Curr Opin Cell Biol 18,11-17(2006).
    140. Baum, B. & Kunda, P. Actin nucleation:spire-actin nucleator in a class of its own. Curr Biol 15, R305-308 (2005).
    141. Winter, D., Podtelejnikov, A.V., Mann, M. & Li, R. The complex containing actin-related proteins Arp2 and Arp3 is required for the motility and integrity of yeast actin patches. Curr Biol 7,519-529 (1997).
    142. Morrell, J.L., Morphew, M. & Gould, K.L. A mutant of Arp2p causes partial disassembly of the Arp2/3 complex and loss of cortical actin function in fission yeast. Mol Biol Cell 10,4201-4215 (1999).
    143. Welch, M.D., Iwamatsu, A. & Mitchison, T.J. Actin polymerization is induced by Arp2/3 protein complex at the surface of Listeria monocytogenes. Nature 385, 265-269 (1997).
    144. Ma, L., Rohatgi, R. & Kirschner, M.W. The Arp2/3 complex mediates actin polymerization induced by the small GTP-binding protein Cdc42. ProcNatlAcad Sci U S A 95,15362-15367 (1998).
    145. Robinson, R.C. et al. Crystal structure of Arp2/3 complex. Science 294,1679-1684(2001).
    146. Dayel, M.J., Holleran, E.A. & Mullins, R.D. Arp2/3 complex requires hydrolyzable ATP for nucleation of new actin filaments. Proc Natl Acad Sci U S A 98,14871-14876(2001).
    147. Le Clainche, C, Didry, D., Carlier, M.F. & Pantaloni, D. Activation of Arp2/3 complex by Wiskott-Aldrich Syndrome protein is linked to enhanced binding of ATP to Arp2. J Biol Chem 276,46689-46692 (2001).
    148. Welch, M.D., Rosenblatt, J., Skoble, J., Portnoy, D.A. & Mitchison, T.J. Interaction of human Arp2/3 complex and the Listeria monocytogenes ActA protein in actin filament nucleation. Science 281,105-108 (1998).
    149. Machesky, L.M. & Insall, R.H. Scarl and the related Wiskott-Aldrich syndrome protein, WASP, regulate the actin cytoskeleton through the Arp2/3 complex. Curr Biol 8,1347-1356(1998).
    150. Machesky, L.M. et al. Scar, a WASp-related protein, activates nucleation of actin filaments by the Arp2/3 complex. Proc Natl Acad Sci USA 96,3739-3744 (1999).
    151. Rohatgi, R. et al. The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell 97,221-231 (1999).
    152. Winter, D., Lechler, T. & Li, R. Activation of the yeast Arp2/3 complex by Beelp, a WASP-family protein. Curr Biol 9,501-504 (1999).
    153. Yarar, D., To, W., Abo, A. & Welch, M.D. The Wiskott-Aldrich syndrome protein directs actin-based motility by stimulating actin nucleation with the Arp2/3 complex. Curr Biol 9,555-558 (1999).
    154. Jung, G., Remmert, K., Wu, X., Volosky, J.M. & Hammer, J.A.,3rd The Dictyostelium CARMIL protein links capping protein and the Arp2/3 complex to type I myosins through their SH3 domains. J Cell Biol 153,1479-1497 (2001).
    155. Chereau, D. et al. Actin-bound structures of Wiskott-Aldrich syndrome protein (WASP)-homology domain 2 and the implications for filament assembly. Proc Natl Acad Sci USA 102,16644-16649 (2005).
    156. Marchand, J.B., Kaiser, D.A., Pollard, T.D.& Higgs, H.N. Interaction of WASP/Scar proteins with actin and vertebrate Arp2/3 complex. Nat Cell Biol 3, 76-82 (2001).
    157. Derry, J.M., Ochs, H.D. & Francke, U. Isolation of a novel gene mutated in Wiskott-Aldrich syndrome. Cell 78,635-644 (1994).
    158. Miki, H., Miura, K. & Takenawa, T. N-WASP, a novel actin-depolymerizing protein, regulates the cortical cytoskeletal rearrangement in a PIP2-dependent manner downstream of tyrosine kinases. EMBO J15,5326-5335 (1996).
    159. Kreishman-Deitrick, M. et al. NMR analyses of the activation of the Arp2/3 complex by neuronal Wiskott-Aldrich syndrome protein. Biochemistry 44,15247-15256(2005).
    160. Duncan, M.C., Cope, M.J., Goode, B.L., Wendland, B. & Drubin, D.G. Yeast Eps15-like endocytic protein, Panlp, activates the Arp2/3 complex. Nat Cell Biol 3,687-690(2001).
    161. Weed, S.A. et al. Cortactin localization to sites of actin assembly in lamellipodia requires interactions with F-actin and the Arp2/3 complex. J Cell Biol 151,29-40 (2000).
    162. Quinlan, M.E., Heuser, J.E., Kerkhoff, E. & Mullins, R.D. Drosophila Spire is an actin nucleation factor. Nature 433,382-388 (2005).
    163. Watanabe, N. & Higashida, C. Formins:processive cappers of growing actin filaments. Exp Cell Res 301,16-22 (2004).
    164. Krause, M., Dent, E.W., Bear, J.E., Loureiro, J.J. & Gertler, F.B. Ena/VASP proteins:regulators of the actin cytoskeleton and cell migration. Annu Rev Cell Dev Biol 19,541-564 (2003).
    165. Kurisu, S. & Takenawa, T. The WASP and WAVE family proteins. Genome Biol 10,226 (2009).
    166. Miki, H. & Takenawa, T. Direct binding of the verprolin-homology domain in N-WASP to actin is essential for cytoskeletal reorganization. Biochem Biophys Res Commun 243,73-78 (1998).
    167. Symons, M. et al. Wiskott-Aldrich syndrome protein, a novel effector for the GTPase CDC42Hs, is implicated in actin polymerization. Cell 84,723-734 (1996).
    168. Ramesh, N., Anton, I.M., Hartwig, J.H. & Geha, R.S. WIP, a protein associated with wiskott-aldrich syndrome protein, induces actin polymerization and redistribution in lymphoid cells. Proc Natl Acad Sci U S A 94,14671-14676 (1997).
    169. Aspenstrom, P. The WASP-binding protein WIRE has a role in the regulation of the actin filament system downstream of the platelet-derived growth factor receptor. Exp Cell Res 279,21-33 (2002).
    170. Kato, M. et al. WICH, a novel verprolin homology domain-containing protein that functions cooperatively with N-WASP in actin-microspike formation. Biochem Biophys Res Commun 291,41-47 (2002).
    171. Ho, H.Y., Rohatgi, R., Ma, L. & Kirschner, M.W. CR16 forms a complex with N-WASP in brain and is a novel member of a conserved proline-rich actin-binding protein family. Proc Natl Acad Sci USA 98,11306-11311 (2001).
    172. Sasahara, Y. et al. Mechanism of recruitment of WASP to the immunological synapse and of its activation following TCR ligation. Mol Cell 10,1269-1281 (2002).
    173. Moreau, V. et al. A complex of N-WASP and WIP integrates signalling cascades that lead to actin polymerization. Nat Cell Biol2,441-448 (2000).
    174. Rohatgi, R.5 Ho, H.Y. & Kirschner, M.W. Mechanism of N-WASP activation by CDC42 and phosphatidylinositol 4,5-bisphosphate. J Cell Biol 150,1299-1310 (2000).
    175. Higgs, H.N. & Pollard, T.D. Activation by Cdc42 and PIP(2) of Wiskott-Aldrich syndrome protein (WASp) stimulates actin nucleation by Arp2/3 complex. J Cell Biol 150,1311-1320(2000).
    176. Abe, T., Kato, M., Miki, H., Takenawa, T. & Endo, T. Small GTPase Tc 10 and its homologue RhoT induce N-WASP-mediated long process formation and neurite outgrowth. J Cell Sci 116,155-168 (2003).
    177. Aronheim, A. et al. Chp, a homologue of the GTPase Cdc42Hs, activates the JNK pathway and is implicated in reorganizing the actin cytoskeleton. Curr Biol 8, 1125-1128(1998).
    178. Hemsath, L., Dvorsky, R., Fiegen, D., Carlier, M.F. & Ahmadian, M.R. An electrostatic steering mechanism of Cdc42 recognition by Wiskott-Aldrich syndrome proteins. Mol Cell 20,313-324 (2005).
    179. Kim, A.S., Kakalis, L.T., Abdul-Manan, N., Liu, G.A. & Rosen, M.K. Autoinhibition and activation mechanisms of the Wiskott-Aldrich syndrome protein. Nature 404,151-158 (2000).
    180. Carlier, M.F. et al. GRB2 links signaling to actin assembly by enhancing interaction of neural Wiskott-Aldrich syndrome protein (N-WASp) with actin-related protein (ARP2/3) complex. J Biol Chem 275,21946-21952 (2000).
    181. Cory, G.O., Garg, R., Cramer, R. & Ridley, A.J. Phosphorylation of tyrosine 291 enhances the ability of WASp to stimulate actin polymerization and filopodium formation. Wiskott-Aldrich Syndrome protein. J Biol Chem 277,45115-45121 (2002).
    182. Suetsugu, S. et al. Sustained activation of N-WASP through phosphporylation is essential for neurite extension. Dev Cell 3,645-658 (2002).
    183. Takenawa, T. & Suetsugu, S. The WASP-WAVE protein network:connecting the membrane to the cytoskeleton. Nat Rev Mol Cell Biol 8,37-48 (2007).
    184. Suetsugu, S. et al. Optimization of WAVE2 complex-induced actin polymerization by membrane-bound IRSp53, PIP(3), and Rac. J Cell Biol 173, 571-585(2006).
    185. Eden, S., Rohatgi, R., Podtelejnikov, A.V., Mann, M. & Kirschner, M.W. Mechanism of regulation of WAVE1-induced actin nucleation by Racl and Nck. Nature 418,790-793 (2002).
    186. Innocenti, M. et al. Abil is essential for the formation and activation of a WAVE2 signalling complex. Nat Cell Biol 6,319-327 (2004).
    187. Gautreau, A. et al. Purification and architecture of the ubiquitous Wave complex. Proc Natl Acad Sci USA 101,4379-4383 (2004).
    188. Stovold, C.F., Millard, T.H. & Machesky, L.M. Inclusion of Scar/WAVE3 in a similar complex to Scar/WAVE1 and 2. BMC Cell Biol 6,11 (2005).
    189. Suetsugu, S., Miki, H. & Takenawa, T. Identification of two human WAVE/SCAR homologues as general actin regulatory molecules which associate with the Arp2/3 complex. Biochem Biophys Res Commun 260,296-302 (1999).
    190. Oikawa, T. et al. PtdIns(3,4,5)P3 binding is necessary for WAVE2-induced formation of lamellipodia. Nat Cell Biol 6,420-426 (2004).
    191. Soto, M.C. et al. The GEX-2 and GEX-3 proteins are required for tissue morphogenesis and cell migrations in C. elegans. Genes Dev 16,620-632 (2002).
    192. Kitamura, T. et al. Molecular cloning of p125Napl, a protein that associates with an SH3 domain of Nek. Biochem Biophys Res Commun 219,509-514 (1996).
    193. Kobayashi, K. et al. pl40Sra-1 (specifically Rac1-associated protein) is a novel specific target for Racl small GTPase. J Biol Chem 273,291-295 (1998).
    194. Nozumi, M., Nakagawa, H., Miki, H., Takenawa, T. & Miyamoto, S. Differential localization of WAVE isoforms in filopodia and lamellipodia of the neuronal growth cone. J Cell Sci 116,239-246 (2003).
    195. Suetsugu, S., Yamazaki, D., Kurisu, S. & Takenawa, T. Differential roles of WAVE1 and WAVE2 in dorsal and peripheral ruffle formation for fibroblast cell migration. Dev Cell 5,595-609 (2003).
    196. Siripala, A.D. & Welch, M.D. SnapShot:actin regulators Ⅰ. Cell 128,626 (2007).
    197. Mellstroom, K. et al. The effect of platelet-derived growth factor on morphology and motility of human glial cells. J Muscle Res Cell Motil 4,589-609 (1983).
    198. Yan, C. et al. WAVE2 deficiency reveals distinct roles in embryogenesis and Rac-mediated actin-based motility. EMBO J 22,3602-3612 (2003).
    199. Yamazaki, D. et al. WAVE2 is required for directed cell migration and cardiovascular development. Nature 424,452-456 (2003).
    200. Svitkina, T.M. & Borisy, G.G. Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. J Cell Biol 145,1009-1026 (1999).
    201. Yeh, T.C., Ogawa, W., Danielsen, A.G. & Roth, R.A. Characterization and cloning of a 58/53-kDa substrate of the insulin receptor tyrosine kinase. J Biol Chem 271,2921-2928 (1996).
    202. Miki, H., Yamaguchi, H., Suetsugu, S. & Takenawa, T. IRSp53 is an essential intermediate between Rac and WAVE in the regulation of membrane ruffling. Nature 408,732-735 (2000).
    203. Krugmann, S. et al. Cdc42 induces filopodia by promoting the formation of an IRSp53:Mena complex. Curr Biol 11,1645-1655 (2001).
    204. Yamagishi, A., Masuda, M., Ohki, T., Onishi, H. & Mochizuki, N. A novel actin bundling/filopodium-forming domain conserved in insulin receptor tyrosine kinase substrate p53 and missing in metastasis protein. J Biol Chem 279,14929-14936(2004).
    205. Millard, T.H. et al. Structural basis of filopodia formation induced by the IRSp53/MIM homology domain of human IRSp53. EMBO J 24,240-250 (2005).
    206. Habermann, B. The BAR-domain family of proteins:a case of bending and binding? EMBO Rep 5,250-255 (2004).
    207. Suetsugu, S. et al. The RAC binding domain/IRSp53-MIM homology domain of IRSp53 induces RAC-dependent membrane deformation. J Biol Chem 281, 35347-35358 (2006).
    208. Mellstrom, K., Heldin, C.H. & Westermark, B. Induction of circular membrane ruffling on human fibroblasts by platelet-derived growth factor. Exp Cell Res 177, 347-359(1988).
    209. Bretscher, M.S. Getting membrane flow and the cytoskeleton to cooperate in moving cells. Cell 87,601-606 (1996).
    210. Warn, R., Brown, D., Dowrick, P., Prescott, A. & Warn, A. Cytoskeletal changes associated with cell motility. Symp Soc Exp Biol 47,325-338 (1993).
    211. Nister, M. et al. A glioma-derived PDGF A chain homodimer has different functional activities from a PDGF AB heterodimer purified from human platelets. Cell 52,791-799 (1988).
    212. Hammacher, A., Mellstrom, K., Heldin, C.H. & Westermark, B. Isoform-specific induction of actin reorganization by platelet-derived growth factor suggests that the functionally active receptor is a dimer. EMBO J 8,2489-2495 (1989).
    213. Eriksson, A., Siegbahn, A., Westermark, B., Heldin, C.H.& Claesson-Welsh, L. PDGF alpha- and beta-receptors activate unique and common signal transduction pathways. EMBO J11,543-550 (1992).
    214. Hedberg, K.M., Bengtsson, T., Safiejko-Mroczka, B., Bell, P.B. & Lindroth, M. PDGF and neomycin induce similar changes in the actin cytoskeleton in human fibroblasts. Cell Motil Cytoskeleton 24,139-149(1993).
    215. Krueger, E.W., Orth, J.D., Cao, H. & McNiven, M.A. A dynamin-cortactin-Arp2/3 complex mediates actin reorganization in growth factor-stimulated cells. Mol Biol Cell 14,1085-1096 (2003).
    216. Westphal, R.S., Soderling, S.H., Alto, N.M., Langeberg, L.K. & Scott, J.D. Scar/WAVE-1, a Wiskott-Aldrich syndrome protein, assembles an actin-associated multi-kinase scaffold. EMBOJ19,4589-4600 (2000).
    217. Lanzetti, L., Palamidessi, A., Areces, L., Scita, G. & Di Fiore, P.P. Rab5 is a signalling GTPase involved in actin remodelling by receptor tyrosine kinases. Nature 429,309-314 (2004).
    218. Hall, A. Rho GTPases and the actin cytoskeleton. Science 279,509-514 (1998).
    219. Ballestrem, C., Wehrle-Haller, B. & Imhof, B.A. Actin dynamics in living mammalian cells. J Cell Sci 111 (Pt 12),1649-1658 (1998).
    220. Buccione, R., Orth, J.D. & McNiven, M.A. Foot and mouth:podosomes, invadopodia and circular dorsal ruffles. Nat Rev Mol Cell Biol 5,647-657 (2004).
    221. Dowrick, P., Kenworthy, P., McCann, B. & Warn, R. Circular ruffle formation and closure lead to macropinocytosis in hepatocyte growth factor/scatter factor-treated cells. Eur J Cell Biol 61,44-53 (1993).
    222. Orth, J.D. & McNiven, M.A. Dynamin at the actin-membrane interface. Curr Opin Cell Biol 15,31-39 (2003).
    223. Orth, J.D., Gray, N.W., Thompson, H.M. & McNiven, M.A. in Cell Motility: From Molecules to Organisms, (eds Ridley, A. J., Clark, P. & Peckham, M.),189-201 (2003).
    224. McNiven, M.A. et al. Regulated interactions between dynamin and the actin-binding protein cortactin modulate cell shape. J Cell Biol 151,187-198 (2000).
    225. Wu, H. & Parsons, J.T. Cortactin, an 80/85-kilodalton pp60src substrate, is a filamentous actin-binding protein enriched in the cell cortex. J Cell Biol 120, 1417-1426(1993).
    226. Weed, S.A.& Parsons, J.T. Cortactin:coupling membrane dynamics to cortical actin assembly. Oncogene 20,6418-6434 (2001).
    227. Orth, J.D., Krueger, E.W., Cao, H. & McNiven, M.A. The large GTPase dynamin regulates actin comet formation and movement in living cells. Proc Natl Acad Sci U S A 99,167-172(2002).
    228. Dharmawardhane, S., Sanders, L.C., Martin, S.S., Daniels, R.H. & Bokoch, G.M. Localization of p21-activated kinase 1 (PAK1) to pinocytic vesicles and cortical actin structures in stimulated cells. J Cell Biol 138,1265-1278 (1997).
    229. Dharmawardhane, S. et al. Regulation of macropinocytosis by p21-activated kinase-1. Mol Biol Cell 11,3341-3352 (2000).
    230. Vadlamudi, R.K., Li, F., Barnes, C.J., Bagheri-Yarmand, R. & Kumar, R. p41-Arc subunit of human Arp2/3 complex is a p21-activated kinase-1-interacting substrate. EMBO Rep 5,154-160 (2004).
    231. Papakonstanti, E.A. & Stournaras, C. Association of PI-3 kinase with PAK1 leads to actin phosphorylation and cytoskeletal reorganization. Mol Biol Cell 13,2946-2962 (2002).
    232. Plattner, R., Kadlec, L., DeMali, K.A., Kazlauskas, A. & Pendergast, A.M. c-Abl is activated by growth factors and Src family kinases and has a role in the cellular response to PDGF. Genes Dev 13,2400-2411 (1999).
    233. Martinez-Quiles, N., Ho, H.Y., Kirschner, M.W., Ramesh, N. & Geha, R.S. Erk/Src phosphorylation of cortactin acts as a switch on-switch off mechanism that controls its ability to activate N-WASP. Mol Cell Biol 24,5269-5280 (2004).
    234. Bishop, A.L. & Hall, A. Rho GTPases and their effector proteins. Biochem J 348 Pt 2,241-255 (2000).
    235. Burridge, K. & Wennerberg, K. Rho and Rac take center stage. Cell 116,167-179 (2004).
    236. Raftopoulou, M. & Hall, A. Cell migration:Rho GTPases lead the way. Dev Biol 265,23-32 (2004).
    237. Stephens, L., Ellson, C. & Hawkins, P. Roles of PI3Ks in leukocyte chemotaxis and phagocytosis. Curr Opin Cell Biol 14,203-213 (2002).
    238. Vanhaesebroeck, B. et al. Distinct PI(3)Ks mediate mitogenic signalling and cell migration in macrophages. Nat Cell Biol 1,69-71 (1999).
    239. Li, Z. et al. Roles of PLC-beta2 and -beta3 and PI3Kgamma in chemoattractant-mediated signal transduction. Science 287,1046-1049 (2000).
    240. Hirsch, E. et al. Central role for G protein-coupled phosphoinositide 3-kinase gamma in inflammation. Science 287,1049-1053 (2000).
    241. Sasaki, T. et al. Function of PI3Kgamma in thymocyte development, T cell activation, and neutrophil migration. Science 287,1040-1046 (2000).
    242. Reif, K., Nobes, C.D., Thomas, G., Hall, A. & Cantrell, D.A. Phosphatidylinositol 3-kinase signals activate a selective subset of Rac/Rho-dependent effector pathways. Curr Biol 6,1445-1455 (1996).
    243. Abe, K. et al. Vav2 is an activator of Cdc42, Rac1, and RhoA. J Biol Chem 275, 10141-10149(2000).
    244. Han, J. et al. Role of substrates and products of PI 3-kinase in regulating activation of Rac-related guanosine triphosphatases by Vav. Science 279,558-560 (1998).
    245. Bokoch, G.M., Vlahos, C.J., Wang, Y., Knaus, U.G. & Traynor-Kaplan, A.E. Rac GTPase interacts specifically with phosphatidylinositol 3-kinase. Biochem J 315 (Pt3),775-779 (1996).
    246. Hawkins, P.T. et al. PDGF stimulates an increase in GTP-Rac via activation of phosphoinositide 3-kinase. Curr Biol 5,393-403 (1995).
    247. Buday, L., Wunderlich, L. & Tamas, P. The Nck family of adapter proteins: regulators of actin cytoskeleton. Cell Signal 14,723-731 (2002).
    248. Klemke, R.L. et al. CAS/Crk coupling serves as a "molecular switch" for induction of cell migration. J Cell Biol 140,961-972 (1998).
    249. "Nobes, C.D. & Hall, A. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81,53-62 (1995).
    250. Manabe, R., Kovalenko, M., Webb, D.J. & Horwitz, A.R. GIT1 functions in a motile, multi-molecular signaling complex that regulates protrusive activity and cell migration. J Cell Sci 115,1497-1510 (2002).
    251. Arber, S. et al. Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature 393,805-809 (1998).
    252. Edwards, D.C., Sanders, L.C., Bokoch, G.M. & Gill, G.N. Activation of LIM-kinase by Pakl couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nat Cell Biol 1,253-259 (1999).
    253. Rohatgi, R., Nollau, P., Ho, H.Y., Kirschner, M.W. & Mayer, B.J. Nck and phosphatidylinositol 4,5-bisphosphate synergistically activate actin polymerization through the N-WASP-Arp2/3 pathway. J Biol Chem 276,26448-26452(2001).
    254. Alblas, J., Ulfman, L., Hordijk, P. & Koenderman, L. Activation of Rhoa and ROCK are essential for detachment of migrating leukocytes. Mol Biol Cell 12, 2137-2145(2001).
    255. Maekawa, M. et al. Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science 285,895-898 (1999).
    256. Kawano, Y. et al. Phosphorylation of myosin-binding subunit (MBS) of myosin phosphatase by Rho-kinase in vivo. J Cell Biol 147,1023-1038 (1999).
    257. Mitchison, T.J. & Cramer, L.P. Actin-based cell motility and cell locomotion. Cell 84,371-379(1996).
    258. Sander, E.E., ten Klooster, J.P., van Delft, S., van der Kammen, R.A. & Collard, J.G. Rac downregulates Rho activity:reciprocal balance between both GTPases determines cellular morphology and migratory behavior. J Cell Biol 147,1009-1022(1999).
    259. Kiosses, W.B., Daniels, R.H., Otey, C., Bokoch, G.M. & Schwartz, M.A. A role for p21-activated kinase in endothelial cell migration. J Cell Biol 147,831-844 (1999).
    260. Castrillon, D.H. & Wasserman, S.A. Diaphanous is required for cytokinesis in Drosophila and shares domains of similarity with the products of the limb deformity gene. Development 120,3367-3377 (1994).
    261. Pruyne, D. et al. Role of formins in actin assembly:nucleation and barbed-end association. Science 297,612-615 (2002).
    262. Sagot, I., Rodal, A.A., Moseley, J., Goode, B.L. & Pellman, D. An actin nucleation mechanism mediated by Bnil and profilin. Nat Cell Biol 4,626-631 (2002).
    263. Wittmann, T. & Waterman-Storer, C.M. Cell motility:can Rho GTPases and microtubules point the way? J Cell Sci 114,3795-3803 (2001).
    264. Ridley, A.J. Rho GTPases and cell migration. J Cell Sci 114,2713-2722 (2001).
    265. Weiner, O.D. et al. A PtdInsP(3)- and Rho GTPase-mediated positive feedback loop regulates neutrophil polarity. Nat Cell Biol 4,509-513 (2002).
    266. Etienne-Manneville, S. & Hall, A. Integrin-mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKCzeta. Cell 106,489-498 (2001).
    267. Palazzo, A.F. et al. Cdc42, dynein, and dynactin regulate MTOC reorientation independent of Rho-regulated microtubule stabilization. Curr Biol 11,1536-1541 (2001).
    268. Hunter, T. The Croonian Lecture 1997. The phosphorylation of proteins on tyrosine:its role in cell growth and disease. Philos Trans R Soc Lond B Biol Sci 353,583-605 (1998).
    269. Cuatrecasas, P. Interaction of insulin with the cell membrane:the primary action of insulin. Proc Natl Acad Sci USA 63,450-457 (1969).
    270. Cuatrecasas, P. Insulin--receptor interactions in adipose tissue cells:direct measurement and properties. Proc Natl Acad Sci U S A 68,1264-1268 (1971).
    271. Banerjee, S.P., Snyder, S.H., Cuatrecasas, P. & Greene, L.A. Binding of nerve growth factor receptor in sympathetic ganglia. Proc Natl Acad Sci U S A 70, 2519-2523(1973).
    272. Herrup, K. & Shooter, E.M. Properties of the beta nerve growth factor receptor of avian dorsal root ganglia. Proc Natl Acad Sci U S A 70,3884-3888 (1973).
    273. Jiang, G. & Hunter, T. Receptor signaling:when dimerization is not enough. Curr Biol 9, R568-571 (1999).
    274. Lemmon, M.A. & Schlessinger, J. Regulation of signal transduction and signal diversity by receptor oligomerization. Trends Biochem Sci 19,459-463 (1994).
    275. Schlessinger, J. Signal transduction by allosteric receptor oligomerization. Trends Biochem Sci 13,443-447 (1988).
    276. Schiller, M.R. Coupling receptor tyrosine kinases to Rho GTPases--GEFs what's the link. Cell Signal 18,1834-1843 (2006).
    277. Datta, S.R., Brunet, A. & Greenberg, M.E. Cellular survival:a play in three Akts. Genes Dev 13,2905-2927 (1999).
    278. Brunet, A. et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96,857-868 (1999).
    279. Aaronson, S. Teaching resources. Growth factor and receptor tyrosine kinases. Sci STKE 2005, tr6 (2005).
    280. Hur, E.M. et al. Sensitization of epidermal growth factor-induced signaling by bradykinin is mediated by c-Src. Implications for a role of lipid microdomains. J Biol Chem 279,5852-5860 (2004).
    281. Zhao, D., Letterman, J. & Schreiber, B.M. beta-Migrating very low density lipoprotein (beta VLDL) activates smooth muscle cell mitogen-activated protein (MAP) kinase via G protein-coupled receptor-mediated transactivation of the epidermal growth factor (EGF) receptor:effect of MAP kinase activation on beta VLDL plus EGF-induced cell proliferation. J Biol Chem 276,30579-30588 (2001).
    282. Grewal, J.S., Luttrell, L.M. & Raymond, J.R. G protein-coupled receptors desensitize and down-regulate epidermal growth factor receptors in renal mesangial cells. JBiol Chem 276,27335-27344 (2001).
    283. Gutkind, J.S. Regulation of mitogen-activated protein kinase signaling networks by G protein-coupled receptors. Sci STKE 2000, re1 (2000).
    284. Luttrell, L.M., Daaka, Y. & Lefkowitz, R.J. Regulation of tyrosine kinase cascades by G-protein-coupled receptors. Curr Opin Cell Biol 11,177-183 (1999).
    285. Linseman, D.A., Benjamin, C.W. & Jones, D.A. Convergence of angiotensin Ⅱ and platelet-derived growth factor receptor signaling cascades in vascular smooth muscle cells. J Biol Chem 270,12563-12568 (1995).
    286. Daub, H., Weiss, F.U., Wallasch, C. & Ullrich, A. Role of transactivation of the EGF receptor in signalling by G-protein-coupled receptors. Nature 379,557-560 (1996).
    287. Pierce, K.L., Premont, R.T. & Lefkowitz, R.J. Seven Transmembrane Receptors. Nature Reviews Molecular Cell Biology 3,12 (2002).
    288. Sun, Y. et al. Dosage-dependent switch from G protein-coupled to G protein-independent signaling by a GPCR. EMBO J 26,53-64 (2007).
    289. Cao, W. et al. Direct binding of activated c-Src to the beta 3-adrenergic receptor is required for MAP kinase activation. J Biol Chem 275,38131-38134 (2000).
    290. Liu, J. et al. Src homology 3 binding sites in the P2Y2 nucleotide receptor interact with Src and regulate activities of Src, proline-rich tyrosine kinase 2,and growth factor receptors. J Biol Chem 279,8212-8218 (2004).
    291. Yun, H.M. et al. The novel cellular mechanism of human 5-HT6 receptor through an interaction with Fyn. JBiol Chem 282,5496-5505 (2007).
    292. Carpenter, G. EGF receptor transactivation mediated by the proteolytic production of EGF-like agonists. Sci STKE 2000, pel (2000).
    293. Wetzker, R. & Bohmer, F.D. Transactivation joins multiple tracks to the ERK/MAPK cascade. Nat Rev Mol Cell Biol 4,651-657 (2003).
    294. Herrlich, A. et al. Ligand-independent activation of platelet-derived growth factor receptor is a necessary intermediate in lysophosphatidic, acid-stimulated mitogenic activity in L cells. Proc Natl Acad Sci U S A 95,8985-8990 (1998).
    295. Goppelt-Struebe, M., Fickel, S. & Reiser, C.O. The platelet-derived-growth-factor receptor, not the epidermal-growth-factor receptor, is used by lysophosphatidic acid to activate p42/44 mitogen-activated protein kinase and to induce prostaglandin G/H synthase-2 in mesangial cells. Biochem J 345 Pt 2,217-224 (2000).
    296. Mondorf, U.F., Geiger, H., Herrero, M., Zeuzem, S. & Piiper, A. Involvement of the platelet-derived growth factor receptor in angiotensin Ⅱ-induced activation of extracellular regulated kinases 1 and 2 in human mesangial cells. FEBS Lett 472, 129-132(2000).
    297. Heeneman, S., Haendeler, J., Saito, Y., Ishida, M. & Berk, B.C. Angiotensin Ⅱ induces transactivation of two different populations of the platelet-derived growth factor beta receptor. Key role for the p66 adaptor protein Shc. J Biol Chem 275, 15926-15932 (2000).
    298. McMahon, B. et al. Lipoxin, leukotriene, and PDGF receptors cross-talk to regulate mesangial cell proliferation. FASEB J 16,1817-1819 (2002).
    299. Kotecha, S.A. et al. A D2 class dopamine receptor transactivates a receptor tyrosine kinase to inhibit NMDA receptor transmission. Neuron 35,1111-1122 (2002).
    300. Rao, G.N., Delafontaine. P. & Runge, M.S. Thrombin stimulates phosphorylation of insulin-like growth factor-1 receptor, insulin receptor substrate-1, and phospholipase C-gamma 1 in rat aortic smooth muscle cells. J Biol Chem 270, 27871-27875(1995).
    301. Belcheva, M.M., Haas, P.D., Tan, Y., Heaton, V.M. & Coscia, C.J. The fibroblast growth factor receptor is at the site of convergence between mu-opioid receptor and growth factor signaling pathways in rat C6 glioma cells. J Pharmacol Exp Ther 303,909-918(2002).
    302. Lee, F.S. & Chao, M.V. Activation of Trk neurotrophin receptors in the absence of neurotrophins. Proc Natl Acad Sci U S A 98,3555-3560 (2001).
    303. Pai, R., Nakamura, T., Moon, W.S. & Tarnawski, A.S. Prostaglandins promote colon cancer cell invasion; signaling by cross-talk between two distinct growth factor receptors. FASEB J 17,1640-1647 (2003).
    304. Miller, K.G., Emerson, M.D., McManus, J.R. & Rand, J.B. RIC-8 (Synembryn):a novel conserved protein that is required for G(q)alpha signaling in the C. elegans nervous system. Neuron 27,289-299 (2000).
    305. Afshar, K. et al. RIC-8 is required for GPR-1/2-dependent Galpha function during asymmetric division of C. elegans embryos. Cell 119,219-230 (2004).
    306. Miller, K.G. & Rand, J.B. A role for RIC-8 (Synembryn) and GOA-1 (G(o)alpha) in regulating a subset of centrosome movements during early embryogenesis in Caenorhabditis elegans. Genetics 156,1649-1660 (2000).
    307. Tall, G.G., Krumins, A.M. & Gilman, A.G. Mammalian Ric-8A (synembryn) is a heterotrimeric Galpha protein guanine nucleotide exchange factor. J Biol Chem 278,8356-8362 (2003).
    308. Thomas, C.J., Tall, G.G., Adhikari, A. & Sprang, S.R. Ric-8A catalyzes guanine nucleotide exchange on G alphail bound to the GPR/GoLoco exchange inhibitor AGS3. J Biol Chem 283,23150-23160 (2008).
    309. Tall, G.G. & Gilman, A.G. Purification and functional analysis of Ric-8A:a guanine nucleotide exchange factor for G-protein alpha subunits. Methods Enzymol 390,377-388 (2004).
    310. Chan, P., Gabay, M., Wright, F.A. & Tall, G.G. Ric-8B is a GTP-dependent G protein{alpha}s guanine nucleotide exchange factor. J Biol Chem (2011).
    311. Betschinger, J. & Knoblich, J.A. Dare to be different:asymmetric cell division in Drosophila, C. elegans and vertebrates. Curr Biol 14, R674-685 (2004).
    312. Wodarz, A. & Huttner, W.B. Asymmetric cell division during neurogenesis in Drosophila and vertebrates. Mech Dev 120,1297-1309 (2003).
    313. Hutterer, A., Betschinger, J., Petronczki, M. & Knoblich, J.A. Sequential roles of Cdc42, Par-6, aPKC, and Lgl in the establishment of epithelial polarity during Drosophila embryogenesis. Dev Cell 6,845-854 (2004).
    314. Hess, H.A., Roper, J.C., Grill, S.W. & Koelle, M.R. RGS-7 completes a receptor-independent heterotrimeric G protein cycle to asymmetrically regulate mitotic spindle positioning in C. elegans. Cell 119,209-218 (2004).
    315. Yu, F. Analysis of the roles of Pins and heterotrimeric G proteins in asymmetric division of Drosophila neuroblasts. Methods Enzymol 389,364-382 (2004).
    316. Manning, D.R. Evidence mounts for receptor-independent activation of heterotrimeric G proteins normally in vivo:positioning of the mitotic spindle in C. elegans. Sci STKE 2003, pe35 (2003).
    317. Colombo, K. et al. Translation of polarity cues into asymmetric spindle positioning in Caenorhabditis elegans embryos. Science 300,1957-1961 (2003).
    318. Schaefer, M., Petronczki, M., Dorner, D., Forte, M. & Knoblich, J.A. Heterotrimeric G proteins direct two modes of asymmetric cell division in the Drosophila nervous system. Cell 107,183-194 (2001).
    319. Fuse, N., Hisata, K., Katzen, A.L. & Matsuzaki, F. Heterotrimeric G proteins regulate daughter cell size asymmetry in Drosophila neuroblast divisions. Curr Biol 13,947-954 (2003).
    320. Yu, F. et al. Locomotion defects, together with Pins, regulates heterotrimeric G-protein signaling during Drosophila neuroblast asymmetric divisions. Genes Dev 19,1341-1353 (2005).
    321. Wang, H. et al. Ric-8 controls Drosophila neural progenitor asymmetric division by regulating heterotrimeric G proteins. Nat Cell Biol 7,1091-1098 (2005).
    322. Hampoelz, B., Hoeller, O., Bowman, S.K., Dunican, D. & Knoblich, J.A. Drosophila Ric-8 is essential for plasma-membrane localization of heterotrimeric G proteins. Nat Cell Biol 7,1099-1105 (2005).
    323. David, N.B. et al. Drosophila Ric-8 regulates Galphai cortical localization to promote Galphai-dependent planar orientation of the mitotic spindle during asymmetric cell division. Nat Cell Biol 7,1083-1090 (2005).
    324. Abelson, H.T. & Rabstein, L.S. Lymphosarcoma:virus-induced thymic-independent disease in mice. Cancer Res 30,2213-2222 (1970).
    325. Boyle, S.N., Michaud, G.A., Schweitzer, B., Predki, P.F. & Koleske, A.J. A critical role for cortactin phosphorylation by Abl-family kinases in PDGF-induced dorsal-wave formation. Curr Biol 17,445-451 (2007).
    326. Lapetina, S., Mader, C.C., Machida, K., Mayer, B.J. & Koleske, A.J. Arg interacts with cortactin to promote adhesion-dependent cell edge protrusion. J Cell Biol 185,503-519(2009).
    327. Miller, A.L., Wang, Y., Mooseker, M.S. & Koleske, A.J. The Abl-related gene (Arg) requires its F-actin-microtubule cross-linking activity to regulate lamellipodial dynamics during fibroblast adhesion. J Cell Biol 165,407-419 (2004).
    328. Woodring, P.J. et al. c-Abl phosphorylates Dokl to promote filopodia during cell spreading. J Cell Biol 165,493-503 (2004).
    329. Hernandez, S.E., Krishnaswami, M., Miller, A.L. & Koleske, A.J. How do Abl family kinases regulate cell shape and movement? Trends Cell Biol 14,36-44 (2004).
    330. Moresco, E.M., Donaldson, S., Williamson, A. & Koleske, A.J. Integrin-mediated dendrite branch maintenance requires Abelson (Abl) family kinases. J Neurosci 25,6105-6118(2005).
    331. Van Etten, R.A. et al. The COOH terminus of the c-Abl tyrosine kinase contains distinct F- and G-actin binding domains with bundling activity. J Cell Biol 124, 325-340(1994).
    332. Wang, Y., Miller, A.L., Mooseker, M.S. & Koleske, A.J. The Abl-related gene (Arg) nonreceptor tyrosine kinase uses two F-actin-binding domains to bundle F-actin. Proc Natl Acad Sci USA 98,14865-14870 (2001).
    333. Burton, E.A., Oliver, T.N. & Pendergast, A.M. Abl kinases regulate actin comet tail elongation via an N-WASP-dependent pathway. Mol Cell Biol 25,8834-8843 (2005).
    334. Leng, Y. et al. Abelson-interactor-1 promotes WAVE2 membrane translocation and Abelson-mediated tyrosine phosphorylation required for WAVE2 activation. Proc Natl Acad Sci USA 102,1098-1103 (2005).
    335. Stuart, J.R., Gonzalez, F.H., Kawai, H. & Yuan, Z.M. c-Abl interacts with the WAVE2 signaling complex to induce membrane ruffling and cell spreading. J Biol Chem 281,31290-31297 (2006).
    336. Sini, P., Cannas, A., Koleske, A.J., Di Fiore, P.P. & Scita, G. Abl-dependent tyrosine phosphorylation of Sos-1 mediates growth-factor-induced Rac activation. Nat Cell Biol 6,268-274 (2004).
    337. Antoku, S., Saksela, K., Rivera, G.M. & Mayer, B.J. A crucial role in cell spreading for the interaction of Abl PxxP motifs with Crk and Nck adaptors. J Cell Sci 121,3071-3082 (2008).
    338. Feller, S.M., Ren, R., Hanafusa, H. & Baltimore, D. SH2 and SH3 domains as molecular adhesives:the interactions of Crk and Abl. Trends Biochem Sci 19, 453-458 (1994).
    339. Kiyokawa, E. et al. Activation of Racl by a Crk SH3-binding protein, DOCK180. Genes Dev 12,3331-3336 (1998).
    340. Abassi, Y.A. & Vuori, K. Tyrosine 221 in Crk regulates adhesion-dependent membrane localization of Crk and Rac and activation of Rac signaling. EMBO J 21,4571-4582(2002).
    341. Jin, H. & Wang, J.Y. Abl tyrosine kinase promotes dorsal ruffles but restrains lamellipodia extension during cell spreading on fibronectin. Mol Biol Cell 18, 4143-4154(2007).
    342. Bourne, H.R., Sanders, D.A. & McCormick, F. The GTPase superfamily:a conserved switch for diverse cell functions. Nature 348,125-132 (1990).
    343. Zwaal, R.R. et al. G proteins are required for spatial orientation of early cell cleavages in C. elegans embryos. Cell 86,619-629 (1996).
    344. Gotta, M. & Ahringer, J. Distinct roles for Galpha and Gbetagamma in regulating spindle position and orientation in Caenorhabditis elegans embryos. Nat Cell Biol 3,297-300 (2001).
    345. Srinivasan, D.G., Fisk, R.M., Xu, H. & van den Heuvel, S. A complex of LIN-5 and GPR proteins regulates G protein signaling and spindle function in C elegans. Genes Dev 17,1225-1239 (2003).
    346. Gotta, M., Dong, Y., Peterson, Y.K., Lanier, S.M. & Ahringer, J. Asymmetrically distributed C. elegans homologs of AGS3/PINS control spindle position in the early embryo. Curr Biol 13,1029-1037 (2003).
    347. Siller, K.H. & Doe, C.Q. Spindle orientation during asymmetric cell division. Nat Cell Biol 11,365-374 (2009).
    348. Couwenbergs, C., Spilker, A.C. & Gotta, M. Control of embryonic spindle positioning and Galpha activity by C. elegans RIC-8. Curr Biol 14,1871-1876 (2004).
    349. Afshar, K., Willard, F.S., Colombo, K., Siderovski, D.P. & Gonczy, P. Cortical localization of the Galpha protein GPA-16 requires RIC-8 function during C. elegans asymmetric cell division. Development 132,4449-4459 (2005).
    350. Woodard, G.E. et al. Ric-8A and Gi alpha recruit LGN, NuMA, and dynein to the cell cortex to help orient the mitotic spindle. Mol Cell Biol 30,3519-3530 (2010).
    351. Von Dannecker, L.E., Mercadante, A.F. & Malnic, B. Ric-8B, an olfactory putative GTP exchange factor, amplifies signal transduction through the olfactory-specific G-protein Galphaolf. JNeurosci 25,3793-3800 (2005).
    352. Tonissoo, T. et al. Heterozygous mice with Ric-8 mutation exhibit impaired spatial memory and decreased anxiety. Behav Brain Res 167,42-48 (2006).
    353. Dhanasekaran, D.N. Transducing the signals:a G protein takes a new identity. Sci STKE 2006, pe31(2006).
    354. Chen, L., Yang, S., Jakoncic, J., Zhang, J.J. & Huang, X.Y. Migrastatin analogues target fascin to block tumour metastasis. Nature 464,1062-1066 (2010).
    355. Shan, D. et al Synthetic analogues of migrastatin that inhibit mammary tumor metastasis in mice. Proc Natl Acad Sci USA 102,3772-3776 (2005).
    356. Yang, S. & Huang, X.Y. Ca2+ influx through L-type Ca2+channels controls the trailing tail contraction in growth factor-induced fibroblast cell migration. J Biol Chem 280,27130-27137 (2005).
    357. Guo, D. et al. A Rac-cGMP signaling pathway. Cell 128,341-355 (2007).
    358. Wang, D. et al. G proteins G12 and G13 control the dynamic turnover of growth factor-induced dorsal ruffles. J Biol Chem 281,32660-32667 (2006).
    359. Lowry, W.E. et al. Csk, a critical link of g protein signals to actin cytoskeletal reorganization. Dev Cell 2,733-744 (2002).
    360. Schliwa, M., Nakamura, T., Porter, K.R. & Euteneuer, U. A tumor promoter induces rapid and coordinated reorganization of actin and vinculin in cultured cells. J Cell Biol 99,1045-1059 (1984).
    361. Moxham, C.M. & Malbon, C.C. Insulin action impaired by deficiency of the G-protein subunit G ialpha2. Nature 379,840-844 (1996).
    362. Alderton, F. et al. Tethering of the platelet-derived growth factor beta receptor to G-protein-coupled receptors. A novel platform for integrative signaling by these receptor classes in mammalian cells. J Biol Chem 276,28578-28585 (2001).
    363. Waters, C. et al. Sphingosine 1-phosphate and platelet-derived growth factor (PDGF) act via PDGF beta receptor-sphingosine 1-phosphate receptor complexes in airway smooth muscle cells. JBiol Chem 278,6282-6290 (2003).
    364. Waters, C, Pyne, S. & Pyne, N.J. The role of G-protein coupled receptors and associated proteins in receptor tyrosine kinase signal transduction. Semin Cell Dev Biol 15,309-323 (2004).
    365. Sun, H. et al. The juxtamembrane, cytosolic region of the epidermal growth factor receptor is involved in association with alpha-subunit of Gs. J Biol Chem 272, 5413-5420(1997).
    366. Sato, M., Ribas, C., Hildebrandt, J.D. & Lanier, S.M. Characterization of a G-protein activator in the neuroblastoma-glioma cell hybrid NG108-15. J Biol Chem 271,30052-30060 (1996).
    367. Takesono, A. et al. Receptor-independent activators of heterotrimeric G-protein signaling pathways. JBiol Chem 274,33202-33205 (1999).
    368. Cismowski, M.J. et al. Activation of heterotrimeric G-protein signaling by a ras-related protein. Implications for signal integration. JBiol Chem 275,23421-23424 (2000).
    369. Bernard, M.L., Peterson, Y.K., Chung, P., Jourdan, J. & Lanier, S.M. Selective interaction of AGS3 with G-proteins and the influence of AGS3 on the activation state of G-proteins. J Biol Chem 276,1585-1593 (2001).
    370. Kroslak, T., Koch, T., Kahl, E.& Hollt, V. Human phosphatidylethanolamine-binding protein facilitates heterotrimeric G protein-dependent signaling. J Biol Chem 276,39772-39778 (2001).
    371. Cismowski, M.J. et al. Genetic screens in yeast to identify mammalian nonreceptor modulators of G-protein signaling. Nat Biotechnol 17,878-883 (1999).
    372. Mochizuki, N., Cho, G., Wen, B. & Insel, P.A. Identification and cDNA cloning of a novel human mosaic protein, LGN, based on interaction with G alpha i2. Gene 181,39-43 (1996).
    373. Yu, F., Morin, X., Cai, Y., Yang, X. & Chia, W. Analysis of partner of inscuteable, a novel player of Drosophila asymmetric divisions, reveals two distinct steps in inscuteable apical localization. Cell 100,399-409 (2000).
    374. Bar-Sagi, D. & Feramisco, J.R. Induction of membrane ruffling and fluid-phase pinocytosis in quiescent fibroblasts by ras proteins. Science 233,1061-1068 (1986).
    375. Mochizuki, N. et al. Activation of the ERK/MAPK pathway by an isoform of rap1GAP associated with G alpha(i). Nature 400,891-894 (1999).
    376. Meng, J., Glick, J.L., Polakis, P. & Casey, P.J. Functional interaction between Galpha(z) and RaplGAP suggests a novel form of cellular cross-talk. JBiol Chem 274,36663-36669(1999).
    377. Chen, Z., Singer, W.D., Sternweis, P.C. & Sprang, S.R. Structure of the p115RhoGEF rgRGS domain-Galphal3/il chimera complex suggests convergent evolution of a GTPase activator. Nat Struct Mol Biol 12,191-197 (2005).
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.