变速定桨风力发电系统功率控制与载荷抑制技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
风力发电作为可再生能源发电中发展最为迅速的技术之一,因其资源丰富和技术优势,已成为当前国内外研究和发展的重点。除了发展大型风力发电机组外,还需要发展中小功率等级风力发电技术以改善偏远地区用户用电困难的现状以及满足分布式发电、智能微电网的发展。中小功率等级机组的研究目标为增加机组捕获的功率,提高机组的可靠性、延长使用寿命,最大限度地降低机组单位发电功率所需的成本。然而,由于中小型风力发电机组通常采用定桨距结构,桨距角固定不可调节,机组在高风速区运行时限功率实现困难,容易发生过载损坏;且机组在运行过程中还承受了由风剪、塔影效应以及湍流风等引起的动态载荷,机组传动链易疲劳损坏。因此,本文围绕机组的全风速范围功率控制和载荷抑制策略展开了深入的研究。
     本文首先讨论了所采用的机组结构,并将其等效为两质量块进行了建模。通过对模型的分析,掌握了机组在全风速范围内的工作特性,为后文研究功率控制策略中调节器的设计奠定了理论基础。此外,通过模型分析找到了机组的固有谐振频率点,为后文对机组进行阻尼设计提供了理论支撑。
     接着,为了提高风力发电机组的年发电量,保证机组在全风速范围内安全运行,针对目前常用的最大功率跟踪(MPPT)控制策略存在通用性差且跟踪速度随着风速的变化而变化等问题,先后提出了一种具有较强通用性的MPPT控制方法和维持MPPT控制带宽恒定的方法,大大优化了机组的MPPT运行性能;其次,针对定桨距机组在高风速区恒功率控制实现困难的问题,提出了恒功率控制策略,并针对机组在高风速区运行时存在稳定性差的问题提出了相应的解决方案。运用本文所提出的功率控制策略,可在全风速运行范围内对机组实施功率优化控制。
     随后,针对机组运行时承受动态载荷大而影响其寿命的问题,本文对传动链载荷产生的源头展开了分析,详细地探讨了各类载荷的抑制策略:针对由机组跟踪转速指令引起的瞬态载荷,提出了跟踪带宽的优化设计原则,达到了机组捕获能量和承受载荷的合理平衡;针对风轮叶片对三维风场的旋转采样引起的转矩脉动,提出了阻尼注入的控制方法,有效地抑制了机组的气动载荷;针对过渡载荷,提出了软失速控制方法,使机组承受的过渡载荷较常规失速下降了近80%;而对于采用二极管不控整流的微型、小型风力发电机组,提出了一种低成本的高频载荷抑制策略,使高频载荷得到了大大的衰减。
     最后,建立了一台10kW的离网风力发电系统,并基于该系统对本文提出的功率控制和载荷抑制策略进行了实验验证。针对离网系统中存在的能量管理问题,提出了一种简单的能量管理策略,不仅实现了向用户不间断供电,而且使系统中蓄电池的充放电周期得到了优化。为了完善离网风力发电系统,本文最后对风力机的启动、停机、偏航、解缆等辅助功能的实现方法进行了分析,给出了实现方法。
Among various kinds of renewable energy generation techniques, wind energy is by far the fastestgrowing energy for its abundant resources and maturity of turbine techniques; and, it has become aresearch focus and priority all over the world. To meet the electricity needs of the people in remoteareas and to support the developing of distributed generation and microgrids, it is more important todevelop the small-to medium-scale wind energy conversion system (WECS) rather than thelarge-scale ones. The essential control goal for small-to medium-scale WECS is to minimize the costof per generated power. To achieve this, optimum power control should be applied to the WECS.However, for the turbine structure is usually chosen as fixed-pitch concept, it has problems onlimiting the turbine power at high wind velocities and sustaining high dynamic load acting on theturbine shaft, which will shorten the service life of the system. Thus, the main contribution of thispaper is to lead a deep analysis to the power control and dynamic load reduction techniques for small-to medium-scale wind turbines.
     The turbine structure is firstly chosen in this paper, and then it is modeled as a two-mass model.The characteristics of the turbine operating in the full wind velocity range is obtained, which doeshelp to design the regulator and damping controller of the turbine.
     Then, to increase the annual energy yield and to comfirm its safety, a new maximum power pointtrcking (MPPT) control strategy, which can achieve unified control performance, is proposed in thispaper. Then, to solve the problem that the tracking speed is low and varies with wind velocity existedin the conventional OP control method, method to make the tracking bandwidth constant is proposed.With the proposed method, it is possible to conduct a systematic design procedure on the MPPTcontrol strategy. To compensate the reliability of the system at high wind velocities, a newcompensation method is also proposed in this paper. With the proposed method, constant poweroperation is realized.
     Besides the power control strategy, the dynamic load reduction rechniques are also required toincrease the service life of the system, thus to reduce the system cost. In this paper, the dynamic loadsare categoried in four parts according to their souces. And the corresponding strategies to reduce theloads are also discussed in detail: To optimize the transient load produced during MPPT process, theMPPT bandwidth is optimally designed with the constant bandwidth MPPT method proposed. Thesystem control with damping injection method is then proposed to reduce the aerodynamic loadcaused by wind shear and tower shadow and to get rid of the vibration operation mode. In addition, to reduce the transit load under turbulence, soft-stall control method is proposed, with which the transitload can obtain a nearly80%reduction compared with the passive stall method. Moreover, to reducethe high frequency load induced by the current harmonics generated by the diode rectifier, a low costdamping method is also proposed. All the dynamic load reduction methods proposed are beingdiscussed in detail in this paper.
     Finally, a10kW stand-alone WECS is established in the laboratory. The power control and dynamicload reduction method as well as a new decoupled energy management mechanism are all employedin this system. The good performance of the proposed method is validated by the experimental results.In addition, to set an example on how to conduct a whole stand-alone WECS, the start/stop procedure,yaw and untwist system are all illustrated at the end of this paper.
引文
[1] Global Wind Energy Council. Wind Energy International Year Book2011/2012.http://wwindea.org/.
    [2]中国可再生能源学会风能专业委员会(CWEA).2009年中国风电装机容量统计.中国风能,2010,1:28~33.
    [3] Bhende C.N.,Stand-alone wind energy supply system.International Conference on PowerSystem,West Bengal,India,2009.
    [4] Andrew M. Knight, Glenn E. Peters. Simple Wind energy controller for expanded operatingrange. IEEE Transactions on Energy Conversion,2005,20(2):459~466.
    [5] W. D. Kellogg, M. H. Nehrir, G. Venkataramanam. Generation unit sizing and cost analysis forstand alone wind, photovotalic and hybrid wind/PV systems. IEEE Transactions on EnergyConversion,1998,13(1):70~75.
    [6] American Wind Energy Association (AWEA). AWEA Small Wind Global Market Study2011.[Online]. Available: http://www.awea.org.
    [7] British Wind Energy Association (BWEA). BWEA Small Wind Systems U.K. Market Report2011.[Online]. Available: http://www.bwea.com.
    [8] Canadian Wind Energy Association (CanWEA).2010CanWEA Small Wind Market Survey.[Online]. Available: http://www.canwea.ca/wind-energy/smallwind_e.php.
    [9]国家重点基础研究发展计划.风力发电科技发展十二五专项规划,2011.[Online]:http://www.973.gov.cn/.
    [10] Zhe Chen, Josep M. Guerrero, Frede Blaabjerg. A review of the state of the art of powerelectronics for wind turbines. IEEE Transactions on Power Electronics,2009,24(8):1859~1875.
    [11] Kirke B. K., Lazauskas L. Limitations of fixed pitch Darrieus hydrokinetic turbines and thechallenge of variable pitch. Renewable Energy,2011,36(3):893~897.
    [12] Nagai Baku M., Ameku Kazumasa Roy, Jitendro Nath. Performance of a3kW wind turbinegenerator with variable pitch control system, Applied Energy,2009,86(9):1774~1782.
    [13] Sánchez J. A., Veganzones, C., Martínez, S., Blázquez, F., Herrero, N., Wilhelmi, J. R.. Dynamicmodel of wind energy conversion systems with variable speed synchronous generator andfull-size power converter for large-scale power system stability studies, Renewable Energy,2008,33(6):1186~1198.
    [14]耿华,杨耕.变速变桨距风电系统的功率水平控制.中国电机工程学报,2008,28(5):130~137.
    [15] Rodríguez-Amenedo J. L., Arnaltes S., Rodríguez M. A.. Operation and coordinated control offixed and variable speed wind farms. Renewable Energy,2008,33(3):406~414.
    [16] Venkatesh G. C., Kulkarni S. V.. Energy yield of passive stall regulated fixed speed wind turbinewith optimal rotor speed. Electric Power System Research,2006,76(12):1019~1026.
    [17]张新房,徐大平,柳亦兵.定桨距变速风力发电机组的控制策略研究.华北电力大学学报,2004,31(5):37~43.
    [18]韦徵,陈冉,陈家伟等.基于功率变化和模糊控制的风力发电机组变速变桨距控制.中国电机工程学报,2011,31(17):121~126.
    [19] Florin Iov, Frede Blaabjerg. Power electronics and control for wind power systems. IEEE PowerElectronics and Machines in Wind Application,2009, pp:1~16.
    [20] S. Heier. Grid integration of wind energy conversion systems. John Wiley,1998,ISBN-10:0-47-197143X.
    [21] K. Wallance, J. A. Oliver. Variable-speed generation controlled by passive elements. Proceedingsof ICEM,1998, pp:1554-1559.
    [22] J. Yao, H. Li, Z. Chen. An improved control strategy of limiting the DC-link voltage fluctuationfor a doubly fed induction wind generator. IEEE Transactions on Power Electronics,2008,23(3):1205-1213.
    [23] R. Vepa. Nonlinear, optimal control of a wind turbine generator. IEEE Transactions on EnergyConversion,2011,26(2):468-478.
    [24] A. D. Hansen, C. Jauch, P. Soerensen, F. Iov, F. Blaabjerg. Dynamic wind turbine models inpower system simulation tool DigSilent. Report Risoe-R-1400(EN),[Online]: Available:http://www.digsilent.de/Software/Application_Examples/ris-r-1400.pdf..
    [25]操瑞发,朱武,涂祥存,管水秀.双馈风力发电系统低电压穿越技术分析.电网技术,2009,33(9):73~77.
    [26] Johan Ribrant, Lina Margareta Bertling. Survey of Failures in Wind Power Systems With Focuson Swedish Wind Power Plants During1997-2005, IEEE Transactions on Energy Conversion,2007,22(1):167~173.
    [27]尹明,李庚银,张建成.直驱式永磁同步风力发电机组建模及其控制策略[J].电网技术,2007,31(15):61-65.
    [28]赵仁德,王永军,张加胜.直驱式永磁同步风力发电系统最大功率追踪控制[J].中国电机工程学报,2009,29(27):106-111.
    [29] Johannes H. J. Potgieter, Maarten J. Kamper, Torque and voltage quality in design optimizationof low-cost non-overlap single layer winding permanent magnet wind generator. IEEETransaction on Industrial Electronics,2012,59(5):2147~2156.
    [30]刘细平,林鹤云.风力发电机及风力发电控制技术综述.大电机技术,2007(3):17-55.
    [31] Adam Mirecki, Xavier Roboam, Member, IEEE, Frédéric Richardeau, Architecture complexityand energy efficiency of small wind turbines. IEEE Transactions on Industrial Electronics,2007,54(1):660~670.
    [32] Pannell, G., Atkinson, D. J., Zahawi, B.. Analytical Study of Grid-Fault Response of WindTurbine Doubly Fed Induction Generator. IEEE Transactions on Energy Conversion,2010,25(4):1081~1091.
    [33]张凤阁,王惠军,佟宁泽,等.新型无刷双馈变速恒频风力发电系统的建模与数字仿真.太阳能学报,2005,26(5):660~664.
    [34]李晶,宋家骅,王伟胜.大型变速恒频风力发电机组建模与仿真.中国电机工程学报,2004,24(6):100~105.
    [35]翟兴鸿.直驱永磁同步风力发电控制系统的研究与设计,[硕士学位论文].重庆:重庆大学,2008.
    [36]肖磊.直驱型永磁风力发电系统低电压穿越技术研究,[硕士学位论文].长沙:湖南大学,2009.
    [37] Z. Chen, E. Spooner. Grid Power quality with cariable speed wind turbines. IEEE Transactionson Energy Conversion,2001,16(2):148~154.
    [38]侯庆明.中小型永磁直驱型风力发电控制系统的设计与仿真,[硕士学位论文].沈阳:沈阳工业大学,2006.
    [39] Daoud A. A., Dessouky S. S., Salem A. A.. Control scheme of PMSG based wind turbine fotutility network connection. Internation Conference on Environment and Electrical Engineering,2011, pp:1~5.
    [40] Shuhui Li, Haskew, T.A., Swatloski, R.P., Gathings, W.. Optimal and direct-current vectorcontrol of direct driven PMSG wind turbines. IEEE Transaction on Power Electronics,2012,27(5):2325~2337.
    [41] Muyeen, S.M., Takahashi, R., Murata, T., Tamura, J.. A variable speed wind turbine controlstrategy to meet wind farm grid code requirements. IEEE Transaction on Power System,2010,25(1):331~340.
    [42] Conroy J. F., Watson R.. Frequency response capability of full converter wind turbine generatorsin comparison to conventional generation. IEEE Transaction on Power Systems,2008,23(2):649~656.
    [43]耿华,许德伟,吴斌,杨耕.永磁直驱变速风电系统的控制及稳定性分析.中国电机工程学报,2004,29(33):68~75.
    [44] Tan, K., Islam, S.. Optimum control strategies in energy conversion of PMSG wind turbinesystem without mechanical sensors. IEEE Transaction on Energy Conversion,2004,19(2):392~399.
    [45] C. N. Bhende, S. Mishra, Siva Ganesh Malla. Permanent magnet synchronous generator-basedstandalone wind energy supply system. IEEE Transaction on Sustainable Energy,2011,2(4):361~373.
    [46] T. F. Chan, L. L. Lai. Permanent-magnet machines for distributed generation: A review,Proceedings of IEEE Power Engineering Annual Meeting,2007:1~6.
    [47] Dr.-Ing. C. Sourkounis. Active dynamic damping of tortional vabrations by H∞control.12thInternational Conference on Optimization of Electrical and Electronic Equipment,2012:716~723.
    [48] B. Ni and C. Sourkounis. Influence of control methods on torque oscillations in wind energyconverters. Power Electronics Specialists Conference,2008:897~900.
    [49] Jussi Sopanen, Vesa Ruuskanen, Janne Nerg, and Juha Pyrh nen. Dynamic Torque Analysis of aWind Turbine Drive Train Including a Direct-Driven Permanent-Magnet Generator. IEEETransactions on Industrial Electronics,2011,58(9):3859~3867.
    [50] Larsson, A. The power quality of wind turbines. Ph. D. thesis, Chalmers University ofTechnology, Goteborg, Sweden,2000.
    [51] Larsson, A. Flicker emission of wind turbines caused by switching operations. IEEETransactions on Energy Conversion,2002,17(1):119~123.
    [52] Z. Chen, E. Spooner. Grid power quality with variable speed wind turbines. IEEE Transactionson Energy Conversion,2001,16(2):148~154.
    [53] S. W. Mohod, M. V. Aware. Grid power quality with variable speed wind energy conversion.International Conference on Power Electronics, Drives and Energy Systems,2006:1~5.
    [54] Chinchilla, M., S. Arnaltes, and J.C. Burgos. Control of permanent-magnet generators applied tovariable-speed wind-energy conversion systems connected to the grid. IEEE Transactions onEnergy Conversion,2006,21(1):130~135.
    [55] K., Tan and S. Islam. Optimum control strategies in energy conversion of PMSG wind turbinesystem without mechanical sensors. IEEE Transitions on Energy Conversion,2004,19(2):392~399.
    [56]马运东,胡祖荣,王芳,王俊琦,邢岩.应用扰动观测器的定桨距风力机转速控制,中国电机工程学报,2011,31(6):79-85.
    [57]陈杰,陈冉,陈志辉,等.定桨距风力发电机组的主动失速控制.电力系统自动化,2010,34(2):98~103.
    [58] D. M. Whaley, W, L. Soong, N. Ertugrul. Investigation of switched0mode rectifier for control ofsmall-scale wind turbines. IEEE Industry Applications Society Annual Meeting,2005:2849~2856.
    [59] Hua Geng, Dewei Xu, Bin Wu, Geng Yang. Active damping for tortional vabrations in PMSGbased WECS.25thIEEE Applied Power Electronics Conference and Exposions,2010:2126~2131.
    [60] Agarwal, V., R. K. Aggarwal, Pravin Patidar, Chetan Patki. A novel scheme for rapid tracking ofmaximum power point in wind energy generation systems. IEEE Transactions on EnergyConversion,2010,25(1):228-236.
    [61] Ching-Tsai Pan, Yu-Ling Juan. A novel sensorless MPPT controller for a high-efficiencymicro-scale wind power generation system. IEEE Transactions on Energy Conversion,2010,25(1):207-216.
    [62] S. M. R. Kazmi, H. Goto, Hai-Jiao Guo, et al. A novel algorithm for fast and efficientspeed-sensorless maximum power point tracking in wind energy conversion systems. IEEETransactions on Energy Conversion,2011,58(1):29-36.
    [63] Whei-Min Lin, Chih-Ming Hong. Intelligent approach to maximum power point tracking controlstrategy for variable-speed wind turbine generation system. Energy,2010(35):2440-2447.
    [64] V. Galdi, A. Piccolo, P. Siano. Exploiting maximum energy from variable speed wind powergeneration systems by using an adaptive Takagi–Sugeno–Kang fuzzy model. Energy Conversionand Management,2009(50):413-421.
    [65] Brice Beltran, T. A.-A., Mohamed El Hachemi Benbouzid. Sliding mode power control ofvariable-speed wind energy conversion systems. IEEE Transaction on Energy Conversion,2008,23(2):551-558.
    [66] Ying-Shieh, K. and T. Ming-Hung. FPGA-based speed control IC for PMSM drive with Adaptivefuzzy control. IEEE Transactions on Power Electronics,2007, Vol.22, No.6, pp:2476-2486.
    [67]陈杰,陈冉,陈家伟,龚春英等.变速风力发电机组的模糊-单神经元PID控制.中国电机工程学报,2011,31(27):88~94.
    [68] Kusiak A., Zijun Zhang. Adaptive control of a wind turbine with data mining and swarmintelligence. IEEE Transactions on Sustainable Energy,2011,2(1):28~36.
    [69] Kamal Elkhatib, Koutb Magdy, Sobaih Abdul Azim, Abozalam Belal. An intelligent maximumpower extraction algorithm for hybrid wind-diesel-storage system. International Journal ofElectrical Power&Energy Systems,2010,32(3):170~177.
    [70] Masiala M., Vafakhah B., Salmon J., Knight A. M.. Fuzzy Self-Tuning Speed Control of anIndirect Field-Oriented Control Induction Motor Drive. IEEE Transaction on IndustryApplications,2008,44(6):1732~1740.
    [71] Park Jiwoong, Kim Jeongil, Shin Youngho, Lee Jeonghoon, Park Jongpo.3MW class offshorewind turbine development. Current Applied Physics,2010,10(2):307~310.
    [72] Strachan N. P. W., Jovcic D.. Improving wind power quality using an integrated Wind EnergyConversion and Storage System (WECSS). IEEE Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the21st Century,2008:1~8.
    [73]陈杰,龚春英,陈家伟等.变速定桨风力发电机组的全风速功率控制.中国电机工程学报,2012,32(30):98~104.
    [74]郭鹏.模糊前馈与模糊PID结合的风力发电机组变桨距控制.中国电机工程学报,2010,30(8):123~128.
    [75] D. Bang, H. Polinder, J. A. Ferreira, R. P. J. O. M. van Rooij. New active speed stall controlcompared to pitch control for a direct-dirve wind turbine,2010.
    [76] A. Miller, E. Muljadi, and D.S. Zinger. A variable speed wind turbine power control. IEEETransactions on Energy Conversion,1997,12(2):181~187.
    [77] A. Haniotis, K. Soutis, K. Kladas, and J. Tegopoulo. Grid connected variable speed wind turbinemodeling, dynamic performance and control. in Proc. IEEE Power Syst. Conf. Expo.(PES), NewYork,2004:759~764.
    [78] Shraf Ahmed, Li Ran, Jim R. Bumby. New constant electrical power soft-stalling control forsmall-scale VAWTs. IEEE Transactions on Energy Conversion,2010,25(4):1152~1161.
    [79] Rolf Hoffmann, Peter Mutschler, The inuence of control strategies on the energy capture of windturbines. In IAS2000, Rome, Italy,2000:886~893.
    [80] W. E. Leithead, B. Connor. Control of variable speed wind turbines: dynamic model.International Journal of Control,2000,73(13):1173~1188.
    [81] Fernando D. Bianchi, Hernan De Battista, Ricardo J. Mantz. Wind turbine control systems:principles, modeling and gain scheduling design. London, Springer V. Limited,2007.
    [82] E. Muljadi, K. Pierce, P. Migliore. Soft-stall control for variable-speed stall-regulated windturbines. Journal of Wind Engineering,2000(85):277~291.
    [83] E. Muljadi, K. Pierce, P. Migliore. Control strategy for variable-speed, stall-regulated windturbines. American Control Conference, Philadelphia,1998:28~30.
    [84] Anca D. Hansen, Gabriele Michalke. Modelling and control of variable-speed multi-polepermanent magnet synchronous generator wind turbine. Wind Energy,2008(11):537~554.
    [85] Antonino Di Gerlando, Gianmaria Foglia, Matteo Felice Iacchetti, Roberto Perini. Analysis andtest of diode rectifier solutions in grid-connected wind energy conversion systems employingmodular permanent-magnet synchronous generators. IEEE Transactions on Industrial Electronics,2012,59(5):2135~2146.
    [86] O. Carranza, G. Garcerá, E. Figueres, L.G. González. Peak current mode control of three phaseboost rectifiers in discontinuous conduction mode for small wind power generators. AppliedEnergy,87(2010):2728~2736.
    [87] Weihao Hu, Zhe Chen, Yue Wang, Zhaoan Wang. Flicker mitigation by active power control ofvariable-speed wind turbines with full scale back-to-back power converters. IEEE Transactionson Energy Conversion,2009,24(3):640~649.
    [88] Dai J. C., Hu Y. P., Liu D. S., Long X.. Aerodynamic loads calculation and analysis for largescale wind turbine based on combining BEM modified theory with dynamic stall model.Renewable Energy,2011,36(3):1095~1104.
    [89] Dale S. L. Dolan, Peter W. Lehn. Simulation model of wind turbine3P torque oscillations due towind shear and tower shadow. IEEE Transactions on Energy Conversion,2006,21(3):717~724.
    [90] J. G. Slootweg, S.W. H. de Haan, H. Polinder, andW. L. Kling.General model for representingvariable speed wind turbines in power system dynamics simulations. IEEE Transactions onPower Systems,2003,18(1):144~151.
    [91]李冬冬,陈陈.风力发电系统动态仿真的风速模型.中国电机工程学报,2005,25(21):41~44.
    [92] Nichita C., Ekelund T., Jovic I., Schmidtbauer B.. Large band simulation of the wind speed forreal time wind turbine simulators. IEEE Transactions on Energy Conversion,2003,17(4):536~540.
    [93] IEC. Wind turbine generator system Part13: measurement of mechanical loads. TechnicalSpecification IEC-TS-61400-13,2001.
    [94] Pedro Rosas. Dynamic influences of wind power on the power system. Kongens Lyngby:Technical University of Demark, Ph.D thesis,2003.
    [95] Iulian Munteanu, Antoneta Iuliana Bratcu, Nicolaos-Antonio Cutuluis, Emil Ceanga. Optimalcontrol of wind energy systems: towards a global approach. London, Springer V. Limited,2008.
    [96]陈伯时.电力拖动自动控制系统.北京:机械工业出版社,2003.
    [97] Akie Uehara, Alok Pratap, Tomonori Goya, Tomonobu Senjyu, Atsushi Yona, Naomitsu Urasaki,Toshihisa Funabashi. A coordinated control method to smooth wind power fluctuations of aPMSG-based WECS. IEEE Transaction on Energy Conversion,20113,26(2):550~558.
    [98]耿华.风力发电系统能量优化问题的研究,[博士学位论文].北京:清华大学,2008.
    [99]张武.风力发电系统中一种最佳叶尖速比控制策略的研究,[硕士学位论文].沈阳:沈阳工业大学,2009.
    [100]Shravana Musunuri,H. L. Ginn III. Comprehensive review of wind energy maximum powerextraction algorithms, IEEE Power and Energy Society General Meeting,2011:1~8.
    [101]程启明,程尹曼,汪明媚等.风力发电中风速测量技术的发展.自动化仪表,2010,31(7):1~4.
    [102]章嘉麟,周正贵,雷延生.基于叶素理论风轮气动特性计算预测精度研究.太阳能学报,2010,31(7):896~900.
    [103]陈家伟,陈杰,龚春英.测试风机气动特性的高性能DC/DC变换器的研制.电力电子技术,2010,44(4):1~3.
    [104]I. Serban, C. Marinescu. A sensorless control method for variable-speed small wind turbines.Renewable Energy,2012,43:256~266.
    [105]王娟平.变速恒频风力发电系统的无传感器矢量控制方法研究,[硕士学位论文].太原:太原理工大学,2006.
    [106]S.Morimoto, H. Nakayama, M. Sanada, Y. Takeda, Sensorless output maximization control forvariable-speed wind generation system using IPMSG. IEEE Transactions on IndustryApplications,2005,41(1):60–67.
    [107]Quincy Qing Wang. Maximum wind energy extraction strategies using power electroniconverters. University of New Brunswick, Ph.D thesis,2003.
    [108]陈杰,陈冉,陈家伟等.基于永磁同步风力发电机的动静态特性模拟研究.中国电机工程学报,2011,31(15):40~46.
    [109]陈杰.变速定桨风力发电系统控制技术研究,[博士学位论文].南京:南京航龙航天大学,2011.
    [110]D. Rolf Hoffmann. A comparison of control concepts for wind turbines in terms of energycapture. Darmstadt University of Technology, Ph.D thesis,2002.
    [111]胡寿松.自动控制原理.北京:科学出版社,2001.
    [112]L.G. González, E. Figueres, G. Garcerá, O. Carranza. Maximum-power-point tracking withreduced mechanical stress applied to wind energy conversion system. Applied Energy,2010.
    [113]Kaigui Xie, Zefu Jiang, Wenyuan Li. Effect of wind speed on wind turbine power converterreliability. IEEE Transactions on Energy Conversion,2012,27(1):96~104.
    [114]Leithead W., de la Salle S., Reaedon D.. Role and objectives of control for wind turbines. IEEPeoceedings-C,1991,138(2):135-148.
    [115]Ma X.. Adaptive extremum control and wind turbine control. Techincal University of Denmark,Ph.D. thesis,1997.
    [116]Boubekeur Boukhezzar, Houria Siguerdidjane. Nolinear control of a variable-speed wind turbineusing a two-mass model. IEEE Transactions on Energy Conversion,2011,26(1):149~162.
    [117]Van der Hoven I., Power spectrum of horizontal wind speed in the frequency range from0.0007to900cycles per hour. Journal of Meteorology,1957,14:160~164.
    [118]李晶,宋佳骅,王伟胜.大型变速恒频风力发电机组建模与仿真.中国电机工程学报,2004,24(6):100~105.
    [119]Hua Geng, Geng Yang, David Xu, Bin Wu. Unified power control for PMSG-based WECSoperating under different grid conditions. IEEE Transaction on Energy Conversion,2011,26(3):822~830.
    [120]贾增周.大型风力发电机组的智能滑模变结构控制研究,[博士学位论文].保定:华北电力大学,2008.
    [121]张纯明.大型风力发电机组的独立变桨距控制策略研究,[博士学位论文].沈阳:沈阳工业大学,2011.
    [122]肖劲松,倪维斗,姜桐.大型风力发电机组的建模与仿真.太阳能学报,1997,18(2):117~127.
    [123]Ciprian Vlad, Iulian Munteanu, Antoneta Iuliana Bratcu, Emil Ceanga, Output powermaximization of low-power wind energy conversion systems revisited: Possible control solutions.Energy Conversion and Management,2010,51:305~310.
    [124]Ani Samuel, Polinder Henk, Ferreira Braham. Comparison of energy yield of small windturbines in low wind speed area. IEEE Transactions on Sustainable Energy, Early Access Articles2012.
    [125]徐睿.一种5kW离网小型风力发电机组的工作可靠性研究,[硕士学位论文].武汉:武汉理工大学,2010.
    [126]刘智涯.小型风力发电系统功率控制器的研究与设计,[硕士学位论文].哈尔滨:哈尔滨工业大学,2010.
    [127]Thyge Kniippel, Jorgen N. Nielsen, Kim H. Jensen, Andrew Dixon, Jacob Ostergaard. Poweroscillating damping controller for wind power plant utilizing wind turbine inertia as energystorage. in IEEE Power and Energy Society General Meeting, Vancouver, Canada,2011, pp:1~8.
    [128]HuaZhang Huang, C. Y. Chung, Coordinated damping control design for DFIG-based windgeneration considering power output variation. IEEE Transactions on Power Systems, EarlyAccess Articles2012.
    [129]Andra ertek, Gregor Verbi, Milo Panto. A novel strategy for variable-speed wind turbine’sparticipation in primary frequency control. IEEE Transactions on Sustainable Energy, EarlyAccess Articles2012.
    [130]Lingling Fan, Haiping Yin, Zhixin Miao. On active/reactive power modulation of DFIG-basedwind generation for interarea oscillation damping. IEEE Transactions on Energy Conversion,2011,26(2):513~521.
    [131]张子泳,胡志坚,李勇汇等.大型双馈风力发电系统小信号动态建模及附加阻尼控制器设计.电力系统保护与控制,2011,39(18):127~133.
    [132]张子泳,胡志坚,李勇汇.并网型双馈风力发电系统广域阻尼控制器设计.高电压技术,2011,37(1):157~163.
    [133]王书峰.基于可编程逻辑器件的光电编码器测速方法研究,[硕士学位论文].北京:北京邮电大学,2012.
    [134]黄立丽.大功率PWM变换器的关键控制技术研究,[硕士学位论文].南京:南京航空航天大学,2011.
    [135]魏星.基于LCL滤波器的三相并网逆变器研究,[硕士学位论文].南京:南京航空航天大学,2011.
    [136]朱晓亮.基于电网电压定向三相并网逆变器研究,[硕士学位论文].南京:南京航空航天大学,2010.
    [137]徐爱国,谢少军.电容电流瞬时值反馈控制逆变器的数字控制技术研究.中国电机工程学报,2005,25(1):49~53.
    [138]B.-K. Lee, M. Ehsami. A simplified functional simulation model for three-phase voltage-sourceinverter using switching function concept. IEEE Transations on Industrial Electronics,2001,48(2):309~32.
    [139]Jens-Peter Molly.Windenergie. Verlag C.F. Mueller, Karlsruhe,2ndEdition,1990.
    [140]H. Polinder, D. Bang, R.P.J.O.M. van Rooij, A.S. McDonald, M.A. Mueller.10MW wind turbinedirect-drive generator design with pitch or active stall control. IEEE International ElectricMachines&Drives Conference,2007:1390~1395.
    [141]Lysen E. H., Introduction to wind energy, CWD82-1(2ndEdition),1983.
    [142]C.Kongnam, S.Nuchprayoon. A particle swarm optimization for wind energy control problem.Renewable Energy,2010,35:2431~2438.
    [143]Juan Rivas, David Perreault, Thomas Keim. Performance improvement of alternators withswitch mode rectifiers. IEEE Transactions on Energy Conversion,2004,19(3):561~568.
    [144]M. M. Reis, B. Soares, L.H.S.C. Barreto, E. Freitas, C.E.A. Silva, R. T. Bascopé, D. S.Oliveira Jr., A variable speed wind energy conversion system connected to the grid for smallwind generator. IEEE23th Annual Applied Power Electronics Conference and Exposition,2008,pp:751~755.
    [145]Jia-Wen Li, Heng Nian, Yu Quan. Improved controll on the complementary half controlled threephase PWM boost rectifier. International Conference on Electrical Machines and Systems,2010,pp:198~203.
    [146]Kallio S., Piironen P., Silventoinen P. Boost operation of three-phase half-controlled rectifer inwind power system using permanent magnet generator. International Symposium on PowerElectronics, Electrical Drives, Automation and Motion.2010, pp:403~406.
    [147]Daniel Kr henbühl, Christof Zwyssig, Johann W. Kolar. Half-controlled boost rectifier forlow-power high-speed permanent-magnet generators. IEEE Transactions on IndustrialElectronics,2011,58(11):5066~5075.
    [148]J. Kikuchi, M. D. Manjrekar, T. A. Lipo. Performance improvement of half controlled threephase PWM boost rectifier. In Proc.30th Annu. IEEE Power Electron. Spec. Conf.,1999:319~324.
    [149]Yulin Juan. An integrated-controlled AC/DC interface for microscale wind power generationsystems. IEEE Transactions on Power Electronics,2011,26(5):1377~1384.
    [150]陈杰,龚春英,陈家伟.多脉波整流技术在风力发电中的应用.电工技术学报,2012,27(4):131~137.
    [151]Masaaki Sakui, Hiroshi Fujita. An analytical method for calculating harmonic currents ofthree-phase diode-bridge rectifier with DC filter. IEEE Transactions on Power Electronics.1994,9(6):631~637.
    [152]Bo Yuan Chen, Yen Shen Lai. New digital-controlled technique for battery charger with constantcurrent and voltage control without current feedback. IEEE Transactions on IndustrialElectronics,2012,59(3):1545~1553.
    [153]Wei Qi, Jinfeng Liu, XianZhong Chen, Panagiotis D. Christofides. Supervisory predictivecontrol of standalone wind/solar energy generation system. IEEE Transactions on ControlSystems and Technology,2011,19(1):199~207.
    [154]Kuo Yuan Lo, Yaow Ming Chen, Yung Ruei Chang. MPPT battery charger for stand-alone windpower system. IEEE Transactions on Power Electronics,2011,26(6):1631~1638.
    [155]D.P. Jenkins, J. Fletcher, D. Kane. Lifetime prediction and sizing of lead-acid batteries formicrogeneration storage applications. IET Renewable Power Generation,2008,2(3):191~200.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.