高性能固体染料激光介质研制及可调谐激光输出特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
染料激光器因调谐范围宽、效率高等优点,在科研、军事、医疗等领域具有重要的应用前景。传统液体染料激光器由于染料溶液循环冷却系统庞大、染料和溶剂有毒易燃、需定期更换和清洗循环系统容器和管道等缺点,大大限制了它们的应用。相比之下,固体染料激光器在保留了前者泵浦方式多样、调谐范围宽等优点的同时,还具有全固化、体积小、重量轻、使用及保存方便以及成本低等优点,因此研究固体染料激光器具有非常重要的意义。
     为突破目前固体染料激光器研究尚停留在小能量激光泵浦范围的现状。本文首先对固体染料激光介质及可调谐染料激光器的发展状况做了系统的介绍和分析。在染料分子光降解机理、固体基质光破坏、甲基丙烯酸甲酯(MMA)本体聚合机理研究基础上,分别采用固体基质改性、掺杂改性、固体基质和掺杂共同改性的方法,研制了抗损伤阈值高、效率高、寿命长(光稳定性好)的改性聚合物基质固体染料激光介质,并获得了宽调谐范围、大能量的固体染料激光输出。
     为提高固体染料激光介质的使用寿命、激光效率和抗损伤阈值等性能,本文主要采用了添加有机小分子甲醇、添加甲醇和香豆素染料共掺、添加甲醇和单体共聚等改性方法,研制了掺杂PM系列固体染料激光介质,并研究了改性对固体染料激光输出特性的影响。对于以甲醇改性的共聚物为基质的掺杂PM567固体染料激光介质,当甲醇掺杂体积比为15%时,重复频率5Hz,单脉冲能量100mJ泵浦,使用寿命最长达到278 000次,对应的归一化光稳定性为180.7GJ/mol,相对于未改性时提高了8.7倍,激光输出斜率效率最高达到63.31%,抗损伤阈值为6.7 J/cm2。以甲醇改性的PMMA为基质,当PM567与C540A掺杂摩尔比为2:5时,使用寿命最长达到618 000次,归一化光稳定性为401.7GJ/mol,抗损伤阈值达7.9 J/cm2。在大能量激光泵浦条件下,以掺杂PM567、PM580、PM597固体染料激光介质作为工作介质,分别获得了432、412和448mJ大能量的宽带固体染料激光输出。
     针对目前固体染料激光介质调谐范围窄、激光转换效率低等缺点,本文基于光栅掠入射调谐基本原理,设计了可调谐窄线宽激光振荡结构,开展了单掺、共掺和改性固体染料激光介质的可调谐输出特性研究及在可调谐工作条件下的光稳定性研究。以甲醇改性的掺杂PM567、PM580、PM597和PM650固体染料作为工作介质,获得了调谐范围分别为51.7、52.1、51.5和63.9nm的窄线宽固体染料激光输出,对应的激光效率分别达到42.59%、42.7%、37.62%和9.39%。对掺杂PM580固体染料输出的宽带和窄线宽激光光束质量进行了测量,结果:Mx2因子为10.9和4.1,My2因子为10.7和3.9。研究了可调谐固体染料激光器在不同工作波长处的光稳定性,实验结果表明当固体染料激光介质工作在转换效率越高的波长处时,光稳定性就越好。
     本论文在传统可调谐窄线宽固体染料激光器研究基础上,提出了基于液晶及分布反馈式结构的可集成染料激光调谐方案,并开展了初步的理论与实验研究。采用相干泵浦PM567染料掺杂液晶波导介质,获得了从556nm到571nm的窄线宽可调谐染料激光输出,为后续染料掺杂液晶介质在外加电场作用下的可调谐窄线宽激光输出特性研究奠定了基础。
     为获得单脉冲大能量、宽调谐范围的窄线宽固体染料激光和紫外激光输出,本文设计了可调谐窄线宽固体染料激光“振荡-放大”和“放大-倍频”结构,实验研究了固体染料激光放大调谐输出特性及倍频输出特性。以掺杂PM567、PM580和PM597固体染料作为放大介质,分别获得了调谐范围为48、48和58nm的窄线宽固体染料激光输出,在560、560和590nm波长处的斜率效率分别为51.39%、50.62%和36.2%,对应的最大输出能量达到113.9、116.2和114.1mJ。采用BBO倍频晶体,以掺杂PM597固体染料作为放大增益介质,获得了从279~305nm范围内连续调谐的紫外激光输出,最大输出能量为6.94mJ。结果表明,采用掺杂PM系列固体染料激光介质作为放大增益介质,可以获得大能量、宽调谐范围的窄线宽固体染料激光和紫外激光输出,为固体染料激光器向实用化发展提供了有力的参考依据。
Dye lasers have wide range of applications in many areas such as science, military, and medicine for their advantages including broad tunable range and high efficiency. Conventional liquid dye lasers cannot reach the comprehensive applications because their complicated liquid dyes solutions circulatory systems, toxic and flammable dyes and solvents, periodic replacing and cleanouting circulatory systems and conduits. Keeping the advantages of liquid dye lasers for various pumping styles and wide tunable range in the visible light waveband, solid-state dye lasers also have other advantages, such as all solid-state construction, little capacity, light weight, convenience for use and conservation, low cost and so on.
     Recently the research of solid-state dye lasers is mainly rest on low laser energy pump. The dissertation first systematically introduces and analyzes the development of solid-state dye mediums and tunable solid-state dye lasers. The dissertation studies the photodestruction mechanism of solid-host and photodegration of dye molecules, mass polymeric mechanism of MMA, and uses modified solid hosts method, doping modified method, modified solid hosts and doping modified together method, and dedicates to prepare modified solid-state dye mediums with high laser damage threshold, high laser efficiency, long lifetime (good photostability), and obtains solid-state dye laser output with wide tunable range, high dye laser energy.
     In order to enhance the lifetime, efficiency, damage threshold of solid-state dye mediums, the dissertation mainly chooses the methods with addition of low moleculer methanol, the methods with addition of low moleculer methanol and Coumarin dyes, the methods with addition of low moleculer methanol and other monomer, and prepares solid-state mediums doped with PM dyes and researches the impact of modification on their output characteristics. In the solid-state dye samples based on modified copolymers of MMA and HEMA with methanol doped with PM567, when the volume percent of doped methanol is 15%, the longest lifetime is 278 000 shots, and the corresponding normalized photostability is 180.7 GJ/mol, the photostability increased 8.7 times, the highest laser efficiency is 63.31%, and laser damage threshold is 6.7 J/cm2. In the solid-state dye samples based on modified PMMA with methanol co-doped with PM567 and C540A, the longest lifetime is 618 000 shots, the corresponding normalized photostability is 401.7 GJ/mol, and laser damage threshold reaches 7.9 J/cm2. Our results are the best are the present time. Solid-state dye samples doped with PM567, PM580, and PM597 are used as operating mediums under high pulse energy pump, the corresponding maxium dye laser output energy reach 432mJ, 412mJ, and 448mJ.
     Due to solid-state dye laser with narrow tunable range and low laser efficiency recently, depending on the basic theory of near-grazing-incidence grating, the dissertation designs tunable narrow linewidth laser oscillator cavity, and researchs tunable dye laser output characteristics of single-doped, co-doped and modified solid-state dye mediums. The photostability of tunable narrow linewidth solid-state dye lasers are also studied. When solid-state dye samples based on modified PMMA with methanol doped with PM567, PM580, PM597, PM650 are used as operating mediums, the narrow linewidth dye laser output with tunable ranges of 51.7nm, 52.1nm, 51.5nm, 63.9nm are obtained, and the corresponding laser efficiency are 42.59%, 42.7%, 37.62%, 9.39%. The tunable rrange is the best for the single-doped solid-state dye medium at the present time. Using solid-state dye sample doped with PM580 as operating medium, the broad and narrow band laser beam quality factor M2 are measured, and the beam quality factors are estimated to be Mx2=10.9 and 4.1 in horizontal direction and My2=10.7 and 3.9 in vertical direction for broadband and narrowband laser. The photostability of tunable narrow linewidth solid-state dye lasers under different pump energy density and different operating wavelength are first studied and the results show that the photostability are better when the samples operate at the emission wavelength with high conversion efficiency.
     Based on DFB solid-state dye laser with traditional refraction modulation, the dissertation introduces the dye into the liquid crystal and designs DFB structure for obtaining integrated tunable dye laser. The dye laser output characteristics are researched by theoretical and experimental methods. Tunable narrow linewidth dye laser output properties of PM567 doped nematic liquid crystal under holographic excitation are studied using theoretical and experiment methods, and tunable narrow linewidth dye laser output from 556 nm to 571 nm are obtained. The results are very important for future research on tunable dye laser output with dye doped LC under applied electric field and its practical application.
     In order to obtain tunable narrow linewidth solid-state dye laser and ultraviolet laser output with high pulse energy and wide tunable range, the dissertation designs tunable narrow linewidth solid-state dye laser oscillator-amplifier and amplifier-doubling frequency configuration, and researches solid-state dye laser amplified output characteristics and doubling frequency output characteristics. Using solid-state dye samples doped with PM567, PM580, and PM597 as amplified operating mediums, narrow linewidth solid-state dye laser output with tunable range 48nm, 48nm, 58nm are obtained, and the highest slope efficiency of 51.39% at 560nm, 50.62% at 560nm, 36.25% at 590nm are obtained, and the corresponding maximum output energy are 113.9mJ, 116.2mJ, 114.1mJ. Using BBO crystal to frequency double the dye laser into ultraviolet and solid-state dye sample doped with PM597 as operating medium, ultraviolet dye laser output are demonstrated with a continuous tunable range from 279 to 305 nm, and the highest UV laser output energy reaches 6.94mJ. The experiment results show that the use of solid-state dye laser samples as operating medium, tunable narrow linewidth solid-state dye laser and ultraviolet laser output with a single high pulse energy can be obtained, and reach practical level.
引文
[1] D. A. Gromov, K. M. Dyumaev, A. A. Manenkov, A. P. Maslyukov, G. A. Matyushin, V.S. Nechitalio and A. M. Prokhorov. Efficient plastic-host dye lasers[J]. J. Opt. Soc. Am. B. 1985, 2(7): 1028-1031
    [2] F. J. Duarte. Solid-state multiple-prism grating dye-laser oscillators[J]. Appl. Opt. 1994, 33(18): 3857-3860
    [3] F. P. Schafer, W. Schmidt and J. Volze. Oganic Dye Solution Laser[J]. Appl. Phys. Lett. 1966, 9: 306-309
    [4] M. Lu. S. S. Choi, C. J. Wagner, J. G. Eden and B. T. Cunningham. Label Free Biosensor Incorporating a Replica-molded, Vertically Emitting Distributed Feedback Laser[J]. Appl. Phys. Lett. 2008, 92(26): 261502
    [5] M. Tanaka, Y. Oki, D. Nagano, B. K. An and S. Y. Park. Distributed Feedback Waveguide Laser of Organic Nano-compound Material[J]. Molecular Crystals and Liquid Crystals. 2007, 463: 455-465
    [6] F. P. Sch?fer. Dye Lasers[M]. 3rd Edition, Springer-Verlag. 1990
    [7] F. Duarte. Organic Dye Laser[J]. Optic & Photonics News. Organic Dye Lasers- Brief History and Recent Developments. 2003, 14(10):20-25
    [8] A. Costela, I. Garci-Morenoa and R. Sastre. Polymeric Solid-state Dye Lasers: Recent Developments[J]. Phys. Chem. Chem. Phys. 2003, 5(21): 4745-4763
    [9] R. Reisfeld, E. Yariv and H. Minti. New Developments in Solid State Lasers[J]. Opt. Materials. 1997, 8(1-2): 31-36
    [10] D. Lo, S. K. Lam, C. Ye and K. S. Lam. Narrow Linewidth Operation of Solid State Dye Laser Based on Sol-gel Silica[J]. Opt. Commun. 1998, 156(4-6): 316-320
    [11] C. Peroz, J. Galas, L. L. Gratiet, Y. Chen and J. Shi. Compact Dye Laser on a Chip Fabricated by Ultraviolet Nanoimprint Lithography[J]. Appl. Phys. Lett. 2006, 89(24): 243109
    [12] Y. Chen, Z. Y. Li, Z. Y. Zhang, D. Psaltis and A. Scherer. Nanoimprinted Circular Grating Distributed Feedback Dye Laser[J]. Appl. Phys. Lett. 2007, 91(5): 051109
    [13] Z. Y. Li and D. Psaltis. Optofluidic Distributed Feedback Dye Lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics. 2007, 13(2): 185-193
    [14] M. Gersborg-Hansen and A. Kristensen. Tunability of Optofluidic Distributed Feedback Dye Lasers[J]. Opt. Express. 2007, 15(1): 137-142
    [15] H. Sakata, K. Yamashita, H. Takeuchi and M. Tomiki. Diode-pumped Distributed-Feedback Dye Laser with an Organic-inorganic Microcavity[J].Appl. Phys. B. 2008, 92(2): 243-246
    [16] M. Lu. S. S. Choi, U. Irfan and B. T. Cunningham. Plastic Distributed Feedback Laser Biosensor[J]. Appl. Phys. Lett. 2008, 93(11): 111113
    [17] H. Soffer and B. B. McFarland. Continuously Tunable, Narrow-band Organic Dye Lasers[J]. Appl. Phys. Lett. 1967, 10: 266-267
    [18] G. Peterson and B. B. Snavely. Stimulated Emission from Flashlamp-excited Organic Dyes[J]. Appl. Phys. Lett. 1968, 12(7): 238-240
    [19] S. Singh, V. R. Kanetkar, G. Sridhar, V. Muthuswamy and K, Raja. Solid-state Polymeric Dye Lasers[J]. J. Lumin. 2003, 101(4): 285-231
    [20] K. M. Dyumaev, A. A. Manenkov, A. P. Maslyukov, G. A. Matyushin, V. S. Nechitailo and A. M. Prokhorov. Dyes in Modified Polymers: Problems of Photostability and Conversion Efficiency at High Intensities[J]. J. Opt. Soc. Am. B. 1992, 9(1): 143-151
    [21] M. D. Rahn, T. A. King, A. A. Gorman, I. Hamblett. Photostability Enhancement of Pyrromethene 567 and Perylene Orange in Oxygen-free Liquid and Solid Dye Lasers[J]. Appl. Opt. 1997, 36(24): 5862-5871
    [22] M. Ahmad, M. D. Rahn and T. A. King. Singlet Oxygen and Dye-triplet-state Quenching in Solid-state Dye Lasers Consisting of Pyrromethene 567–doped Poly(methyl methacrylate) [J]. Appl. Opt. 1999, 38(30): 6337-6342
    [23] T. A. King, M. Ahmad, A. A. Gorman, I. Hamblett and M. D. Rahn. Dye-triplet-state and Singlet-oxygen Quenching Effects in Solid State Dye Lasers[C]. SPIE of Solid-state lasers IX. 2000, 3929: 145-153
    [24] M. Ahmada, T. A. Kinga, D. K. Ko, B. H. Cha and J. Lee. Highly Photostable Laser Solution and Solid-state Media Based on Mixed Pyrromethene and Coumarin[J]. Optics & Laser Technology. 2002, 34(6): 445-448
    [25] M. Ahmad, T. A. Kinga., D. K. Kob, B. H. Chab and J. Leec. Photostability of Lasers Based on Pyrromethene 567 in Liquid and Solid-state Host Media[J]. Opt. Commun. 2002, 203(3-6): 327-334
    [26] M. Ahmad. Enhanced Photostability of Photoluminescent Dye-doped Solutions and Polymers with the addition of dielectric-oxide micro-particles[J]. Opt. Commun. 2007, 271(2): 457-461
    [27] A. Costela, I. Garcia-Moreno, J. Barroso and R. Sastre. Laser Performance of Pyrromethene 567 Dye in Solid Matrices of Methyl methacrylate with Different Comonomers[J]. Appl. Phys. B. 2000, 70(3): 367-373
    [28] A. Costela, I. Garcia-Moreno, R. Sastre, F. L. Arbeloa, T. L. Arbeloa and I. L. Arbeloa. Photophysical and Lasing Properties of Pyrromethene 567 Dye in Solid Poly(trifluoromethyl methacrylate) Matrices with Different Degrees of Crosslinking[J]. Appl. Phys. B. 2001, 73(1): 19-24
    [29] A. Costela, I. Garcia-Moreno, C. Gomez, O. Garcia and R. Sastre. LaserPerformance of Pyrromethene 567 Dye in Solid Polymeric Matrices with Different Cross-linking Degrees[J]. J. Appl. Phys. 2001, 90(7): 3159-3166
    [30] A. Costela, I. Garcia-Moreno, M. L. Carrascoso and R. Sastre. Studies on Laser Action from Polymeric Matrices Based on Trimethylsilyl Methacrylate Doped with Pyrromethene 567 Dye[J]. Opt. Commun. 2002, 201(4-6): 437-445
    [31] A. Costela, I. Garcia-Moreno, C. Gomez, O. Garcia and R. Sastre. Enhancement of Laser Properties of Pyrromethene 567 Dye Incorporated into New Organic–inorganic Hybrid materials[J]. Chem. Phys. Lett. 2003, 369(5-6): 656-661
    [32] A. Costela, I. Garcia-Moreno, C. Gomez, O. Garcia, L. Garrido and R. Sastre. Highly Efficient and Stable Doped Hybrid Organic–inorganic Materials for Solid-state Dye Lasers[J]. Chem. Phys. Lett. 2004, 387(4-6): 496-501
    [33] A. Costela, I. García-Moreno, D. D. Agua, O. García and R. Sastre. Highly Photostable Solid-state Dye Lasers Based on Silicon-modified Organic Matrices[J]. J. Appl. Phys. 2007, 101(7): 073110
    [34] A. Tyagi, D. D. Agua, A. Penzkofer, O. Garcia, R. Sastre, A. Costela and I. Garcia-Moreno. Photophysical Characterization of Pyrromethene 597 Laser Dye in Cross-linked Silicon-containing Organic Copolymers[J]. Chem. Phys. 2007, 342(1-3): 201-214
    [35] J. B. Prieto, F.L. Arbeloa, O. Garcia and I. L. Arbeloa. Photophysics and Lasing Correlation of Pyrromethene 567 Dye in Crosslinked Polymeric Networks[J]. Journal of Luminescence. 2007, 126(2): 833-837
    [36] L. P. Krul, V. Matusevich, D. Hoff, R. Kowarschik, Y. I Matusevich, G. V. Butovskaya and E. A. Murashko. Modified Polymethylmethacrylate as a Base for Thermostable Optical Recording Media[J]. Opt. Express. 2007, 15(14): 8543-8549
    [37] T. Susdorf, D. D. Agua1, A. Tyagi, A. Penzkofer, O. Garcia, R. Sastre, A. Costela and I. Garcia-Moreno. Photophysical Characterization of Pyrromethene 597 Laser Dye in Silicon-containing Organic Matrices[J]. Appl. Phys. B. 2007, 86(3): 537-545
    [38] O. Garcia, R. Sastre, I. Garcia-Moreno, V. Martin and A. Costela. New Laser Hybrid Materials Based on POSS Copolymers[J]. J. Phys. Chem. C. 2008, 112(38): 14710-14713
    [39] I. Garcia-Moreno, A. Costela, M. Pintado-Sierra, V. Martin and R. Sastre. Enhanced laser action of Perylene-Red doped polymeric materials[J]. Opt. Express. 2009, 17(15): 12777-12784
    [40] W. Hu, H. Ye and C .Li et al. All-solid-state tunable DCM dye laser pumped bye diode-pumped Nd:YAG laser[J]. Appl. Opt. 1997, 36(3):579-583.
    [41]席淑珍,李磊,王飚,初国强,王乃弘.新型固态染料激光材料光谱特性的研究[J].光学精密工程. 1997, 5(4):20-25.
    [42]谢旭东,胡丽丽,黄国松,姜中宏.高分子基体的固体染料激光器的制备和研究[J].中国激光. 2000, 27(4):307-311.
    [43]初国强,刘星元,王立军. Rh6G- MPMMA型固体染料激光器的研制[J].激光与红外. 2001, 31(2):82-84.
    [44] Y. Yang, M. Wang and G. Qian. Laser properties and photostabilities of laser dyes doped in ORMOSILs[J]. Optical Materials. 2004, 24(4): 621-628.
    [45] Y. Yang, G. D. Qian, D. L. Su and M. Q. Wang. Photostability of Pyrromethene 567 Doped in ORMOSILs with Various Additives[J]. Opt. Commun. 2004, 239(4-6): 415-420
    [46] D. L. Su, Y. Yang, G. D. Qian, Z. Y. Wang and M. Q. Wang. Influence of Energy Transfer on Fluorescence and Lasing Properties of Various Laser Dyes co-doped in ORMOSILs[J]. Chem. Phys. Lett. 2004, 397(4-6): 397-401
    [47] Y. Yang, G. D. Qian, D. L. Su, Z. Y. Wang and M. Q. Wang. Energy Transfer Mechanism between Laser Dyes doped in ORMOSILs[J]. Chem. Phys. Lett. 2005, 402(4-6): 389-394
    [48] Y. Yang, G. N. Lin, J. Zou, Z. Y. Wang, M. Q. Wang and G. D. Qian. Enhanced Laser Performances Based on Energy Transfer in Multi-dyes Co-doped Solid Media[J]. Opt. Commun. 2007, 277(1): 138-142
    [49] R.W. Fan, Y.Q. Xia and D.Y. Chen. Solid State Dye Lasers Based on LDS 698 Doped in Modified Polymethyl methacrylate[J]. Opt. Express. 2008, 16(13): 9804-9810
    [50] Li Xiao-Hui, Fan Rong-Wei, Xia Yuan-Qin, Liu Wei, and Chen De-Ying. PM567-doped solid dye lasers based on PMMA[J]. Chinese Physics 2007, 16(12): 1-4
    [51] R. W. Fan, X. H. Li, Y. Q. Xia, Y.G. Jiang, W. M. He and D. Y. Chen. Solid State Dye Lasers Based on Coumarin 440 and Pyrromethene 567 Codoped Polymethyl methacrylate[J]. Chin. Phys. Lett. 2008, 25(5): 1881-1883
    [52] R. W. Fan, X. H. Li, S. S. Yue, Y. G. Jiang, Y. Q. Xia and D. Y. Chen. Solid Dye Lasers Based on 2-hydroxypropyl methacrylate and Methyl methacrylate Copolymers[J]. Chin. Phys. Lett. 2008, 25(2): 700-702
    [53]樊荣伟,夏元钦,李晓晖,姜玉刚,陈德应.宽带输出PM580掺杂聚甲基丙烯酸甲酯固体染料激光器研究[J].物理学报2008, 57(9): 5705-5708
    [54]刘维,夏元钦,李晓晖,樊荣伟,陈辉,陈德应.溶胶-凝胶和聚合物固体激光染料的特性[J].中国激光. 2007, 34(5): 707-710
    [55]樊荣伟,李晓晖,夏元钦,刘维,陈德应.共聚物基质固体染料激光介质的特性[J].中国激光. 2008, 35: 73-76
    [56] S. Chandra, T. H. Allik, J. A. Hutchinson, J. Fox and C. Swim. Tunable Ultraviolet Laser Source Based on Solid-state Dye Laser Technology and CsLiB6O10 Harmonic Generation[J]. Opt. Lett. 1997, 22(4): 209-211
    [57] D. Lo, S. K. Lam, C. Ye and K. S. Lam. Narrow Linewidth Operation of Solid State Dye Laser Based on Sol-gel Silica[J]. Opt. Commun. 1998, 156(4-6): 316-320
    [58] P. P Yaney, D. A. V. Kliner, P. E. Schrader and R. L. Farrow. Distributed-feedback dye laser for picosecond ultraviolet and visible spectroscopy[J]. Rev. Sci. Instrum. 2000, 71(3): 1296-1305
    [59] G. C. Bhar, P. Kumbhakar, U. Chatterjee, A. M. Rudra and A. Nagahori. Widely tunable deep ultraviolet generation in CLBO[J]. Opt. Commum. 2000, 176(1-3): 199-205
    [60] A. L.Jones, R. J. DeYoung and H. E. Elsayed-Ali. Compact Solid-state Dye Polymers For ozone Lidar Applications[J]. Opt. Engineering. 2002, 41(11): 2951-2958
    [61] S. J. Rehse and S. A. Lee. Generation of 125 mW frequency stabilized continuous-wave tunable laser light at 295 nm by frequency doubling in a BBO crystal[J]. Opt. Commum. 2002, 213(4-6): 347-350
    [62] M. Alvarez, F. Amat-Guerri, A. Costela, I. Garcia-Moreno, C. Gomez, M. Liras and R. Sastre. Linear and Cross-linked Polymeric Solid-state Dye Lasers Based on 8-substituted Alkyl Analogues of Pyrromethene 567[J]. Appl. Phys. B. 2005, 80(8): 993-1006
    [63] M. Alvarez, F. Amat-Guerri, A. Costela, I. Garcia-Moreno, M. Liras and R. Sastre. Laser Emission from Mixtures of Dipyrromethene Dyes in Liquid Solution and in Solid Polymeric Matrices[J]. Opt. Commun. 2006, 267(2): 469-479
    [64] N. Singh. Single Mode Operation of a Narrow Bandwidth Dye Laser Using a Single Prism, Grazing Incidence Grating Long Cavity[J]. Optics&Laser Technology. 2007, 39(6): 1140-1143
    [65] A. K. Ray, S. Kundu, S. Sasikumar, C. S. Rao, S. Mula, S. Sinha and K.Dasgupta. Comparative Laser Performances of Pyrromethene 567 and Rhodamine 6G Dyes in Copper Vapour Laser Pumped Dye Lasers[J]. Appl. Phys. B. 2007, 87(3): 483-488
    [66] Z. Hong, Z. Y. Wang, Y. Yang, J. Chen, M. Q. Wang, C. F. Bao and W. F. Qiu. Tunable Solid-state Dye Lasers with Narrow Linewidth Operation[J]. Chin. Phys. Lett. 2001, 18(2): 225-227
    [67] H. Kogelnik and C. V. Shank. Stimulated emission in a periodic structure[J]. Appl. Phys. Lett. 1971, 18(4): 152-154
    [68] C. V. Shank, J. E. Bjorkholm and H. Kogelnik. Tunable distributed-feedbackdye laser[J]. Appl. Phys. Lett. 1971, 18(9): 395-396
    [69] M. Nakamura, A. Yariv, H. W. Yen, S. Somekh, and H. L. Garvin. Optically Pumped GaAs Surface Laser with Corrugation Feedback[J]. Appl. Phys. Lett. 1973, 22(10): 515-516
    [70] Z. Y. Li, Z. Zhang, T. Emery, A. Scherer and D. Psaltis. Single Mode Optofluidic Ditributed Fedback Dye Laser[J]. Opt. Express. 2006, 14(2): 696-701
    [71] X. L. Zhu and D. Lo. Distributed-feedback sol-gel dye laser tunable in the near ultraviolet[J]. Appl. Phys. Lett. 2000, 77(17): 2647-2649
    [72] T. Matsui, M. Ozaki and K. Yoshino. Single-Mode Operation of Electrotunable Laser in a Dye-Doped Nematic Liquid-Crystal Waveguide under Holographic Excitation[J]. Jpn. J. Appl. Phys. 2003, 42(12A): 1462-1464
    [73] T. Matsui, M. Ozaki and K. Yoshino. Electro-tunable laser action in a dye-doped nematic liquid crystal waveguide under holographic excitation[J]. Appl. Phys. Lett. 2003, 83(3): 422-424
    [74] T. Matsui, M. Ozaki and K. Yoshino. Tunable laser action in a dye-doped nematic liquid-crystal waveguide under holographic excitation based on electric-induced TM guided-mode modulation[J]. J. Opt. Soc. Am. B. 2004, 21(9): 1651-1658
    [75] J. Wang, C. Ye, F. Chen, L. Shi and D. Lo. Wavelength tunable two-photon-pumped distributed feedback zirconia waveguide lasers[J]. J. Opt. A: Pure Appl. Opt. 2005, 7(5): 261-264
    [76] D. McPhail, M. Straub and M. Gu. Electrical tuning of three-dimensional photonic crystals using polymer dispersed liquid crystals[J]. Appl. Phys. Lett. 2005, 86(5): 051103.
    [77] T. H. Lin, H. C. Jau, C. H. Chen, Y. J. Chen, T. H. Wei, C. W. Chen and A. Y.-G. Fuh. Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy[J]. Appl. Phys. Lett. 2006, 88(6): 061122.
    [78] L. M. Blinov, G. Cipparrone, P. Pagliusi, V. V. Lazarev and S. P. Palto. Mirrorless lasing from nematic liquid crystals in the plane waveguide geometry without refractive index or gain modulation[J]. Appl. Phys. Lett. 2006, 89(3): 031114.
    [79] L. M. Blinov, G. Cipparrone, A. Mazzulla, P. Pagliusi, V. V. Lazarev and S. P. Palto. Simple voltage tunable liquid crystal laser[J]. Appl. Phys. Lett. 2007, 90(13): 131103.
    [80] L. M. Blinov, V. V. Lazarev, S. P. Palto, G. Cipparrone, A. Mazzulla and P. Pagliusi. Electric field tuning a spectrum of nematic liquid crystal lasing with the use of a periodic shadow mask[J]. Journal of Nonlinear Optical Physics & Material. 2007, 16(1): 75-90
    [81] Fei. Chen, D. Gindre and J-M. Nunzi. First-order distributed feedback dye laser effect in reflection pumping geometry[J]. Opt. Lett. 2007, 32(7): 805-807
    [82] Fei. Chen, D. Gindre and J-M. Nunzi. Tunable circularly polarized lasing emission in reflection distributed feedback dye lasers[J]. Opt. Express. 2008, 16(21): 16746-16753
    [83] M.Y. Jeong, H. Choi and J. W. Wu. Spatial tuning of laser emission in a dye-doped cholesteric liquid crystal wedge cell[J]. Appl. Phys. Lett. 2008, 92(5): 051108.
    [84] B. Park, M. Kim and S. W. Kim, W. Jang, H. Takezoe, Y. Kim, E. H. Choi, Y. H. Seo, G. S. Cho and S. O. Kong. Electrically controlable omnidirectional laser emission from a helical-polymer network composite film[J]. Adv. Mater. 2009, 21(7): 771-775.
    [85] Ryotaro Ozaki, Toshikazu Shinpo, Katsumi Yoshino, Masanori Ozaki, and Hiroshi Moritake. Tunable liquid crystal laser using distributed feedback cavity fabricated by nanoimprint lithography[J]. Appl. Phys. Express 2008, 1(1): 012003
    [86] H. Yoshida, Y. Inoue, T. Isomura, Y. Matsuhisa, A. Fuji and M. Ozaki. Position sensitive, continuous wavelength tunable laser based on photopolymerizable cholesteric liquid crystals with an in-plane helix alignment[J]. Appl. Phys. Lett. 2009, 94(9): 093306.
    [87] Y. Yang, G. N. Lin, H. Xu, M. Q. Wang and G. D. Qian. Distributed-feedback laser actions in zirconia-ORMOSIL waveguides based on energy transfer between co-doped laser dyes[J]. Opt. Commum. 2008, 281(20): 5218-5221
    [88] C. V. Shank. Physics of dye lasers. Rev. Mod. Phys. 1975, 47(3): 649-657
    [89]张国威.可调谐激光技术[M].国防工业出版社, 2002.
    [90] T. Suratwala, K. Davidson, Z. Gardlund, D. R. Uhlmann, S. Bonilla and N. Peyghambarian. Molecular Engineering and Photostability of Laser Dyes within Sol-Gel Hosts[C]. SPIE. 1997, 2986: 141-451
    [91] M. S. Mackey, W. N. Sisk. Photostability of pyrromethene 567 laser dye solutions via photoluminescence measurements[J]. Dyes and pigments. 2001, 51(2-3): 79-85
    [92] A. Costela, F. Florido, I. Garcia-Moreno, R. Duchowicz, F. Amat-Guerri, J. M. Figuera and R. Sastre. Solid-state Dye Lasers Based on Copolymers of 2-hydroxyethyl methacrylate and Methyl methacrylate Doped with Rhodamine 6G[J]. Appl. Phys. B. 1995, 60(4): 383-389
    [93] T. G. Pavalopulos, M. Shan and J. H. Boyer. Efficient Laser Action from 1,3,5,7, 8-pentamethylpyrromethene-BF2 Complex and its disodium 2, 6-Disulfonate Derivative[J]. Opt. Comm. 1989, 70(5): 425-427
    [94] M. Shah, K. Thangaraj, M. L. Soong, L. T. Wolford, J. H. Boyer, I. R. Politzer,and T. G. Pavlopoulos. Pyrromethene-BF2 complexes as laser dyes: 1[J]. Heteroatom. Chem. 1990, 1(5): 389-399
    [95] T. G. Pavlopoulos, J. H. Boyer, M. Shah, K. Thangaraj and M. L. Soong. Laser action from 2, 6, 8-position trisubstituted 1, 3, 5, 7-tetramethyl pyrromethene-BF2 complexes: part 1[J]. Appl. Opt. 1990, 29(27): 3885-3886
    [96] J. H. Boyer, A. Haag, M. L. Soong, K. Thangaraj and T. G. Pavlopoulos. Laser action from 2, 6, 8-position trisubstituted 1, 3, 5, 7-tetramethyl pyrromethene-BF2 complexes: part 2[J]. Appl. Opt. 1991, 30(27): 3788-3789
    [97] J. H. Boyer, A. M. Haag, G. Sathyamoorthi, M. L. Soong, K. Thangaraj and T. G. Pavlopoulos. Pyrromethene-BF2 complexes as laser dyes: 2[J]. Heteroatom. Chem. 1993, 4(1): 39-49
    [98] T. G. Pavlopoulos and J. H. Boyer. Pyrromethene-BF2 laser dyes. Visible and UV Lasers[C]. Proc. SPIE. 1994, 2115: 231-239
    [99] M. P. O’Neil. Synchronously pumped visible laser dye withtwice the efficiency of rhodamine 6G[J]. Opt. Lett. 1993, 18(1): 37-38
    [100] O. Garcia, R. Sastre, D. D. Agua, A. Costela, I. Garcia-Moreno, F. L. Arbeloa, J. B. Prieto and I. L. Arbeloa. Laser and Physical Properties of BODIPY Chromophores in New Fluorinated Polymeric Materuals[J]. J. Phys. Chem. C. 2007, 111(3): 1508-1516
    [101] S. Popov. Dye photodestruction in a solid-state dye laser with a polymeric gain medium[J]. Appl. Opt. 1998, 37(27): 6449-6455
    [102] C. Tallman, R. Tennant: In High-Power Dye Lasers, ed. by F.J. Duarte[M], Vol. 65 (Springer, Berlin, Heidelberg 1991) p. 93
    [103]黄枢,谢如刚,田宝芝,秦圣英.有机合成试剂制备手册[M].第二版.科学出版社, 2005:315
    [104]刘建平,郑玉斌.高分子科学与材料工程实验[M].化学工业出版社,2005:247
    [105] Y. Leung, M. D. Morris. Characterization of the chemical interactions between 4-MET and enamel by Raman spectroscopy[J]. Dent Mater. 1995, 11(3):191-195
    [106] W. Koechner. Solid-State Laser Engineering[M]. Fifth Revised and Updated Edition.Springer, 2005: 104-107
    [107]刘维樊荣伟李晓晖陈辉夏元钦陈德应[J].小分子改性的聚合物固体染料激光特性研究.物理学报. 2007, 56(9):5276-5280
    [108] R. E. Hermes, T. H. Allik,J. A. Hutchinson. High-efficiency Pyrromethene Doped Solid-state Dye Lasers[J]. Appl. Phys. Lett. 1993, 63(7):877-879
    [109] F. Amat-Guerri, A. Costela, J. M. Figuera, F. Florido, I. Garcia-Moreno, R. Sastre. Laser action from a rhodamine 640-doped copolymer of2-hydroxyethyl methacrylate and methyl methacrylate. Optics. Communications. 1995, 114(5):442-446
    [110] M. D. Rahn, T. A. King, A. A. Gorman and I. Hamblett. Photostability enhancement of Pyrromethene 567 and Perylene Orange in oxygen-free liquid and solid dye lasers[J]. Appl. Opt. 1995, 36(24): 5862-5871
    [111] M. D. Rahn and T. A. King. Comparison of solid-state dye laser performance in various host media[C]. SPIE. 1999, 3613: 94-105
    [112] William J. Wadsworth, Shirin M. Giffin, Iain T. McKinnie, John C. Sharpe, Anthony D. Woolhouse, Timothy G. Haskell, and Gerald J. Smith. Thermal and optical properties of polymer hosts for solid-state dye lasers[J]. Appl. Opt, 1999, 38(12): 2504-2509
    [113] M. G. Littman. Single-mode operation of grazing-incidence pulsed dye laser[J]. Opt. Lett. 1976, 3(4): 138-140
    [114] P. Lotem. Littrow-mounted diffraction grating cavity[J]. Appl. Opt. 1994, 33(6): 930-934
    [115] M. D. Labachelerie and G. Passedat. Mode-hop suppression of Littrow grating-tuned lasers[J]. Appl. Opt. 1993, 32(3): 269-274
    [116] M. G. Littman and H. J. Metcalf. Spectrally narrow pulsed dye laser without beam expander[J]. Appl. Opt. 1978, 17(14): 2224-2227
    [117] L. C. Zhou, J. Y. Liu, G. J. Zhao, Y. Shi, X. J. Peng and K. L. Han. The ultrafast dynamics of near-infrared heptamethine cyanine dye in alcoholic and aprotic solvents[J]. Chem. Phys. 2007, 333(2-3): 179-185
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.