舌鳞癌基因组DNA甲基化谱的初步构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着肿瘤机制研究的不断深入,表观遗传学(epigenetics)已日益受到重视。表观遗传学是指在基因组序列不变的情况下,可以决定基因表达与否并可稳定遗传下去的调控信息;而表观遗传组学(epigenomics)是指在基因组水平上对表观遗传学改变的研究。目前,表观遗传组学研究已成为肿瘤研究领域的新前沿。
     DNA甲基化是哺乳动物基因组最为常见、研究最为深入的一种表观遗传学事件,参与调节多种生命活动。每种类型的肿瘤都有其特定的DNA甲基化模式,不同肿瘤或同一肿瘤的不同发生阶段中基因组DNA上CpG岛甲基化状态的差异,构成了肿瘤特定DNA甲基化谱。舌鳞状细胞癌(Tougue Squamous Cell Carcinoma, TSCC)是口腔鳞状细胞最为常见的恶性肿瘤,其发生发展的分子机制还未阐明。过去十几年中,在口腔鳞状细胞癌(Oral Squamous Cell Carcinoma, OSCC)中相关基因的DNA异常甲基化研究方面取得了一些进展,但大部分研究只是针对几个或一群基因采取候选基因研究方法,迄今还没有基于全基因组层面上直接、全面、系统分析TSCC中DNA甲基化情况的报道。舌鳞癌DNA甲基化谱建立不仅有助于全面揭示舌癌发生发展的分子机制,更重要的是可为舌鳞癌的早期诊断、治疗及预后评价等提供非常有价值的依据。
     缺少高通量筛选技术可能是影响基因组水平研究DNA甲基化谱系的关键因素。DNA甲基化芯片的发展为推动表观遗传组学研究提供了新的契机。NibmbleGen公司制备的甲基化芯片是目前国际上覆盖人类基因组CpG岛最多、注释最全面的一种芯片,而且这种芯片具有较高灵敏度和特异性的特点。
     基于以上因素,本课题采用最新发展的甲基化DNA免疫沉淀(Methylated DNA Immunoprecipitation, MeDIP)结合NimbleGen HG18 CpG Promoter芯片高通量分析舌鳞癌组织DNA甲基化情况,并结合芯片提供的信息,进一步在舌鳞癌组织和癌旁正常对照组织中分析基因的表达情况,初步筛选出舌鳞癌相关的基因。
     [甲基化芯片检测舌鳞癌基因组DNA甲基化分布]
     本课题收集了9例患者舌鳞癌肿瘤组织及其癌旁正常对照组织标本,并将9例标本分别抽提获得DNA,组成肿瘤和正常两组样品。采用MeDIP方法富集两组样品基因组DNA中甲基DNA片段,在严格的质控检验后,分别与两张甲基化芯片进行杂交,对杂交信号进行扫描以及初步数据处理,并对两组间数据进行比较分析。结果显示,有1269个DNA甲基化位点只存在于肿瘤组织中,其中涉及到330个基因,这些基因分布在不同的染色体上。定位在1号染色体上的甲基化差异基因最多,有28个,占肿瘤组织内甲基化差异基因的8.48%;其次,19号染色体上有27个,占差异总数的8.18%;而定位在18号染色体上的差异基因最少,只有4个,所占比率为1.21%;330个舌鳞癌组织中甲基化基因的甲基化区域有218个(66.1%)位于基因的启动子区,并有70%为CpG岛。
     同样,在癌旁正常对照组织中,差异DNA甲基化的位点共有1385个,涉及基因有321个。基因分布于各染色体上,其定位和分布数量差别较大。其中,定位在19号染色体上的甲基化差异基因最多,高达40个,占癌旁组织中甲基化差异基因的12.46%;其次为X染色体和1号染色体,分别有32个和23个,占差异总数的9.97%、7.17%;而定位在14号染色体上的差异基因最少,只有2个,所占比率为0.62%。321个甲基化基因的甲基化区域有210个(65.4%)位于基因的启动子区,43.6%为CpG岛。
     筛选得到的差异甲基化基因具有一定家族聚集性,四个角蛋白家族基因和六个跨膜蛋白家族基因均在肿瘤组织中发生甲基化;而7个黑色素瘤抗原家族成员则在癌旁正常对照组织中发生甲基化。
     采用在线GO分析网站Gostat对芯片筛选出来的差异甲基化基因进行功能分类,发现差异基因参与了基因转录调控、生殖、发育、代谢、离子转运、细胞生长和增殖、细胞分化和凋亡、细胞通讯、信号转导、细胞粘附等广泛的生物学过程,同时还涉及多条与机体免疫及肿瘤发生有关的信号通路,如Cell Communication、Purine metabolism、Cell adhesion molecules (CAMs)、Natural killer cell mediated cytotoxicity、Neuroactive、ligand-receptor、interaction、Glycerophospholipid metabolism、leukocyte transendothelial migration、Fc epsilon RI signaling pathway等。由此可以推测,这些甲基化异常的基因可能与TSCC的发生发展密切相关。
     [芯片结果的初步验证及肿瘤相关基因的初步筛选]
     从海量的芯片杂交数据中挑选出肿瘤组织中发生异常甲基化的ITIH5基因和FBLN1基因以及癌旁正常对照组织中发生异常甲基化的RUNX3基因,采用MSPCR方法检测三个基因分别在肿瘤组织和癌旁正常对照组织中的甲基化改变情况。结果发现,在癌旁正常对照组织中检测到ITIH5、FBLN1两个基因分别存在25%和20%的DNA异常甲基化,但两个基因在肿瘤组织中均存在较高频率的DNA异常甲基化,分别为70%(14/20)、55%(11/20)。统计学分析证实,两个基因在肿瘤组织和对照组织中的甲基化程度存在显著差异(P=0.004<0.01,P=0.026<0.05)。另外,RUNX3基因的DNA异常甲基化在癌旁正常对照组织和肿瘤组织中发生的频率分别为55%和15%,两者之间同样存在显著差异(P=0.008<0.01).MSPCR初步验证结果与芯片结果相似,初步证明芯片结果的可靠性。
     为了进一步筛选舌鳞癌相关的肿瘤基因,我们通过分析芯片结果,选择出与肿瘤发生密切相关的并在舌鳞癌组织中未深入研究的6个基因(BCL2L14、CDCP1、DIRAS、FBLN1、ITIH5、RUNX3)进行初步分析。采用RT-PCR方法对6个基因在舌鳞癌组织中的表达情况进行初步筛选,结果提示,DIRAS、FBLN1、ITIH5在舌鳞癌组织中表达下调(P<0.05),下调频率分别是45%(9/20)、40%(8/20)、55%(11/20);而BCL2L14、CDCP1、RUNX3则在舌鳞癌组织中表达显著上调(P<0.05),上调频率分别是60%(12/20),50%(10/20),75%(15/20)。提示6个功能不同基因可能与舌鳞癌的发生发展有关。
     进一步对FBLN1、ITIH5、RUNX3三个基因进行表达异常与甲基化关系分析,结果发现,FBLN1、ITIH5基因分别在87.5%(7/8)、90.9%(10/11)表达下调的舌鳞癌组织标本中存在DNA异常甲基化;同样,RUNX3基因则在66.7%(10/15)表达上调的肿瘤组织对应的癌旁对照组织中存在异常甲基化。说明DNA异常甲基化与三个基因在组织中的表达异常有关。
     综上所述,通过本研究初步构建了人舌鳞癌组织与癌旁正常对照组织基因组DNA甲基化谱,得到了大量的DNA甲基化分布信息,为进一步建立更为精确的舌鳞癌DNA甲基化谱奠定了基础,也为阐明舌鳞癌发病的分子机制提供了可能。另外,本课题初步筛选出6个与舌鳞癌发生发展密切相关的基因,可作为以后更深入研究的靶标,为舌鳞癌临床诊断、治疗或预后等分子标志物的筛选提供了实验依据。
Epigenetic differences become an important issue for explaining cancer formation. Epigenetic modifications control gene expression in a hereditary way. Epigenomics describes the changes in epigenetic modifications on the genome. Recently, epigenomics becomes one of the cutting age fields in cancer research.
     DNA methylation is the most common and well-studied genomic modifications. DNA methylations regulate a variety of biological events. Different types of cancers have specific DNA methylation patterns. Moreover, DNA methylation patterns change in different stages during cancer formation. Consequently, DNA methylation on CpG islands becomes a genomic identity for a particular cancer. Tongue squamous cell carcinoma (TSCC) is most common oral squamous cancer. But, the mechanism is still unclear. In the past decades, abnormal DNA methylations in several genes have been found to be related to oral squamous cell carcinoma (OSCC) formation. However, most researches focused on genome-wide DNA methylation pattern instead of exploring methylation changes of several genes promoter. There is no report for genome-wide analysis of DNA methylation in TSCC. It is promising to establish genomic DNA methylation map for understanding the mechanism of TSCC, prediagnosis of TSCC and treatment of TSCC.
     Lack of high-throughput DNA methylation detection techniques is the major reason impeding the development of genomic DNA methylation map. The development of DNA methylation chip provides a powerful method for the research on epigenomics. NimbleGen has a DNA methylation chip best covering the number of CpG islands in human genome, best annotating the chip, and best sensitivity in the DNA methylation chip international market.
     We will use methylated DNA immunoprecipitation (MeDIP) and NimbleGen HG18 CpG Promoter Chip to analyze DNA methylations in TSCC with this high-throughput method. Comparing the gene expression data between TSCC sample and adjacent normal tissue in DNA methylation Chip, we are able to identify TSCC related genes.
     DNA methylation Chip detect TSCC genomic DNA methylation
     In this study, we collected nine samples from TSCC and their adjacent counterparts as control. After obtaining the genomic DNA from those samples, we mixed nine genomic DNA from TSCC as tumor group and mixed nine genomic DNA from adjacent tissues as control group. By performing MeDIP, we respectively enrich the methylated DNA fragments from two groups followed by hybridizing to DNA mehtylation microarray individually. After data processing, there are 1269 DNA methylation sites only existing in tumor samples, not in normal adjacent samples. Those methylation sites accounts for 330 different genes, spreading in different chromosomes. There are 28 genes (8.48%) showing DNA methylation difference in chromosome 1. Secondly,27 genes (8.18%) in chromosome 19 and only 4 genes (1.21%) show difference in DNA methylation.218 out of the 330 genes (66.1%) have the DNA mehtylation in the promoter region and 70% of them are on the CpG islands.
     Similarly, in the normal adjacent sample, there are 1385 DNA methylation sites only existing in control tissue residing in 321 different genes. The number and distribution in different chromosomes have larger difference compared to those in tumor sample. Chromosome 19 has the largest number of the genes showing difference in DNA methylation. There are 40 genes (12.46%) in chromosome 19. X chromosome and chromosome 1 have 32 (9.97%) and 23 (7.17%) genes respectively. Chromosome 14 has the least number of the genes showing difference in DNA methylaion, only 2 genes (0.62%).210 out of the 321 genes (65.4%) have the DNA methylation in the promoter resion and 43.6% of them are on the CpG islands.
     The genes showing different DNA methylation in tumor and normal samples are reside in the same gene family. For example, four keratin protein family genes and six transmembrane protein family members only have DNA methylation in tumor samples. In the other hand, seven melanoma antigen family members only have DNA methylation in adjacent normal samples.
     We use Gene Ontology analysis website (Gostat) to classify the genes screening out from the DNA methylation chip. These genes are involved in transcription regulation, reproduction, development, metabolism, ion transportation, cell growth, cell differentiation and apoptosis, signal transduction and cell adhesion processes. At the same time, they are also involved in several immune and cancer development related pathways, such as cell communication, purine metabolism, cell adhesion molecules, natural killer cell mediated cytotoxicity, neuroactive ligand-receptor interaction, glycerophospholipid metabolism, leukocyte transendothelial migration and Fc epsilon RI signaling pathway. Those differential genes in DNA methylation might involve in TSCC development.
     Preliminary results of verifying the TSCC related genes selected from DNA methylation microarray data
     We selected ITIH5 and FBLN1 which are the differential genes in results from DNA methylation Chip of tumor samples. Moreover, we picked RUNX3 which shows differential changes in DNA methylation in adjacent normal samples. MSPCR were performed to detect the changes in DNA methylation both in tumor and normal samples. Although promoter hypermethylation of ITIH5 and FBLN1 were detected in 25% and 20% of normal samples respectively, higher percentage of promoter hypermethylation were found in tumor samples,70%(14/20) and 55% (11/20) respectively. The percentage differences between tumor and normal sample in those two genes are statistically significant. (P=0.004<0.01, P=0.026<0.05). In addition, there are 55% and 15% of DNA methylation in RUNX3 gene in normal and tumor samples respectively. This difference is also statistically significant (P=0.008<0.01). Consequently, preliminary MSPCR results are consistent to DNA methylation chip data.
     In order to further identify TSCC related genes, we analyzed DNA methylation Chip data and selected six genes (BCL2L14, CDCPl, DIRAS, FBLNl, ITIH5 and RUNX3) which are correlated with carcinogenesis but are not studied previously for further studies in TSCC. We used RT-PCR to analyze the expression level of those six genes in TSCC samples. RT-PCR data showed that the expression level of DIRAS (45% 9/20), FBLN1 (40% 8/20) and ITIH5 (55% 11/20) were down-regulated in TSCC samples (P<0.05). However, BCL2L14 (60% 12/20), CDCP1 (50% 10/20) and RUNX3 (75% 15/20) were up-regulated in TSCC samples. Therefore, those genes might be related to TSCC carcinogenesis.
     We further correlate the gene expression level with the DNA methylation in FBLN1, ITIH5 and RUNX3 genes. The DNA of FBLN1 (87.5% 7/8) and ITIH5 (90.9% 10/11) genes were methylated in TSCC samples whose expression level of FBLN1 and ITIH5 were down-regulated. Similarly, the DNA of RUNX3 (66.7% 10/15) gene was methylated in the adjacent normal tissue instead of TSCC tumor samples which shows up-regulating RUNX3 expression. Together, abnormal DNA methylation is related to the differential expression of FBLN1, ITIH5 and RUNX3 in TSCC tissues.
     In summary, this study established the whole genome-wide DNA methylation profile in TSCC tissues and their adjacent counterparts. Upon DNA methylation chip, it helps to develop precise genomic DNA methylation map and provides possible molecular mechanisms for TSCC carcinogenesis. In addition, six genes which are related to TSCC development are also found result from this study and might be able to become the biomarkers for diagnosis, treatment and prognosis of TSCC.
引文
[I]Rauscher FJ III. It is time for a human epigenome project[J]. Cancer Re,2005, 65(24):11229.
    [2]Garber K. Momentum building for human epigenome project[J]. J. Natl Cancer Inst,2006,98(2):84-86.
    [3]Esteller M. The necessity of a human epigenome project[J]. Carcinogenesis, 2006,27(6):1121-1125.
    [4]Baylin SB, Esteller M, Rountree MR, et al. Aberrant patterns of DNA methyl ation, chromatin formation and gene expression in cancer [J]. Hum Mol Genet,2001,10(7):687-692.
    [5]Esteller M. Epigenetics in cancer[J]. N Engl J Med,2008,358(11):1148-1159.
    [6]张恒,何成强,李云龙.哺乳动物DNA甲基化的功能和作用[J].生命的化学,2002,22(3):218-220.
    [7]Ehrlich M. Cancer-linked DNA hypomethylation and its relationship to hypermethylation[J]. Curr Top Microbiol Immunol,2006,310:251-74.
    [8]Rauch TA, Zhong X, Wu X, et al. High-resolution mapping of DNA hypermethylation and hypomethylation in lung cancer[JJ. Proc Natl Acad Sci U S A.2008,105(1):252-7.
    [9]Esteller M. CpG island hypermethylation and tumor suppressor genes:a booming present, a brighter future[J]. Oncogene,2002,21(35):5427-40.
    [10]Esteller M, Risques RA, Herman JG, et al. Promoter hypermethylation of the DNA repair gene O(6)-methylguanine-DNA methyltransferase is associated with the presence of G:C to A:T transition mutations in p53 in human colorectal tumorigenesis[J]. Cancer Res,2001,61(12):4689-92.
    [11]Belinsky SA. Gene-promoter hypermethylation as a biomarker in lung cancer[J]. Nat Rev Cancer,2004,4(9):707-717.
    [12]Kanai Y. Genome-wide DNA methylation profiles in precancerous conditions and cancers[J]. Cancer Sci,2009 Oct 1.
    [13]Kanai Y, Ushijima S, Tsuda H, et al. Aberrant DNA methylation precedes loss of heterozygosity on chromosome 16 in chronic hepatitis and liver cirrhosis[J]. Cancer Lett,2000,148(1):73-80.
    [14]Peng DF, Kanai Y, Sawada M, et al. DNA methylation of multiple tumorrelated genes in association with overexpression of DNA methyltransferase 1 (DNMT1) during multistage carcinogenesis of the pancreas[J]. Carcinogenesis,2006, 27(6):1160-8.
    [15]Yang B, House MG, Guo M, et al. Promoter methylation profiles of tumor suppressor genes in intrahepatic and extrahepatic cholangiocarcinoma[J]. Mod Pathol,2005,18(3):412-420.
    [16]Costello JF, Fruhwald MC, Smiraglia DJ, et al. Aberrant CpG island methylation has non-random and tumour-type-specific patterns. Nat Genet, 2000,24(2):132-138.
    [17]Esteller M, Corn PG, Baylin SB, et al. A Gene Hypermethylation Profile of Human Cancer[J]. Cancer Res,2001,61 (8):3225-3229.
    [18]Paz MF, Fraga MF, Avila S, Guo M, et al. A systematic profile of DNA methylation in human cancer cell lines[J]. Cancer Res,2003,63 (5):1114-1121.
    [19]Esteller M. Cancer epigenomics:DNA methylomes and histone-modification maps[J]. Nat Rev Genet,2007,8(4):286-98.
    [20]Hegi ME, Diserens AC, Godard S, et al. Clinical trial substantiates the predictive value of O-6-methylguanine DNA methyltransferase promoter methylation in glioblastoma patients treated with temozolomide[J]. Clin Cancer Res,2004,10(6):1871-1874.
    [21]Paz MF, Yaya-Tur R, Rojas-Marcos I, et al. CpG island hypermethylation of the DNA repair enzyme methyltransferase predicts response to temozolomide in primary gliomas[J]. Clin Cancer Res,2004,10(15) 4933-4938.
    [22]EstellerM, Sanchez-Cespedes M, Rosell R, et al. Detection of aberrant promoterhypermethylation of tumor suppressor genes in serum DNA from non-small cell lung cancer patients[J]. Cancer Res,1999,59(1):67-70.
    [23]Belinsky SA. Gene-promoter hypermethylation as a biomarker in lung cancer[J]. Nat Rev Cancer,2004(9),4:7072-717.
    [24]Friedrich MG, Weisenberger DJ, Cheng JC, et al. Detection of methylated apoptosis-associated genes in urine sediments of bladder cancer patients[J]. Clin Cancer Res,2004,10(22):7457-7465.
    [25]Jones PA. Epigenetics in carcinogenesis and cancer prevention[J]. Ann N Y Acad Sci,2003,983:2132-219.
    [26]Patel A, Groopman JD, Umar A. DNA methylation as a cancer-specific biomarker:from molecules to populations[J]. Ann N Y Acad Sci,2003,983: 286-297.
    [27]Verma M, Dunn BK, Ross S, et al. Early detection and risk assessment: proceedings and recommendations from the Workshop on Epigenetics in Cancer Prevention. Ann N YAcad Sci,2003,983:298-319.
    [28]Jubb AM, Quirke P, Oates AJ. DNA methylation, a biomarker for colorectal cancer:implications for screening and pathological utility. Ann N Y Acad Sci, 2003,983:251-267.
    [29]Esteller M. DNA methylation and cancer therapy:new developments and expectations[J]. Curr Opin Oncol,2005,17(1):55-60.
    [30]Marquez VE, Kelley JA, Agbaria R, et al. Zebularine:a unique molecule for an epigenetically based strategy in cancer chemotherapy[J]. Ann N Y Acad Sci, 2005,1058:246-54.
    [31]Kalebic T. Epigenetic changes:potential therapeutic targets[J]. Ann N Y Acad Sci,2003,983:278-285.
    [32]Jatin PS. Cancer of the head and neck (American cancer society atlas of oncology) [M]. London:BcDecker Inc, UK.2001:1-4.
    [33]邱蔚六口腔领面外科学[M].第三版.北京:人民卫生出版社,2000:266-267.
    [34]Shintani S, Nakahara Y, Mihara M, et al. Inactivation of the p14(ARF), p15(INK4B) and p16(INK4A) genes is a frequent event in human oral squamous cell carcinomas[J]. Oral Oncol,2001,37(6):498-504.
    [35]Nakayama S, Sasaki A, Mese H, et al. The E-cadherin gene is silenced by CpG methylation in human oral squamous cell carcinomasj[J]. Int J Cancer,2001, 93(5):667-73.
    [36]Araki D, Uzawa K, Watanabe T, et al. Frequent allelic losses on the short arm of chromosome 1 and decreased expression of the p73 gene at Ip36.3 in squamous cell carcinoma of the oral cavity[J]. Int J Oncol,2002,20(2):355-60.
    [37]Chang KW, Kao SY, Tzeng RJ, et al. Multiple molecular alterations of FHIT in betel-associated oral carcinoma[J]. J Pathol,2002,196(3):300-6.
    [38]Uzawa K, Ono K, Suzuki H, et al. High prevalence of decreased expression of KAI1 metastasis suppressor in human oral carcinogenesis. Clin Cancer Res, 2002,8(3):828-35.
    [39]Gasco M, Bell AK, Heath V, et al. Epigenetic inactivation of 14-3-3 sigma in oral carcinoma:association with p16(INK4a) silencing and human papillomavirus negativity. Cancer Res,2002,62(7):2072-6.
    [40]Ogi K, Toyota M, Ohe-Toyota M, et al. Aberrant methylation of multiple genes and clinicopathological features in oral squamous cell carcinoma. Clin Cancer Res,2002,8(10):3164-71.
    [41]Ono K, Uzawa K, Nakatsuru M, et al. Down-regulation of FEZ1/LZTS1 gene with frequent loss of heterozygosity in oral squamous cell carcinomas. Int J Oncol.2003,23(2):297-302.
    [42]Marsit CJ, Liu M, Nelson HH, et al. Inactivation of the Fanconi anemia/BRCA pathway in lung and oral cancers:implications for treatment and survival. Oncogene,2004,23(4):1000-4.
    [43]Kulkarni V, Saranath D. Concurrent hypermethylation of multiple regulatory genes in chewing tobacco associated oral squamous cell carcinomas and adjacent normal tissues. Oral Oncol,2004,40(2):145-53.
    [44]Gao S, Worm J, Guldberg P, et al. Genetic and epigenetic alterations of the blood group ABO gene in oral squamous cell carcinoma. Int J Cancer,2004, 109(2):230-7.
    [45]Youssef EM, Lotan D, Issa JP, et al. Hypermethylation of the retinoic acid receptor-beta(2) gene in head and neck carcinogenesis. Clin Cancer Res,2004, 10(5):1733-42.
    [46]Endo Y, Uzawa K, Mochida Y, et al. Sarcoendoplasmic reticulum Ca(2+) ATPase type 2 downregulated in human oral squamous cell carcinoma. Int J Cancer,2004,110(2):225-31.
    [47]Gao S, Worm J, Guldberg P, et al. Loss of heterozygosity at 9q33 and hypermethylation of the DBCCR1 gene in oral squamous cell carcinoma. Br J Cancer,2004,91(4):760-4.
    [48]Noguchi T, Tanimoto K, Shimokuni T, et al. Aberrant methylation of DPYD promoter, DPYD expression, and cellular sensitivity to 5-fluorouracil in cancer cells. Clin Cancer Res,2004,10(20):7100-7.
    [49]Imai MA, Moriya T, Imai FL, et al. Down-regulation of DMBT1 gene expression in human oral squamous cell carcinoma. Int J Mol Med,2005,15(4): 585-9.
    [50]Uesugi H, Uzawa K, Kawasaki K, et al. Status of reduced expression and hypermethylation of the APC tumor suppressor gene in human oral squamous cell carcinoma. Int J Mol Med,2005,15(4):597-602.
    [51]Gao S, Skeldal S, Krogdahl A, et al. CpG methylation of the PAI-1 gene 5'-flanking region is inversely correlated with PAI-1 mRNA levels in human cell lines. Thromb Haemost,2005,94(3):651-60.
    [52]Ha PK, Califano JA. Promoter methylation and inactivation of tumour-suppressor genes in oral squamous-cell carcinoma. Lancet Oncol,2006, 7(1):77-82.
    [53]Estecio MR, Youssef EM, Rahal P, et al. LHX6 is a sensitive methylation marker in head and neck carcinomas. Oncogene,2006,25(36):5018-26.
    [54]Nakagawa T, Pimkhaokham A, Suzuki E, et al. Genetic or epigenetic silencing of low density lipoprotein receptor-related protein 1B expression in oral squamous cell carcinoma. Cancer Sci,2006,97(10):1070-4.
    [55]Nakaya K, Yamagata HD, Arita N, et al. Identification of homozygous deletions of tumor suppressor gene FAT in oral cancer using CGH-array. Oncogene,2007, 26(36):5300-8.
    [56]Suzuki E, Imoto I, Pimkhaokham A, et al. PRTFDC1, a possible tumor-suppressor gene, is frequently silenced in oral squamous-cell carcinomas by aberrant promoter hypermethylation. Oncogene,2007,26(57):7921-32.
    [57]Bhawal UK, Tsukinoki K, Sasahira T, et al. Methylation and intratumoural heterogeneity of 14-3-3 sigma in oral cancer. Oncol Rep,2007,18(4):817-24.
    [58]Nakamura E, Kozaki K, Tsuda H, et al. Frequent silencing of a putative tumor suppressor gene melatonin receptor 1 A (MTNR1A) in oral squamous-cell carcinoma. Cancer Sci,2008,99(7):1390-400.
    [59]Shiah SG, Chang LC, Tai KY, et al. The involvement of promoter methylation and DNA methyltransferase-1 in the regulation of EpCAM expression in oral squamous cell carcinoma. Oral Oncol,2009,45(1):e1-8.
    [60]Kurasawa Y, Shiiba M, Nakamura M, et al. PTEN expression and methylation status in oral squamous cell carcinoma. Oncol Rep,2008,19(6):1429-34.
    [61]Sogabe Y, Suzuki H, Toyota M, et al. Epigenetic inactivation of SFRP genes in oral squamous cell carcinoma. hit J Oncol,2008,32(6):1253-61.
    [62]Shaw RJ, Omar MM, Rokadiya S, et al. Cytoglobin is upregulated by tumour hypoxia and silenced by promoter hypermethylation in head and neck cancer. Br J Cancer,2009,101(1):139-44.
    [63]Paluszczak J, Baer-Dubowska W. Epigenetic diagnostics of cancer-the application of DNA methylation markers. J Appl Genet,2006,47(4):365-75.
    [64]Rauch TA, Wu X, Zhong X, et al. A human B cell methylome at 100-base pair resolution. Proc Natl Acad Sci U S A,2009,106(3):671-8.
    [65]Oda M, Glass JL, Thompson RF, et al. High-resolution genome-wide cytosine methylation profiling with simultaneous copy number analysis and optimization for limited cell numbers. Nucleic Acids Res,2009,37(12):3829-39.
    [66]Vucic EA, Wilson M, Campbell JM, Lam WL. Methylation analysis by DNA immunoprecipitation (MeDIP). Methods Mol Biol,2009,556:141-53.
    [67]Rush LJ, Plass C. Restriction landmark genomic scanning for DNA methylation in cancer:past, present, and future applications. Anal Biochem,2002,307(2): 191-201.
    [68]Smiraglis DJ, Plass C. The study of aberrant methylation in cancer via restrictionlandmark genomic scanning. Oncogene,2002,21(35):5414-5426.
    [69]Huang T H, Laux D E, Hamlin B C, et al. Identification of DNA methylation markers for human breast carcinomas using the methylation-sensitive restriction fingerprinting technique [J]. Cancer Res,1997,57(6):1030-4.
    [70]Frigola J, Ribas M, Risques R A, et al. Methylome profiling of cancer cells by amplification of inter-methylated sites (AIMS)[J]. Nucleic Acids Res,2002, 30(7):e28.
    [71]Huang T H, Perry M R, Laux D E. Methylation profiling of CpG islands in human breast cancer cells [J]. Hum Mol Genet,1999,8:459-470.
    [72]Adorjan P, Distler J, Lipscher E, et al. A tumor class prediction and discovery by microarray-based DNA methylation analysis. Nucleic Acids Res,2002,30(5):e21.
    [73]Li J, Protopopov A, Wang F,et al. Not I subtraction and Notl-specific microarrays to detect copy number and methylation changes in whole genomes. Proc Natl Acad Sci USA,2002,99(16):10724-10729.
    [74]Lippman Z, Gendrel AV, Colot V, Martienssen R. Profiling DNA methylation patterns using genomic tiling microarrays. Nature Methods, 2005,2(3):219-224.
    [75]Ballestar E, Paz MF, Valle L,et al. Methyl-CpG binding proteins identify novel sites of epigenetic inactivation in human cancer. EMBO J,2003,22(23): 6335-6345.
    [76]Gebhard C, Schwarzfischer L, Pham TH, et al. Genome-wide profiling of CpG methylation identifies novel targets of aberrant hypermethylation in myeloid leukemia. Cancer Res,2006,66(12):6118-6128.
    [77]Jacinto FV, Ballestar E, and Esteller M. Methyl-DNA immunoprecipitation (MeDIP):Hunting down the DNA methylome. BioTechniques,2008,44(1): 35-43.
    [78]Zilbermanl D and Henikoff S. Genome-wide analysis of DNA methylation patterns. Development,2007,134(22):3959-3965.
    [79]朱景德.DNA甲基化及其在肿瘤分子诊断中的前景.中华检验医学杂志,2005,28(7):679-683.
    [80]Herman JG, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med.2003 Nov 20;349(21):2042-54.
    [81]Sardi I, Dal Canto M, Bartoletti R, et al. Abnormal c-myc oncogene DNA methylation in human bladder cancer:possible role in tumor progression. Eur Urol.1997,31(2):224-30.
    [82]Kresty LA, Mallery SR, et al. Alterations of p16(INK4a) and p14(ARF) in patients with severe oral epithelial dysplasia. Cancer Res,2002,62(18): 5295-300.
    [83]Sanchez-Cespedes M, Esteller M, Wu L, et al. Gene promoter hypermethylation in tumors and serum of head and neck cancer patients. Cancer Res,2000,60(4):892-95.
    [84]Rosas SL, Koch W, da Costa Carvalho MG, et al. Promoter hypermethylation patterns of p16, O6-methylguanine-DNAmethyltransferase, and death-associated protein kinase in tumors and saliva of head and neck cancer patients. Cancer Res,2001,61:939-42.
    [85]Lopez M, Aguirre JM, Cuevas N, et al. Gene promoter hypermethylation in oral rinses of leukoplakia patients--a diagnostic and/or prognostic tool? Eur J Cancer, 2003,39(16):2306-9.
    [86]Ogi K, Toyota M, Ohe-Toyota M, et al. Aberrant methylation of multiple genes and clinicopathological features in oral squamous cell carcinoma. Clin Cancer Res,2002,8(10):3164-71.
    [87]Christman JK.5-Azacytidine and 5-aza-2'-deoxycytidine as inhibittors of DNA methylation:mechanistic studies and their implications for cancer therapy. Oncogene,2002,21 (35):5483-5495.
    [88]Swanton C, Nicke B, Downward J. RNA interference, DNA methylation and gene silencing:a bright future for cancer therapy? Lancet Oncol,2004,5 (11): 653-654.
    [89]朱燕.DNA的甲基化的分析与状态检测[J].现代预防医学,2005,32(9):1070-1073.
    [90]Xiong Z, Laird P W. COBRA:a sensitive and quantitative DNA methylation assay[J]. Nucleic Acids Res,1997,25(12):2532-2534.
    [91]Kuo K C, McCune R A, Gehrke C W, et al. Quantitative reversed-phase high performance liquid chromatographic determination of major and modified deoxyribonucleosides in DNA [J]. Nucleic Acids Res,1980,8:4763-4776.
    [92]Fraga MF, Uriol E, Borja DL, et al. High-performance capillary electrophoretic method for the quantification of 5-methyl 2-deoxycytidine in genomic DNA: application to plant, animal and human cancer tissues [J]. Electrophoresis,2002, 23:1677-1681.
    [93]邓大君,邓国仁,吕有勇等.变性高效液相色谱法检测CpG岛胞嘧啶甲基化[J].中华医学杂志,2001,80(2),158-1611.
    [94]Eads C A, Danenberg K D, Kawakami K, et al. MethyLight:a highthroughput assay to measure DNA methylation [J]. Nucleic Acids Res,2000,28:E32.
    [95]King C, Scott-Horton T. Pyrosequencing:a simple method for accurate genotyping [J]. J Vis Exp,2008, (11). pii:630. doi:10.3791/630.
    [96]Frommer M, McDonald L E, Millar D S, et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands [J]. Proc Natl Acad Sci USA,1992,89:1827-1831.
    [97]Herman J G, Graff J R, Myohanen S, et al. Methylation-specific PCR:a novel PCR assay for methylation status of CpG islands [J]. Proc Natl Acad Sci USA, 1996,93(18),9821-9826.
    [98]Novak P, Jensen T, Oshiro MM, et al. Agglomerative epigenetic aberrations are a common event in human breast cancer [J]. Cancer Res,2008,68(20): 8616-8625.
    [99]Cheng YY, Jin H, Liu X, et al. Fibulin 1 is downregulated through promoter hypermethylation in gastric cancer[J]. Br J Cancer,2008,99(12):2083-7.
    [100]Veeck J, Chorovicer M, Naami A, et al. The extracellular matrix protein ITIH5 is a novel prognostic marker in invasive node-negative breast cancer and its aberrant expression is caused by promoter hypermethylation[J]. Oncogene, 2008,27(6):865-76.
    [101]Kawasaki T, Nosho K, Ohnishi M, et al. IGFBP3 promoter methylation in
    colorectal cancer:relationship with microsatellite instability, CpG island methylator phenotype, and p53[J]. Neoplasia,2007,9(12):1091-8.
    [102]Tsunematsu T, Kudo Y, Iizuka S, et al. RUNX3 has an oncogenic role in head and neck cancer[J]. PLoS One,2009,4(6):e5892.
    [103]Luo N, Wu Y, Chen Y, et al. Upregulated BclG(L) expression enhances apoptosis of peripheral blood CD4+T lymphocytes in patients with systemic lupus erythematosus[J]. Clin Immunol,2009,132(3):349-61.
    [104]Guo B, Godzik A, Reed JC. Bcl-G, a novel pro-apoptotic member of the Bcl-2 family[J]. J Biol Chem,2001,276(4):2780-5.
    [105]Scherl-Mostageer M, Sommergruber W, Abseher R, et al. Identification of a novel gene, CDCP1, overexpressed in human colorectal cancer[J]. Oncogene, 2001,20(32):4402-8.
    [106]Ikeda J, Oda T, Inoue M, et al. Expression of CUB domain containing protein (CDCP1) is correlated with prognosis and survival of patients with adenocarcinoma of lung[J]. Cancer Sci,2009,100(3):429-33.
    [107]Conze T, Lammers R, Kuci S, et al. CDCP1 is a novel marker for hematopoietic stem cells[J]. Ann N Y Acad Sci,2003,996:222-6.
    [108]Buhring HJ, Kuci S, Conze T, et al. CDCP1 identifies a broad spectrum of normal and malignant stem/progenitor cell subsets of hematopoietic and nonhematopoietic origin[J]. Stem Cells,2004,22(3):334-43.
    [109]Kimura H, Morii E, Ikeda JI, et al. Role of DNA methylation for expression of novel stem cell marker CDCP1 in hematopoietic cells[J]. Leukemia,2006, 20(9):1551-6.
    [110]Yu Y, Xu F, Peng H, et al. NOEY2 (ARHI), an imprinted putative tumor suppressor gene in ovarian and breast carcinomas[J]. Proc Natl Acad Sci U S A, 1999,96(1):214-9.
    [111]Luo RZ, Fang X, Marquez R, et al. ARHI is a Ras-related small G-protein with a novel N-terminal extension that inhibits growth of ovarian and breast cancers[J]. Oncogene,2003,22(19):2897-909.
    [112]Yuan J, Luo RZ, Fujii S, et al. Aberrant methylation and silencing of ARHI, an imprinted tumor suppressor gene in which the function is lost in breast cancers[J]. Cancer Res,2003,63(14):4174-80.
    [113]Huang J, Lin Y, Li L, et al. ARHI, as a novel suppressor of cell growth and downregulated in human hepatocellular carcinoma, could contribute to hepatocarcinogenesis[J]. Mol Carcinog,2009,48(2):130-40.
    [114]Mattei MG, Pan TC, Zhang RZ, et al. The fibulin-1 gene (FBLN1) is located on human chromosome 22 and on mouse chromosome 15[J]. Genomics,1994, 22(2):437-8.
    [115]Korenberg JR, Chen XN, Tran H, et al. Localization of the human gene for fibulin-1 (FBLN1) to chromosome band 22q13.3[J]. Cytogenet Cell Genet, 1995,68(3-4):192-3.
    [116]Wlazlinski A, Engers R, Hoffmann MJ, et al. Downregulation of several fibulin genes in prostate cancer[J]. Prostate,2007,67(16):1770-80.
    [117]Himmelfarb M, Klopocki E, Grube S, et al. ITIH5, a novel member of the inter-alpha-trypsin inhibitor heavy chain family is downregulated in breast cancer[J]. Cancer Lett,2004,204(1):69-77.
    [118]Hamm A, Veeck J, Bektas N, et al. Frequent expression loss of Inter-alpha-trypsin inhibitor heavy chain (ITIH) genes in multiple human solid tumors:a systematic expression analysis[J]. BMC Cancer,2008,8:25.
    [119]Pita JM, Banito A, Cavaco BM, et al. Gene expression profiling associated with the progression to poorly differentiated thyroid carcinomas[J]. Br J Cancer, 2009,101(10):1782-91.
    [120]Levanon D, Negreanu V, Bernstein Y, et al. AML1, AML2, and AML3, the human members of the runt domain gene-family:cDNA structure, expression, and chromosomal localization[J]. Genomics,1994,23(2):425-32.
    [121]Bangsow C, Rubins N, Glusman G, et al. The RUNX3 gene--sequence, structure and regulated expression[J]. Gene,2001,279(2):221-32.
    [122]Li J, Kleeff J, Guweidhi A, et al. RUNX3 expression in primary and metastatic pancreatic cancer[J]. J Clin Patho,2004,57(3):294-9.
    [123]Subramaniam MM, Chan JY, Yeoh KG, et al. Molecular pathology of RUNX3 in human carcinogenesis[J]. Biochim Biophys Acta,2009, 1796(2):315-31.
    [124]Gao F, Huang C, Lin M, et al. Frequent inactivation of RUNX3 by promoter hypermethylation and protein mislocalization in oral squamous cell carcinomas[J]. J Cancer Res Clin Oncol,2009 May;135(5):739-47.
    [1]Novik K L, Nimmrich I, Genc B, Maier S, Piepenbrock C, Olek A, Beck S. Epigenomics:genome-wide study of methylation phenomena.Curr Issues Mol Biol,2002,4(4):111~128.
    [2]Vertino P M, Sekowski J A, Coll J M, Applegren N, Han S,Hickey R J, Malkas L H. DNMT1 is a component of a multiprotein DNA replication complex.Cell Cycle,2002,1(6):416~423.
    [3]Okano M, Bell D W, Haber D A, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell,1999,99(3):247~257.
    [4]Rhee I, Bachman K E, Park B H, Jair K W, Yen R W, Schuebel K E, Cui H, Feinberg A P, Lengauer C, Kinzler K W, Baylin SB, Vogelstein B. DNMT1 and DNMT3b cooperate to silence genes in human cancer cells.Nature,2002,416(6880): 552~556.
    [5]Tamaru H, Selker E V. A histone H3 methytransferase controls DNA methylation in Neurospora crassa.Nature,2001,414(6861):277~283.
    [6]Fuks F, Hurd P J, Wolf D, Nan X, Bird A P, Kouzarides T. Themethyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation. J Biol Chem,2003,278(6):4035~4040.
    [7]Waterland R A, Lin J R, Smith C A, Jirtle R L. Waterland R A,Lin J R, Smith C A, Jirtle R L. Post-weaning diet affects genomic imprinting at the insulin-like growth factor 2 (Igf2) locus.Hum Mol Genet,2006,15(5):705-716.
    [8]Li G M, Presnell S R, Gu L Y. Folate deficiency, mismatch repair-dependent apoptosis, and human disease.J Nutr Biochem,2003,14(10):568-575.
    [9]Wainfan E, Poirier L A. Methyl groups in carcinogenesis:effects on DNA methylation and gene expression.Cancer Res,1992,52(7 Suppl.):2071s-2077s.
    [10]van Engeland M, Weijenberg M P, et al. Effects of dietary folate and alcohol intake on promoter methylation in sporadic colorectal cancer:the Netherlands cohort study on diet and cancer.Cancer Res,2003,63(12):3133~3137.
    [11]Peter A J, Daiya T. The role of DNA methylation in mammalian epigenetics. Science,2001,293(5532):1068~1070.
    [12]Ichimura T, Watanabe S, Sakamoto Y, Aoto T, Fujita N, Nakao M. Transcriptional repression and heterochromatin formation by MBD1 and MCAF/AM family proteins.J Biol Chem,2005,280(14):13928~13935.
    [13]Paz M F, Fraga M F, Avila S, Guo M, Pollan M, Herman J G,Esteller M. A systematic profile of DNA methylation in humancancer cell lines.Cancer Res,2003, 63(5):1114~1121.
    [14]HarryHX.DNAmethylation in hepatocellular carcinoma (J).World J Gastroentero,l 2008,14 (11):1741.
    [15]Harder J,OpitzOG, Brabender J, eta.l Quantitative promotermethylation analysis of hepatocellular carcinoma, cirrhotic and normal liver(J). Int JCancer,2008, 122 (12):2800.
    [16]Matsukura S, Soejima H, Nakagawachi T, et a.l CpG methylation of MGMT and hMLH1 promoter in hepatocellular carcinoma associated with hepatitis viral infection (J). Br JCancer,2003,88(4):521.
    [17]孙昀,耿小平,朱立新,等.肝细胞癌中脆性组氨酸三联体基因的甲基化状况及其临床意义(J).中华外科杂志,2006,44(9):609.
    [18]Kwon GY,YooBC,KohKC, eta.l Promotermethylation ofE-cadherin in hepatocellular carcinomas and dysplastic nodules(J). J Korean Med Sc,i 2005,20 (2): 242.
    [19]DiGioia S, BianchiP,DestroA, et a.l Quantitative evaluation of RASSF1A methylation in the non-lesiona,l regenerative and neoplastic liver (J). BMC Cancer, 2006,10(6):89.
    [20]Su PF,Lee TC,Lin PJ, et a.l DifferentialDNA methylation associated with hepatitisB virus infection in hepatocellular carcinoma (J). Int J Cancer,2007,121 (6): 1257.
    [21]Lee S, LeeHJ,Kim JH, et a.l AberrantCpG island hypermethylation alongmultistep hepatocarcinogenesis (J). Am J Patho,l 2003,163(4):1371.
    [22]Zhu R,LiBZ,LingYQ, et al Chronic hepatitis B virus infection and themethylation status of p16INK4A promoter (J). Zhonghua Zhong Liu Za Zh,i 2007, 29 (3):166.
    [23]Matsuda Y, Ichida T, Matsuzawa J, Sugimura K, Asakura H.CpG island methylator phenotype is a strong determinant of poorprognosis in neuroblastomas. Cancer Res,2005,65(3):828~834.
    [24]Toyota M, Ahuja N, Ohe-Toyota M, Herman J G, Baylin S B,Issa J P. CpG island methylator phenotype in colorectal cancer.Proc Natl Acad Sci USA,1999, 99(15):8681~8686.
    [25]Herman J G, Umar A, Polyak K, Graff J R, Ahuja N, Issa J P,Markowitz S, Willson J K, Hamilton S R, Kinzler K W, Kane MF, Kolodner R D, Vogelstein B, Kunkel T A, Baylin S B. Incidence and functional consequences of hMLHl promoter hyperm-ethylation in colorectal carcinoma.Proc Natl Acad Sci USA,1998, 95(12):6870~6875.
    [26]Veigl M L, Kasturi L, Olechnowicz J, Ma A H, Lutterbaugh J D,Periyasamy S, Li G M, Drummond J, Modrich P L, Sedwick WD, Markowitz S D. Biallelic inactivation of hMLHl by epigeneticgene silencing, a novel mechanism causing human MSI cancers.Proc Natl Acad Sci USA,1998,95(15):8698~8702.
    [27]Fang M Z, Jin Z, Wang Y, Liao J, Yang G Y, Wang L D, Yang C S. Promoter hypermethylation and inactivation of O6-methyguanine-DNA methyltransferase in esophageal squamous cell carcinomas and its reactivation in cell lines.Int J Oncol, 2005,26(3):615~622.
    [28]An C, Choi I S, Yao J C, Worah S, Xie K, Mansfield P F, Ajani J A, Rashid A, Hamilton S R, Wu T T. Prognostic significance of CpG island methylator phenotype and microsatellite instability in gastric carcinoma.Clin Cancer Res,2005, 11(2Pt1):656~663.
    [29]Knudson A G. Mutation and cancer:Statistical study of retino-blastoma.Proc Natl Acad Sci USA,1971,68(4):820~823.
    [30]Wong N, Lam W C, Lai P B, Pang E, Lau W Y, Johnson P J. Hypomethylation of chromosome 1 heterochromatin DNA correlates with q-arm copy gain in human heaptocellular carcinoma.Am J Pathol,2001,159(2):465~471.
    [31]Nakagawa T, Kanai Y, Ushijima S, Kitamura T, Kakizoe T, Hirohashi S. DNA hypomethylation on pericentromeric satellite regions significantly correlates with loss of heterozygosisty on chromosome 9 in urothelial heteozygosity on chromosome 9 in urothelial carcinomas.J Urol,2005,173(1):243~246.
    [32]TaoL,Li Y,KramerPM, eta.l Hypomethylation ofDNA and the insulin-like growth factor-Ⅱ gene in dichloroacetic and trichloroaceticacid-promotedmouse liver tumors (J).Toxicology,2004,196(1~2):127.
    [33]Takai D, Yagi Y,Habib N, et a.l Hypomethylation of LINE1 retrotransposon in human hepatocellular carcinomas, but not in surrounding liver cirrhosis (J). Jpn JClin Onco,l 2000,30 (7):306.
    [34]Lin CH,Hsieh SY, Sheen IS.Genome-wide hypomethylation in hepatocellular carcinogenesis (J).CancerRes,2001,61(10):4238.
    [35]CalvisiDF, Ladu S,Gorden A, et a.l Mechanistic and prognostic significance of aberrantmethylation in themolecularpathogenesis of human hepatocellular carcinoma (J). J Clin Invest,2007,117 (9):2713.
    [36]Knowles MA. The genetics of transitional cell carcinoma:progress and potential clinical application.BJU Int,1999,84(4):412~427.
    [37]Kokalj-Vokac N, Almeida A, Viegas-Pequignot E, Jeanpierre M, Malfoy B, Dutrillaux B. Specific induction of uncoiling and recombination by azacytidine in classical satellite-containing constitutive heterochromatin.Cytogenet Cell Genet,1993, 63(1):11~15.
    [38]Trasler J M. Gamete imprinting:setting epigenetic patterns for the next generation.Reprod Fertil Dev,2006,18(1-2):63~69.
    [39]Steenman M J, Rainier S, Dobry C J, Grundy P, Horon I L,Feinberg A P. Loss of imprinting of IGF2 is linked to reduced expression and abnormall methylation of H19 in Wilms'tumor.Nat Genet,1994,7(3):433~439.
    [40]谢而付,潘世扬,高丽,等.血浆中APC基因甲基化检测在早期肺癌诊断中的应用[J].临床检验杂志,2008,26(2):121-122.
    [41]潘世扬,张寄南,魏源华,等.肺癌中结肠多发性腺瘤样息肉基因启动子1A序列甲基化模式的研究[J].中华检验医学杂志,2006,29(2):122-124.
    [42]Pan S Y,Zhang LX,Gao L,et al.The property of methylated APC gene promotor and its influence on lung cancer cell line[J]. Biomed & Pharmacother,2009, 63(7):463-468.
    [43]潘世扬,谢而付,束永前,等.肺癌患者血浆中APC基因甲基化定量检测研究[J].癌症,2009,8(4):54-59.
    [44]AN Qian, DONG Xiang-Yang, ZHANG Jian-Jun, HUANG Jin-Feng, LI Li, CHENG Shu-Jun, GAO Yan-Ning. Comparison of tumor suppressor gene deletion between squamous cell carcinoma and adenocarcinama lung cancer in Chinese.Chinese Journal of Cancer,2001,20(6):591~594.
    [45]Choi YL,Kang SY,Choi JS,et al.Aberrant hypermethylation of RASSF1A promoter in ovarian borderline tumors and carcinomas [J].Virchows Arch,2006, 448(3):331-336.
    [46]Cai LY,Abe M,Izumi S,et al.Identification of PRTFDC1 silencing and aberrant promoter methylation of GPR150.ITGA8 and HOXD11 in ovarian cancers[J].Life Sci,2007,80(16):1458-1465.
    [47]王亚东,尹家俊.DNA甲基化与肿瘤发生及治疗[J].国际肿瘤学杂志,2006,33(3):186-189.
    [48]LeoneG, VosoMT, TeofiliL,etal. Inhibitors ofDNAmethylationin in the treatment of haematologicalmalignancies and MDS [J]. Clin Immuno,l 2003,109(1): 89-102.
    [49]Sorm F,Piskala A,Cihak A,et al.5-Azacytidine,a new,highly effective cancerostatic[J].Experientia,1964,20(4):202-203.
    [50]Kantarjian H,Oki Y,Garcia-Manero G,et al.Results of a randomized study of schedules of low-dose decitabine in higher-risk myelodysplastic syndrome and chronic myelomonocytic leukemia[J].Blood,2007,109(1):52-57.
    1 Kerr MK, Churchill GA., Statistical design and the analysis of gene expression mieroarrays,Genet Res,2001;77(2):123-128.
    2马立人,蒋中华.生物芯片.北京:化学工业出版社,2000,1-3
    3 Duggan DJ,Bittner M,Chen Y,et al.Expression profilingusing cDNA microarrays,Nature genetic,1999,21(1 suppl),10-14
    4 Cheung VQMorley M,Aguilar F,et al.Making and reading microarrays.Nature genetics genetic,1999,21(1 suppl),15-19
    5 Sok JC, Kuriakose MA,Mahajan VB, et al-Tissue-specific gene expression ofhead and neck squamous cell carcinoma in vivo by comple-mentaryDNA microarray analysis. Arch Otolaryngol Head Neck Surg,2003,129(7):760-770.
    6 CromerA,CarlesA,Millon R, et al·Identification of genes associatedwith tumorigenesis and metastatic potential of hypopharyngeal cancer bymicroarray analysis-Oncogene,2004,23(14): 2484-2498-
    7 Masayesva BG,Ha P, Garrett-Mayer E, et al-Gene expression alterations over large chromosomal regions in cancers includemultiple genesunrelated to malignant progression·Proc Natl Acad Sci USA,2004,101(23):8715-8720.
    8. Suhr ML, Dysvik B, Bruland O, et al-Gene expression profile of oral squamous cell carcinomas from Sri Lankan betel quid users. Oncol Rep.2007 Nov;18(5):1061-75.
    9. Jarvinen AK, Autio R, Kilpinen S, et al-High-resolution copy number and gene expression microarray analyses of head and neck squamous cell carcinoma cell lines of tongue and larynx. Genes Chromosomes Cancer.2008 Jun;47(6):500-9.
    10. Zhao M, Begum S, Ha PK, Westra W, Califano J. Downregulation of RAD17 in head and neck cancer. Head Neck.2008 Jan;30(1):35-42.
    11. Kupferman ME, Patel V, Sriuranpong V, et al-Molecular analysis of anoikis resistance in oral cavity squamous cell carcinoma. Oral Oncol.2007 May;43(5):440-54.
    12. VillaretDB,Wang T, Dillon D, et al-Identification of genes overexpressed in head and neck squamous cell carcinoma using a combination of complementary DNA. subtraction and microarray analysis-Laryngoscope,2000,110(3):374-381.
    13. Ziober AF, Patel KR, Alawi F, et al-Identification of a gene signature for rapid screening of oral squamous cell carcinoma. Clin Cancer Res.2006 Oct 15; 12 (20 Pt 1):5960-71.
    14. Chen C, Mendez E, Houck J, et al-Gene expression profiling identifies genes predictive of oral squamous cellcarcinoma. Cancer Epidemiol Biomarkers Prev.2008 Aug;17(8):2152-62.
    15. Kondoh N, Ohkura S, Arai M, Hada A, et al-Gene expression signatures that can discriminate oral leukoplakia subtypes and squamous cell carcinoma. Oral Oncol.2007 May;43(5):455-62. Epub 2006 Sep 18.
    16. Zhao E, Xu J, Yin X, Sun Y, Shi J, Li X. Detection of deregulated pathways to lymphatic metastasis in oral squamous cell carcinoma. Pathol Oncol Res.2009 Jun;15(2):217-23.
    17. Kashiwazaki H, Hassan NM, Hamada J, et al-Gene expression profile changes correlated with lymph node metastasis in oralsquamous cell carcinoma. Odontology.2008 Jul;96(1):38-43.
    18. Nguyen ST, Hasegawa S, Tsuda H, et al-Identification of a predictive gene expression signature of cervical lymph node metastasis in oral squamous cell carcinoma. Cancer Sci.2007 May;98(5):740-6. Epub 2007 Mar 28.
    19. Belbin TJ, Singh B, Barber I, et al-Molecular classification of head and neck squamous cell carcinoma using cDNA microarrays-Cancer Res,2002,62(4):1184-1190-
    20. ChungCH, Parker JS,KaracaG, etal-Molecular classification ofheadand neck squamous celll carcinoma using patterns of gene expression-Cancer cel,l 2004,5(5):489-500-
    21. Fialka F, Gruber RM, Hitt R, Opitz L, Brunner E, Schliephake H, Kramer FJ. CPA6, FMO2, LGI1, SIAT1 and TNC are differentially expressed in early-and late-stage oral squamous cell carcinoma-a pilot study. Oral Oncol.2008 Oct;44(10):941-8. Epub 2008 Jan 29.
    22. Garcia-Milian R, HernandezH, Panade L, et al·Detection and typing ofliuman papillomavirusDNA in benign andmalignant tumours of laryngeal epithelium,ActaOtolaryngo,l 1998,118(5):754-758.
    23. Luo CW, Roan CH, Liu CJ. Human papillomaviruses in oral squamous cell carcinoma and pre-cancerous lesions detected by PCR-based gene-chip array. Int J Oral Maxillofac Surg. 2007 Feb;36(2):153-8.
    24. Martinez I, Wang J, Hobson KF, et al-Identification of differentially expressed genes in HPV-positive and HPV-negative oropharyngeal squamous cell carcinomas. Eur J Cancer.2007 Jan;43(2):415-32.
    25. HoffmannM, Lohrey C,Hu kerA, et al-Human papillomavirus type 16 E6 and E7 genotypes in head and neck carcinomas-OralOnco,l 2004,40 (5):520-524-
    26. W iestT, SchwarzE.EndersC, etal-Involvementof intactHPV16 E6/E7 gene expression in head and neck cancerswith unaltered p53 status and perturbed pRb cell cycle control-Oncogene, 2002,21(10):1510-1517.
    27. ZumbachK,HoffmannM,Kahn T, et al-Antibodies against oncoproteinsE6 and E7 ofhuman papillomavirus types16 and 18 in patientswith head and neck squamous cell carcinoma-Int J Cancer,2000,85(6):815-818.
    28.刘翠华,马文丽,张宝,等·人乳头状瘤病毒(HPV)基因芯片的研究·微生物学报,2003,43(5):613-618·
    29. Chang YE, Laimins LA-Microarray analysis identifies interferon-inducible genes and Stat-1 as major transcriptional targets of humanpapillomavirus type 31·JViro,l 2000,74(9): 4174-4182.
    30. Young RA-Biomedical discovery with DNA arrays Cel,l 2000,102(1):9-15.
    31. HiguchiE, Oridate N, Furuta Y, et al-Differentially expressed genes associated with CIS-diamminedichloro-platinum (II) resistance inhead and neck cancer using differential display and CDNA microarrayHead Neck,2003,25 (3):187-193.
    32. Yamano Y, Uzawa K, Saito K, Nakashima D, et al. Identification of cisplatin-resistance related genes in head and neck squamous cell carcinoma. Int J Cancer.2009 Jun 30. 33.AcharyMP, JaggernauthW, Gross E, et al-Cell lines from the samecervical carcinoma butwith different radiosensitivities exhibitdifferentcDNA microarray patterns of gene expression·Cytogenet CellGenet,2000,91(1-4):39-43.
    34. Ishigami T, Uzawa K, Higo M, et al-Genes and molecular pathways related to radioresistance of oral squamous cell carcinoma cells. Int J Cancer.2007 May 15;120(10):2262-70.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.