Mg-Y-Gd-Zn-Zr镁合金组织、性能及其蠕变行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金是目前实际应用中最轻的金属结构材料,具有比重小、比强度、比刚度高、导热导电性好、阻尼性、切削加工性好等优点。近年来人们相继开发了Mg-Y-Nd-Zr和Mg-Gd-Y-Zr等新型的高强耐热镁合金。随着Mg-RE合金的研究深入进行,很多研究者通过在合金中加入廉价的Zn来代替部分稀土,也获得了相近的力学性能。并且还发现加入少量的Zn,不仅可以调控Mg-RE系合金的时效析出组织;而且在适当的加入量和工艺条件下,Mg-RE-Zn系合金还产生了除沉淀相以外的新相或结构,即长周期有序结构(Long Period Stacking Ordered Structure,简称LPSO)。该结构使Mg-RE系合金表现出优异的室温和高温屈服强度、好的延伸率和高的应变速率超塑性。
     根据前期Mg-Gd-Y-Zr合金在高强耐热方面取得的实验结果,本文考虑在该合金体系的基础上,通过加入不同含量的Y元素(5-14wt.%)和不同含量的Zn元素(0.5-3wt.%)来研究它的微观组织和力学行为的关系,并在此基础上重点研究了Mg-10Y-5Gd-2Zn合金的热处理工艺、力学性能和高温蠕变行为。
     本文以Mg-(5-14)Y-5Gd-(0-3)Zn-0.5Zr合金为研究对象,采用电感耦合等离子直读光谱仪(ICP)、光学显微镜(OM)、差示扫描量热仪(DSC)、差热分析(DTA)、X射线衍射仪(XRD)、带能谱分析(EDAX)的扫描电子显微镜(SEM)和透射电子显微镜(TEM)等分析手段,通过硬度、室温和高温拉伸及拉伸蠕变性能等,系统地研究了不同Y含量、Zn含量和热处理工艺对Mg-(5-14)Y-5Gd-(0-3)Zn-0.5Zr合金的显微组织、力学性能和蠕变性能的影响;探讨了合金的强化机制,重点研究了时效析出相结构、长周期结构、形态、尺寸和分布的演变过程,为高性能稀土镁合金的进一步开发和应用提供理论和实践依据。研究结果如下:
     1.通过研究不同Y含量的Mg-(5-14)Y-5Gd-2Zn-0.5Zr合金发现:当Y≥8wt.%时,晶界处开始出现黑色的条状Mg12ZnY共晶相,并且晶内开始产生精细的条纹状LPSO结构相。随着Y含量的增加,晶界上的Mg24(GdYZn)5共晶相、黑色的Mg12ZnY相和晶内的精细条纹LPSO结构相都开始增多。铸态Mg-10Y-5Gd-0.5Zr合金主要由α-Mg过饱和固溶体、网状Mg24(GdY)5共晶相和花瓣状的Zr核组成。该合金加入不同含量的Zn后,组织发生了明显变化。晶内出现了层片状的精细条纹,随着Zn含量的增加,晶界上大块条状的Mg12ZnY相的数量也增加。铸态Mg-10Y-5Gd-2Zn-0.5Zr合金主要由α-Mg过饱和固溶体,Mg24(GdYZn)5网状共晶相, Mg12YZn大块条状共晶相和晶内的层片状精细条纹相组成。晶内的层片状精细条纹是6H′(ABCBCB′)类型的LPSO结构;为畸变的6H类型,其a轴和c轴夹角为88°。
     2.通过研究Mg-10Y-5Gd-0.5Zr合金在500-550℃和0-48h固溶过程中组织演变规律,优化出了535℃×16h的最优固溶工艺。在该工艺条件下,Mg24(GdY)5共晶相完全溶入了α-Mg基体,且晶粒没有明显长大。参考不同温度固溶处理的力学性能,优化出Mg-10Y-5Gd-2Zn-0.5Zr合金的最佳固溶工艺也为535℃×16h;而且还发现该合金在535-545℃固溶过程中,晶界的Mg24(GdYZn)5相全部溶入了基体,但是在晶界上依然残留着Mg12ZnY相。
     3.研究发现Mg-10Y-5Gd-2Zn-0.5Zr合金峰值硬度随着时效温度的上升而下降,过时效硬度下降幅度随着时效温度提高而加大。根据微观组织和力学性能的变化,优化出225℃×24h为合金最佳时效工艺。拉伸实验温度从室温升高到250℃的过程中,铸造T6态Mg-10Y-5Gd-2Zn-0.5Zr合金的抗拉强度只发生了微弱的降低,而当温度高于250℃时,合金的抗拉强度急剧下降,延伸率大幅度提高。铸造T6态Mg-10Y-5Gd-xZn-0.5Zr合金的常温和高温抗拉强度都明显高于WE54合金,高温抗拉强度尤其明显,其中Mg-10Y-5Gd-2Zn-0.5Zr合金在250℃和300℃的抗拉强度分别为326MPa和261MPa,远远高于同状态下的WE54合金。
     4.研究还发现Mg-10Y-5Gd-2Zn-0.5Zr合金在225℃时效24小时后,晶内析出β′相,该相具有底心正交晶体结构(a=0.640nm, b=2.223nm, c=0.521nm),与镁基体的取向关系为:(100)β′∥(2110)a, (001)β′∥(0001)a, [010]β′∥[1010]a。峰值时效时椭球形β′相是主要的强化相,对合金的强度贡献最大。此外,晶界上还残存着大量块状Mg12ZnY相,该相经过时效处理后结构没有明显变化;晶内仍然有6H’的LPSO结构相。
     5.通过对Mg-10Y-5Gd-2Zn-0.5Zr合金在温度(200-300℃)和应力(30-120MPa)条件下的高温蠕变测试发现,该合金在应力低于80MPa,温度低于250℃的范围内,蠕变性能随温度的升高下降幅度较少,合金的蠕变性能很好;当温度高于300℃而应力也高于80MPa时,合金的蠕变性能急剧变坏。对于铸造T6态Mg-10Y-5Gd-2Zn-0.5Zr合金比较适宜的使用温度不超过300℃,应力不超过80MPa。Y含量在10-12wt.%的合金具有最佳的抗蠕变性能。
     6.研究还发现,Zn元素可以显著提高Mg-10Y-5Gd-0.5Zr合金的高温蠕变性能。在300℃/50MPa条件下,铸造T6态Mg-10Y-5Gd-2Zn-0.5Zr的蠕变性能最好,稳态蠕变速率ε? min为6.60×10-8s-1,100小时的蠕变应变总量ε100仅为1.76%。合金在250℃和300℃指定应力范围的应力指数分别为2.3和5.1,在指定应力30MPa和50MPa下的表观激活能为分别为191.9KJ/mol和216.4KJ/mol。
     7.研究发现,铸态Mg-10Y-5Gd-2Zn-0.5Zr合金经过300℃/50MPa蠕变至稳态阶段(100h),晶内的LPSO结构相明显增多;而且在晶内和晶界还析出了一定量的粗大的平衡β相。晶界上依然存留着Mg12ZnY相。
     8.Mg-Y-Gd-Zr合金中加入一定量的Zn后,产生LPSO结构相,对于位错运动起了很大的阻碍作用。在高温蠕变过程中,开动非基面位错。LPSO结构相在位错的作用下内部发生了严重的晶格畸变,产生弯曲变形,这样的扭曲严重了阻碍了位错的运动,从而使合金的蠕变性能提高。
     9.铸造T6态Mg-10Y-5Gd-2Zn-0.5Zr合金在300℃/50MPa蠕变至稳态阶段(100h),晶内和晶界处析出了一定量的粗大的β相。β析出相与基体界面产生大量错配位错,阻碍了位错运动。在孪晶界和LPSO结构交互作用的位置可以看到,LPSO结构发生了偏转,形成了一定的角度。经测量,该角度约为4.1°。
     10.Mg-Y-Gd-Zn-Zr合金的高温蠕变变形机制为位错滑移和晶界滑移。晶界上的Mg12ZnY相也起到了钉扎晶界的作用。LPSO结构相和析出相的复合强化阻碍位错运动,提高了合金的蠕变抗力。
Magnesium alloys are the lightest structural materials with high specific strength, good electric conduction, thermal conduction, damping capacity, electromagnetic shielding, formability, as well as easy recycled. Recently, Mg-Y-Nd-Zr and Mg-Gd-Y-Zr alloys were development. Many researchers found adding some cheaper zinc into the Mg-RE alloys brought great changes. Zinc can control the precipitate phase and induced the LPSO (Long Period Stacking Ordered Structure). It can exhibit excellent room and high temperature mechanical properties and creep properties. Based on the results of Mg-Gd-Y-Zr alloys, Zn (0.5wt.%-3wt.%) were added into the alloys. The microstructure and mechanical properties of Mg-10Y-5Gd-2Zn-0.5Zr alloy were researched.
     Several Mg-(5-14)Y-5Gd-(0-3)Zn-0.5Zr alloys were prepared. Effects of variant content of Y and Zn, heat treatment and thermal-mechanical process on the microstructure, mechanical properties and creep resistance were mainly investigated, by computer data collection system, optical microscopy (OM), image analysis apparatus with a image analysis software, X–ray diffract meter (XRD), inductively coupled plasma analyzer (ICP), Differential Thermal Analysis (DTA), Differential Scanning Calorimeter (DSC), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) with energy dispersive X-ray analyses (EDAX) and micro-diffraction etc.. The strengthening mechanism of the alloys was analyzed and discussed, and micro-structural evolution during aging, including the morphology, structure, size and distribution of the precipitates, was studied in detail. The purpose of the present work is to provide theoretical and practical results for the development of high-performance magnesium- rare earth alloys. The main conclusions can be summarized as follows:
     1.The as-cast Mg-10Y-5Gd-0.5Zr alloy contains the majorαphase which is supersaturated Gd + Y solid solution in Mg matrix; Mg24(GdY)5 eutectic phase which looks like narrow island morphology and has higher Gd + Y content than the matrix; and the intra-crystalline zirconium rich cores. Adding 2wt.% Zn to Mg-10Y-5Gd-0.5Zr alloy leads to form a long-period stacking-ordered structure via a conventional casting method. The structure is a 6H′-type (ABCBCB′) which is a distorted stacking order from an ideal hexagonal lattice of 6H-type. The angle between the c- and a-axis is estimate to be approximately 88°.
     2. At 535℃for 16h, the Mg24(GdY)5 net-work of second phase was completely dissolved, and only remained some Mg-Y-Gd cuboid-shaped compound. The optimum solid-solution condition of Mg-10Y-5Gd-0.5Zr is 535℃/16 h. And the optimum solid-solution of Mg-10Y-5Gd-2Zn-0.5Zr is also 535℃/16 h. The peak hardness was obtained at about 225℃for 24h.
     3. The strengths of cast-T6 Mg-10Y-5Gd-2Zn-0.5Zr decline very slowly from room temperature to 250℃. However, at the During the room temperature to 250℃or more, the strengths steeply decrease. The instant tensile strengths of cast-T6 Mg-10Y-5Gd-xZn-0.5Zr alloys are remarkable superior to those of WE54. A very high strength of cast-T6 Mg-10Y-5Gd-2Zn-0.5Zr alloy with UTS=326MPa, and UTS=261MPa which is at 250℃and 300℃are remarkable superior to those of WE54.
     4.The present work has investigated theβ′precipitates are formed within grains when the alloy is aged at 225℃for 24h. The globular shapeβ′precipitates are formed in the under aged state, which is corresponding to the highest strength of the alloy. The precipitates coalesce, and the plate shapeβ′precipitates are formed lying in the {2110 } habit planes with increasing ageing time. This intermediate phaseβ′has a base-centered orthorhombic structure (a=0.640nm, b=2.223nm,c=0.521nm), the orientation relationship betweenβ′and the matrix phase is: (100)β′∥( 2110 )a, (001)β′∥(0001)a, [010]β′∥[1010]a. Some Mg12ZnY phases was remain on the grain boundary and the 6H′phase was not changed in the grain.
     5. The research was focused on the creep properties of Mg-10Y-5Gd-xZn-0.5Zr alloys at high temperature. It is found that the creep resistance was very good when temperature is lower 250℃and the stress is lower 80MPa; but when the temperature is higher than 300℃and the stress is higher than 80MP, the creep properties was serious deteriorated. So the cast-T6 Mg-10Y-5Gd-2Zn-0.5Zr can not be used on above 300℃. In all the Mg-Y-Gd-Zn-Zr alloys, the content of 10-12 wt.% Y alloys have excellent higher temperature creep properties.
     6. Influences of Zn addition on microstructure and mechanical properties at room and elevated temperatures up to 300℃have been investigated. It can be seen that: 2% element Zn had remarkable improved the creep properties of the Mg-10Y-5Gd-0.5Zr alloy at room and elevated temperatures. For the cast-T6 Mg-10Y-5Gd-2Zn-0.5Zr alloy, at 300℃/50MPa, the steady-state creep rate is 6.60×10-8s-1 and the creep strain after the creep life of 100 hours is 1.76%. The stress exponent at 250℃and 300℃is 2.3 and 5.1, and the apparent activation energy value is 191.9KJ/mol and 216.4KJ/mol when stress was 30MPa and 50MPa.
     7. Furthermore, the LPSO phase increased after crept at 300℃/50MPa for 100 hours , the quantity and density also increased which is the first time discovered . The purpose of the present work is to provide theoretical and practical results for the development of high-performance magnesium-heavy rare earth alloys. The Mg12ZnY phase was still at the grain boundary, its structure was not changed. Also it can be seen that the large numbers of plate shape equilibriumβphases with bcc crystal structure precipitate along the {1010 } habit planes in the grain.
     8. Through the analysis of creep data and the TEM results, it is found that zinc element can induce the stacking fault energy debased, and the 6H’-LPSO structure within grains prevent the dislocation movement. During the creep test, some basal dislocation changed non-basal dislocation. The 6H’-LPSO structure brought out serious crystal lattice aberration which hampered the dislocation movement, So the creep properties were increased.
     9. It is found that the large numbers of plate shape equilibriumβphases hampered the dislocation movement. The inhibition of the basal ship in the Mg-Y-Gd-Zn-Zr alloy is due to the formation of Mg12ZnY phase and the LPSO structure. The deformation twin is deflected in the formation of Mg12ZnY phase and the LPSO structure. The base plane trace of LPSO phase is inclined with constant angle about 4.1°. The stacking fault energy of Mg-Y-Gd-Zn-Zr alloy is quite low due to high Y and Zn additions. During the deformation, the stacking faults can be easily introduced in and the dislocation would be accumulated at the front of stacking fault region.
     10. The creep deformation mechanisms of Mg-Y-Gd-Zn-Zr alloy were investigated systematically by TEM. According to the results, dislocation slip and the grain boundary slip were the main deformation mechanisms. The Mg12ZnY phase pins up the grain boundary and barrage the grain boundary movement. The LPSO structure andβphases contribute to the strengthening of the alloys and hampered the dislocation movement.
引文
[1]吕宜振,翟春泉,王渠东等,压铸镁合金的应用现状及发展趋势,铸造, 1998, 12, 50-13
    [2]孙伯勤,镁合金压铸件在汽车行业中的巨大应用潜力,特种铸造及有色合金, 1998, 3, 40-41
    [3]钟皓,刘培英,周铁涛,镁及镁合金在航空航天中的应用及前景,航空工程与维修, 2002, 4, 41-42
    [4]邓玉勇,朱江,李立,新型金属材料镁合金的发展前景分析,化工技术经济, 2002, 20(4), 9-13
    [5] S. Schumann, H. Friedrich, Current and future use of magnesium in the automobile industry, Mater. Sci. Forum, 2003,419-422 (1), 51-56
    [6]陈振华,镁合金,北京,化学工业出版社,2004
    [7]王渠东,丁文江,镁合金及其成形技术的国内外动态与发展,世界科技研究与发展,2004,26(3),39-46
    [8]王渠东,丁文江,镁合金研究开发与展望,世界有色金属,2004,(7),8-11
    [9]王渠东,曾小勤,吕宜振,丁文江,高温铸造镁合金的研究与应用,材料导报,2000,14(3),21-23
    [10]王渠东,吕宜振,曾小勤,稀土在铸造镁合金的应用,特种铸造及有色合金,1999,(1),40-43
    [11]李大全,Mg-Y-Sm-Zr系镁合金组织与性能研究,[博士论文],上海,上海交通大学,2008
    [12]闫蕴琪,张延杰,邓炬等,耐热镁合金的研究现状及发展方向,稀有金属材料与工程,2004,33(6),561-565
    [13]张静,潘复生,李忠盛,耐热镁合金材料的研究和应用现状,铸造,2004,53(10),770-774
    [14]刘光华,稀土材料与应用技术,北京,化学工业出版社,2005
    [15] H. Okamoto. Mg (Magnesium), Phase diagrams of binary magnesium alloys. Nayeb-Hashemi and Clark J B, Ed., ASM International, 1988
    [16] Drits M E, Rokhlin L L, Nikitina N I. Izv, Akad.Nauk SSSR, Met.,1983,5:213-215
    [17] Haughton J.L., Magnesium and its alloys, London: HMSO, 1937
    [18] Leontis T. E. and Busk R. S., GBPatent690783, 1953
    [19] Scanders N. T., Mater. Sci. Tech., 1988, 4, 157
    [20] Ahmed M., Lorimear G. W., Lyon P., Pilkington R., Magnesium Alloys and Their Application (Eds: Mordike B. L., Hehmann F.), DGM Informationsgesellschaft, Verlag, April 1992, 251-257
    [21] Apps P. J., Lorimer G. W., Karimzadeh H. and King J. F., Precipitation Processes in Magnesium-Heavy Rare Earth Alloys during Ageing at 300℃, Magnesium Alloys and Their Applications, edited by K. U. Kainer, New York, 2000, 53-58
    [22] Nie J. F. and Muddle B. C., Characterisation of strengthening precipitation phase in a Mg-Y-Nd alloy, Acta Mater, 2000, 48, 1691-1703
    [23] Lorimer G. W., in Proceeding of the London Conference on Magnesium Technology, London, The institute of metals, 1986, 47-53
    [24] Unsworth W. and Kingm J. F., in Proceeding of the London Conference on Magnesium Technology, London, The institute of metals, 1986, 25
    [25] Nie J. F. and Muddle B. C., Precipitation in magnesium alloy WE54 during isothermal ageing at 250°C, Scripta Mater, 1999, 40, 1089-1094
    [26] Nie J. F., Precipitation and Strengthening in Selected Magnesium Alloys, Magnesium Technology 2002, TMS, 2002, 103-110
    [27] Eifert A. J., Thomas J. P. and Rateick R. G., Influence of anodization on the fatigue life of WE43A-T6 magnesium, Scripta. Mater., 1999, 40(8), 929-935
    [28] Lukin V. I., Effect of alloying elements Sc, Mn and Zr on weldability of alloys of the Al-Mg-Sc-Mn-Zr system, Welding International, 1996, 10(12), 987
    [29]卢志文,汪凌云,范永革,黄光胜,新型抗蠕变镁合金的研究,中国镁业, 2002, 40-43
    [30] Payhe R., Journal of the Japan Institute of Metals, 1959, 58, 417
    [31] Buch F. V., Lietzau J. L., Mordike B. L., et al., Development of Mg-Sc-Mn alloys, Materials Science and Engineering A, 1999, 263, 1-7
    [32] Hilditch. and Pekguleryuz M. O., Cast magnesium alloys for elevated temperature applications, Journal of Materials Science, 1994, 29, 5259-5271
    [33]沙桂英,韩恩厚,于涛等,Mg-Y-Nd合金的蠕变行为及其微观机制,金属学报,2003,39(10):1025-1030
    [34] Mordike B L. Creep2resistant magnesium alloys [J] . Mater Sci Eng A , 2002 , 224 : 103-112
    [35] Suzuki M, Kimura T, Koike J , et al. Effects of zinc on creep behavior and deformation substructures of Mg2Y alloy [J ] . Mater Sci Forum, 2003, 419 422 : 473-478
    [36] Suzuki M, Kimura T, Koike J , et al. Strengthening effect of Zn in heat resistant Mg2Y2Zn solid solution alloys [ J ] .Scripta Mater , 2003 , 48 : 997-1002
    [37] Suzuki M, Kimura T, Koike J, etal. Creep behavior and deformation substructures of Mg2Y alloy containing dilutecontent of zinc [J]. Mater Sci Forum, 2003, 432 :593-598
    [38] R. Ciach, Advanced Light Alloys and Composites, 1998, 443-448
    [39] Rokhlin, L.L.; Nikitina, N.I.; Dobatkina, T.V., Solid-state phase equilibria in the Mg corner of the Mg-Gd-Sm phase diagram, Journal of Alloys and Compounds Volume: 1996, 239. 209-213
    [40] Rokhlin, L.L.; Nikitina, N.I., Recovery after ageing of Mg-Y and Mg-Gd alloys, Journal of Alloys and Compounds Volume1998, 279:166-170
    [41] Y.Okubo, M. Shiono, S.Kamado,Y.Kojima, Improvement of tensile properties of Mg-Gd-Y-Zn-Zr alloys containing long period stacking order structure by optimizing alloy compositions, Asian Symposium on Magnesium alloys,2005,43-46
    [42] L.Peng, S.He, J.-F.Nie, S.Gao, X. Zeng, W.Ding, TEM observation of the precipitates in Mg-10Gd-3Y-0.4Zr alloy during isothermal ageing at 250℃, Asian Symposium on Magnesium alloys,2005,55-60
    [43] T.Ozaki, Y.Kuroki, M.Abe, K.Yamada, S.Kamado, Y.Kojima, M.Sasajima, The relationship between mechanical propertie and microstructure of Mg-Gd-Y-Zn-Zr alloy castings, Asian Symposium on Magnesium alloys, 2005, 113-116
    [44] K.Yamada, Y.Okubo, S.Kamado, Y.Kojima, Two-step aging behavior in Mg-Gd-Y-Zr alloys, Asian Symposium on Magnesium alloys, 2005, 195-198
    [45] Yuuji N , Takuhiro N , Masao K. Phase diagrams of magnesium-rich portion , aging characteristics and tensile properties of Mg-heavy rare earth metal (Gd , Dy)-Nd alloys[J ] . Japan Ins of Light Metals, 1995 , 45(2) : 276 281
    [46] B.L.Mordike, Creep-resistant Magnesium Alloys, Mater Sci Eng A, 2002,324:103-112
    [47] Daquan Li, Qudong Wang, Wenjiang Ding,Characterization of phases in Mg-4Y-4Sm-0.5Zr alloy processed by heat treatment, Materials Science and Engineering A, 2006, 428, 295-300
    [48] Daquan Li, Qudong Wang, Wenjiang Ding, Effects of heat treatments on Microstructure and mechanical properties of Mg-4Y-4Sm-0.5Zr alloy, Materials Science and Engineering A, 2007, 448, 165-170
    [49] Daquan Li, Qudong Wang, Wenjiang Ding, Precipitate phases in the Mg-4Y-4Sm-0.5Zr alloy, Journal of Alloys and Compounds, 2007, (In press)
    [50] Negishi Y., Iwasawa S., Kamado S., Kojima Y. and Ninoniya R., Effect of Yttrium and Neodymium Additions on Aging Characteristics and High Temperature Tensile Properties of Mg-10wt.%Gd and Mg-10wt.%Dy Alloys, Journal of Japan Institute of Light Metals, 1994, 44(10), 549-554
    [51] Dehui Li, Jie Dong, Xiaoqin Zeng, Chen Lu, Wenjiang Ding, Characterization of precipitate phases in a Mg–Dy–Gd–Nd alloy, Journal of Alloys and Compounds, 2007, 439, 254-257
    [52] D.H. Li, J. Dong, X.Q. Zeng, C. Lu, W.J. Ding, Characterization ofβ″precipitate phase in a Mg–Dy–Gd–Nd alloy, Materials Characterization, 2007, 58, 1025-1028
    [53] X. Q. Zeng, D. H. Li, J. Dong, C. Lu, W. J. Ding, Effect of solution treatment and extrusion on evolution of microstructure in a Mg–12Dy–3Nd–0.4Zr alloy, Journal of Alloys and Compounds, 2007, In Press
    [54] Li De-hui, DONG Jie, Zeng Xiao-qin, Lu Chen, Ding Wen-jiang, Age hardening characteristics and mechanical properties of Mg-3.5Dy-4.0Gd-3.1Nd-0.4Zr, Transactions of Nonferrous Metals Society of China, 2006, 16(z3), 1694-1697
    [55] B.L.Mordike, Creep-resistant Magnesium Alloys, Mater Sci Eng A, 2002,324:103-112
    [56] B.L.Mordike, Develop of Highly Creep Resistant Magnesium Alloys, 2001,117:391-394
    [57] von Buch F , Lietzau J , Mordike B L , et al. Development of Mg-Sc-Mn alloys[J ] .Mater Sci Eng A , 1999 , 263 : 1 7
    [58] Kevorkov D., Schmid-Fetzer R., Magnesium Alloy Development Guided by Thermodynamic Caculations. In: Hryn J,Magnesium Technology. TMS. Warrendale: 2001. 105-112
    [59] Stulikova I., Smola B., Buch F. V., et al, Development of Creep Resistant Mg-Gd-Sc Alloys with Low Sc Content, Mat.–Wiss. U. Werkstofftech, 2001, 20-24
    [60] Smola B., Stulikova I., Pelcova J., Mordike B. L., Significance of Stable and Metastable Phase in High Temperature Creep Resistant Magnesium-Rare Earth Base Alloys, Journal of Alloys and Compounds, 2004, 378, 196-201
    [61]张松、袁广银、卢晨等,长周期结构增强镁合金的研究进展,材料导报,2008,22(2),61-63
    [62] Yoshihito Kawamura, Kentaro Hayashi, Akihisa Inoue and Tsuyoshi Masumoto, Rapidly solidified powder metallurgy Mg97Zn1Y2 alloys with excellent tensile yield strength above 600MPa [J]. Materials Transaction Vol.42 (2001), p.1172-1176
    [63] Akihisa Inoue, Yoshihito Kawamura, Mitsuhide Matsushita, Kentaro Hayashi, Junichi Koike. Novel hexagonal structure and ultrahigh strength of magnesium solid solution in the Mg-Zn-Y system[J]. Materials Research Society Vol.16 (2001), p.1894-1900
    [64] E.Abe, Y.Kawamura, K.Hayashi, A.Inoue, Long-period ordered structure in a high-strength nanocrystalline Mg-1at%Zn-21at%Y alloy studied by atomic-resolution Z-contrast STEM [J], Acta Materialia. 2002, 50, 3845-3857
    [65] Akihisa Inoue, Mitsuhide Matsushita, Yoshihito Kawamura, Kenji Amiya, Kentaro Hayashi and Junich Koike, Novel hexagonal structure of ultra-high strength magnesium-based alloys [J]. Materials Transaction, 2002, 43,580-584
    [66] D.H.Ping, K.Hono, Y.Kawamura and A.Inoue, Local chemical of a nanocrystalline high-stength Mg97Zn1Y2 alloy [J]. Philosophical Magazine Letters,2002,l82,543-551
    [67] Kenji Amiya, Tetsu Ohsuna and Akihisa Inoue, Long-period hexagonal structure in melt-spun Mg97Ln2Zn1 (Ln= Lanthanide metal) alloys [J], Materials Transaction,2003, 44,2151-2156
    [68] Minoru Nishida, Yoshihito Kawamura, Takateru Yamamuro, Formation process of unique microstructure in rapid solidified Mg97Zn1Y2 alloy [J], Materials Science Engineering A. 2004,1217-1223
    [69] T.Itoi, T.Seimiya, Y.Kawamura, M.Hirohashi, Longer period stacking structures observed in Mg97Zn1Y2 alloy [J], Script Materialia. 2004, 51, 107-111
    [70] Z.P.Luo, S.Q.Zhang, High-resolution electron microscopy on the X-Mg12ZnY phase in a high strength Mg-Zn-Zr-Y magnesium alloy[J], Journal of Materials Science Letters. 2000, 19, 813-815
    [71] Yasumasa Chino, Mamoru Mabuchi, Shigehiro Hagiwara, Novel equilibrium two phase Mg alloy with the long-period ordered structure [J], Script Material, 2004, 51, 711-714
    [72] M.matsuda, S.Ii, Y.Kawamura, Y.Ikuhara, M.Nishida, Variation of long-period stacking order structures in rapidly solidified Mg97ZnY2 alloy [J], Materials Science Engineering A. 2004, 269-274
    [73] A.Data, U.Ramamurty, S.Ranganathan, U.V.Waghmare, Crystal structure of a Mg-Zn-Y alloy: A first-principle study [J], Computational Materials Science, 2006, 37, 69-73
    [74] Bin Chen, Dongliang Lin, Xiaoqin Zeng, Chen Lu, Microstructure and mechanical properties of ultrafine grained Mg97ZnY2 alloy processed by equal channel angular pressing [J], Journal of Alloys and Compounds, 2007, 440, 94-100
    [75] Y.Kawamura,Yoshihito Kawamura, High strength Mg-Zn-Y alloys with LPSO structure[J], Magnesium Technology 2005, 499-502
    [76] Makoto Matsuura, Masaki Sakurai, Kenji Amiya, Akihisa Inoue, Local structure around Zn and Y in the melt-quenched Mg97Zn1Y2 ribbon[J], Journal of Alloys and Compounds ,2003, 353, 240-245
    [77] Ding W. J., Wu Y. J., Peng L. M., et al., Formation of 14H-type long period stacking ordered structure in the as-cast and solid-solution-treated Mg-Gd-Zn-Zr alloys, J. Mater. Res., 2009, 24(5): 1842-1854
    [78] Wu Y. J., X. Q. Zeng, D. L. Lin, et al., The microstructure evolution with lamellar 14H-type LPSO structure in an Mg96.5Gd2.5Zn1 alloy during solid solution heat treatment at 773K, J. Alloys Compd., 2008, doi:10.1016/j.jallcom.2008.10.126
    [79] Wu Y. J., Lin D. L., Zeng X. Q., et al., Formation of a lamellar 14H-type long period stackingordered structure in an as-cast Mg-Gd-Zn-Zr alloy, J. Mater. Sci., 2009, 44:1607-1612
    [80] Michiaki Yamasaki, Minami Sasaki, Masahiko Nishijima, Kenji Hiraga, Yoshihito Kawamura, Formation of 14H long period stacking ordered structure and profuse stacking faults in Mg-Zn-Gd alloys during isothermal aging at high temperature[J], Acta Material, 2007, 55 ,6798-6805
    [81] M.Suzuki, T.Kimura, J.Koike, K.Maruyama, Strengthening effect of Zn in heat resistant Mg-Y-Zn solid solution alloys, Script Mater, 2003, 48, 997-1002.
    [82]王倩,李青春,常国威,快速凝固技术的发展现状与展望,辽宁工学院学报,2003,23(5):40
    [83]陈吉华,陈振华,严红革,快速凝固镁合金的研究进展,化工进展,2004,23(8):816
    [84]刘静远,张振忠,马立群,沈晓冬,快速凝固Mg-Zn-Y合金薄带的制备及凝固组织特征,铸造技术,2006,27(3):258
    [85]郑水云,徐春杰,张忠明,郭学锋,孟令楠,快速凝固Mg94.6 Zn4.8 Y0.6镁合金薄带的组织与性能,铸造技术,2006,27(1):39
    [86]熊玉华,李培杰,曾大本,大块非晶合金的研究进展,材料工程,2002,10:43
    [87]贾彬彬,张文丛,夏龙,王卫卫,非晶态合金制备方法,轻合金加工技术,2006,34:20
    [88]《有色金属及其热处理》编写组,有色金属及其热处理,国际工业出版社,1981
    [89]布鲁克斯,有色合金的热处理、组织与性能,冶金工业出版社,1988
    [90]上海机械学会热处理分会,有色金属热处理,上海科学技术文献出版社,1983
    [91]张宝昌,有色金属及其热处理,西北工业大学出版社,1993
    [92] M.M.Avedesian, H.Baker. Magnesium and Magnesium Alloys. ASM International, OH: Metal Park, 1999
    [93]郑开云,Mg-Gd-Nd-Zr系镁合金组织与性能研究,[博士论文],上海,上海交通大学,2008
    [94] B. L. Mordike, T. Ebert. Magnesium: properties-applicationspotential. Mater. Sci. Eng. A, 2001,302: 37-45
    [95] A. Luo, M.O. Pekguleryuz. Review cast magnesium alloys for elevated temperature applications. Journal of Materials Science, 1994, 29: 5259-5271
    [96] G. Nussbaum. Strengthening mechanisms in the rapidly solidified AZ91 magnesium alloy, Scr. Metall., 1989, 23,1079-1084
    [97] B.Q. Han, D.C. Dunand, Microstructure and mechanical properties of magnesium containing high volume fractions of yttria dispersoids. Mater.Sci. Eng. A, 2000, 277, 297-304
    [98]К.Н.马图哈.材料科学与技术丛书——非铁合金的结构与性能,丁道云,等译.北京:科学出版社, 1999
    [99] Blum W., Eisenlohr P. and Breutinger F., Understanding creep - a review, Metall. Mater. Trans. A, 2002, 33A, 291-303
    [100]冯端等著,金属物理学,第三卷:金属力学性质,北京,科学出版社,1999,561-595
    [101] Dieter G. E., Mechanical Metallurgy, 3rd ed., McGraw-Hall Book Co., New York, NY, 1986, 432-457
    [102] Mihriban O. Pekguleryuz, A. Arslan Kaya, Creep resistant magnesium alloys for powertrain applications, Advanced Engineering Materials, 2003, 5, 866-878
    [103] B.L. Mordike, Creep-resistant magnesium alloys, Materials Science and Engineering A, 2002, 324, 103-112
    [104]刘满平,Mg-Al-Ca合金微观组织、力学性能和蠕变行为研究,[博士论文],上海,上海交通大学,2003
    [105] M.H. Yoo, Slip, twinning, and fracture in HCP metals. Metall. Trans. A, 1981, 12A: 409-418
    [106]A.Couret,D.Caillard, Prismatic slip in beryllium.I. The controlling mechanism at the peak temperature. Phil. Mag. A, 1989, 59: 783-800
    [107] H.Siethoff, K. Ahlborn, Steady-state Deformation of The HCP Metals at High and Intermediate Temperatures,Z. Metallkd, 1985, 76(9): 627-634
    [108] V. Vitek, M. Igarashi, Core structure of 1/3[1120 ] screw dislocations on basal and prismatic planes in h.c.p. metals, An atomistic study. Phil. Mag. A, 1991, 63: 1059-1075
    [109]何上明,Mg-Gd-Y-Zr合金微观组织演变、性能和断裂行为研究,[博士论文],上海,上海交通大学,2007
    [110]陈振华,耐热镁合金,北京,化学工业出版社,2007
    [1] Luo Zhiping, Zhang Shaoqing, Tang Yali, et al, Microstructure of Mg-Zn-Zr-RE alloys with high RE and low Zn contents, Journal of Alloys and Compounds 1994, 209. 275-278
    [2] Luo Z .P., Zhang S.Q., High-resolution electron microscopy on the X-Mg12ZnY phase in a high strength Mg-Zn-Zr-Y magnesium alloy, Journal of Materials Science Letters, 2000, 19, 813-815
    [3]陈彬,高强度Mg-Y-Zn镁合金的研究,[博士论文],上海,上海交通大学,2007
    [4]史菲,郭学锋,张忠明,普通凝固Mg2Zn2Y合金中的准晶相,中国有色金属学报, 2004, 14 (1), 112-116
    [5] Singh A., Tsai A.P., On the cubic W phase and its relationship to the icosahedra phase in Mg–Zn–Y alloys, Scripta Material, 2003, 49, 143-148
    [6]罗治平,张少卿,魄国等,低Zn、高RE含量Mg-Zn-Zr-RE合金的相组成,航空学报, 1994, l5(7), 860-865
    [7] Ju Yeon Lee, Do Hyung Kim, Hyun Kyu Lim,et al, Effect of Zn/Y ratio on microstructure and mechanical properties of Mg-Zn-Y alloys, Metal Letters 2005, 59, 3801-3805
    [8] Huang. Z. H, Liang. S. M, Chen. R. S, et al, Solidification pathways and constituent phases of Mg-Zn-Y-Zr alloys, (doi:10.1016/j.jallcom.2008.01.034)
    [9] T.Itoi, T.Seimiya, Y.Kawamura, M.Hirohashi, Longer period stacking structures observed in Mg97Zn1Y2 alloy [J], Script Materialia. 2004, 51, 107-111.
    [10] E.Abe, Y.Kawamura, K.Hayashi, A.Inoue, Long-period ordered structure in a high-strength nanocrystalline Mg-1at%Zn-2at%Y alloy studied by atomic-resolution Z-constrast STEM, Acta Materialia , 2002,50, 3845-3857
    [11] Akihisa Inoue, Yoshihito Kawamura, Mitsuhide Matsushita, et al. Novel hexagonal structure and ultrahigh strength of magnesium solid solution in the Mg-Zn-Y system, Materials Research Society, 2001,16, 1894-1900.
    [12] A.Data, U.Ramamurty, S.Ranganathan, U.V.Waghmare, Crystal structure of a Mg-Zn-Y alloy: A first-principle study, Computational Materials Science, 2006, 37, 69-73.
    [13]郭可信,高分辨电子显微学在固体科学中的应用,北京,科学出版社,1985
    [14]唐仁正,物理冶金基础,北京,冶金工业出版社,1997
    [15]付建强,Mg97ZnY2中长周期堆垛结构的电子显微学研究,[硕士论文],北京,北京工业大学,2007.
    [16] Kenji Amiya, Tetsu Ohsuna and Akihisa Inoue, Long-period hexagonal structure in melt-spunMg97Ln2Zn1 (Ln= Lanthanide metal) alloys [J], Materials Transaction,2003, 44,2151-2156.
    [17] Akihisa Inoue, Mitsuhide Matsushita, Yoshihito Kawamura, Kenji Amiya, Kentaro Hayashi and Junich Koike, Novel hexagonal structure of ultra-high strength magnesium-based alloys [J]. Materials Transaction. 2002, 43,580-584.
    [18] Yoshihito Kawamura, Takayuki Kasahara, et al, Elevate temperature Mg97Y2Cu alloy with long period ordered structure, Script Material, 2006, 55, 453-456
    [1]陈振华,镁合金,北京,化学工业出版社,2004
    [2] S. Kamado, Y. Kojima, R. Ninomiya, K. Kubota. Aging Characteristics and High Temperature Tensile Properties of Magnesium Alloys Containing Heavy Rare Earth Elements, In: G.W. Lorimer(Ed.), Proceedings of the 3rd International Magnesium Conference, Manchester, UK, 1996; Institute of Materials, 1997: 327-342
    [3] I.A. Anyanwu, S. Kamado, Y. Kojima. Aging characteristics and high temperature tensile properties of Mg-Gd-Y-Zr alloys Source: Materials Transactions, 2001, 42(7): 1206-1211
    [4] I.A. Anyanwu, S. Kamado, Y. Kojima. Creep properties of Mg-Gd-Y-Zr alloys, Materials Transactions, 2001, 42(7): 1212-1218
    [5]何上明,Mg-Gd-Y-Zr(-Ca)合金的微观组织演变、性能和断裂行为研究,[博士论文],上海,上海交通大学,2007
    [6]李大全,Mg-Y-Sm-Zr系镁合金组织性能研究,[博士论文],上海,上海交通大学,2008
    [7] GAO Yan, WANG Qudong, GU Jinhai , ZHAO Yang , TONG Yan , Behavior of Mg-15Gd-5Y-0.5Zr alloy during solution heat treatment from 500℃to 540℃, Materials Science and Engineering A,2007,459,117-123
    [8] GAO Yan, WANG Qudong, GU Jinhai , ZHAO Yang , TONG Yan,Effects of heat treatments on microstructure and mechanical properties of Mg-15Gd-5Y-0.5Zr alloy,Journal of Rare Earth, 2008, 26,298-302
    [9] GAO Yan, WANG Qudong, GU Jinhai , ZHAO Yang , TONG Yan, Mechniacl properties and creep behavior of Mg-Gd-Yalloys, Materials Science Forum, 2007,546,163-166
    [10]GAO Yan, WANG Qudong, GU Jinhai , ZHAO Yang , Effects of heat treatments on tensile properties and Creep Behavior of Mg-Y-Gd-Zr Alloys, Magnesium Technology 2009 (TMS2009)
    [11] ZHAO Yang, WANG Qudong, GU Jinhai, GAO Yan, Mechniacl properties and creep behavior of Mg-Gd-Sm alloys, Materials Science Forum,2007,546,159-162
    [12] Y.Z.Lü, Q.D.Wang, X.Q.Zeng, Y.P.Zhu, W.J.Ding, Behavior of Mg-6Al-xSi alloys during solution heat treatment at 420℃, Mater.Sci.Eng.A301(2001) 255-258
    [13] Manping Liu, Qudong Wang, Xiaoqin Zeng, Yinhong Wei, Yanping Zhu, Chen Lu, Development of microstructure in solution heat treated Mg-5Al-xCa alloys, Zeitschrift für Metallkunde, 2003, 94(8), 886-891
    [14]高岩,王渠东,赵阳,童炎, Mg-Gd-Y合金的机械性能与蠕变行为研究,“面向未来武器装备的高性能镁合金基础研究”项目学术研讨会议论文集:106-111,2006年11月,宁波
    [15]童炎,王渠东,高岩,顾金海,Mg-13Gd-3Y-0.4Zr合金热处理工艺优化及其性能,轻金属,2007,3,45-49
    [16]宋余九,金属材料的设计选用预测,北京,机械工业出版社, 1998
    [1]王群骄,有色金属热处理技术,北京,化学工业出版社,2008
    [2]上海市机械工程学会热处理分科学会,有色金属热处理,上海,机械工业出版社,1983
    [3] Sanchez C., Nussbaum G., Azavant P. and Octor H., Elevated temperature behaviour of rapidly solidified magnesium alloys containing rare earths, Mater. Sci. Eng. A, 1996, A221 48-57
    [4] Apps P. J., Lorimer G. W., Karimzadeh H. and King J. F., Precipitation Processes in Magnesium-Heavy Rare Earth Alloys during Ageing at 300℃, Magnesium Alloys and Their Applications, edited by Kainer K. U., New York, 2000, 53-58
    [5] Lorimer G. W., in Proceedings of the London Conference on Magnesium Technology, ed. Baker C., Lorimer G. W. and Unsworth W., p. 47, The Institute of Metals, London, U. K., 1986
    [6] Unsworth W. and Kingm J. F., in Proceeding of the London Conference on Magnesium Technology, London, The institute of metals, 1986, 25
    [7] Kamado S., Kojima Y., Ninomiya R. and Kubota K., Aging Characteristics and High Temperature Tensile Properties of Magnesium Alloys Containing Heavy Rare Earth Elements, Proceedings of the Third International magnesium Conference, Institute of Materials, Manchester, UK, 1997, 327-342
    [8] Negishi Y., Nishimura T., Iwasawa S., Kamado S., Kojima Y. and Ninoniya R., Aging Characteristics and Tensile Properties of Mg-Gd-Nd-Zr and Mg-Dy-Nd-Zr Alloys, Journal of Japan Institute of Light Metals, 1994, 44(10), 555-561
    [9] Neqishi Y., Nishimura T., Kiryuu M., Phase diagrams of magnesium-rich portion, aging characteristics and tensile properties of Mg-heavy rare earth metal alloy. Light Metal, 1995 , 45(2), 57-63
    [10] Kamado S., Kojima Y., Nishimura T., Ninomiya R. and Kubota K., Aging Characteristics and Mechanical Properties of Heat-Resistent Magnesium Alloys Containing Heavy Rare Earth Metals
    [11] Polmear I. J., Light alloys/metallurgy of the light metals, metallurgy and materials science, 3rd ed. 1995, 196–206
    [12] Lorimer G., Azari-Khosroshaki R., Ahmed M., In: Proceedings of the International Conference on Solid–Solid Phase Transformations. The Japan Institute of Metals 1999, 185–192
    [13] Hisa M., Barry J. C., Dunlop G. L., In: Proceedings of the Third International Magnesium Conference. London: The Institute of Materials 1997, 369–379
    [14] Ahmed M., Pilkington R., Lyon P., Lorimer G., In: Magnesium alloys and their applications:Proceedings volume. DGM Informationsgesellschaft 1992, 251–257
    [15] Azari-Khosroshashi R., In: Magnesium alloys and their applications: Proceedings volume. DGM Informationsgesellschaft 2000, 711–715
    [16] Hisa M., Barry J. C., Dunlop G. L., In: Proceedings of the Third International Magnesium Conference, London: The Institute of Materials, 1997, 369–79
    [17] Nie J. F. and Muddle B. C., Characterisation of strengthening precipitation phase in a Mg-Y-Nd alloy, Acta. Mater., 2000, 48, 1691-1703
    [18] Nie J. F. and Muddle B. C., Characterisation of strengthening precipitation phase in a Mg-Y-Nd alloy, Acta. Mater., 2000, 48, 1691-1703
    [19] Nie J. F. and Muddle B. C., Precipitation in magnesium alloy WE54 during isothermal ageing at 250°C, Scripta Mater, 1999, 40, 1089-1094
    [20] Antion C., Donnadieu P., Perrard F., Deschamps A., Tassin C., Pisch A., Hardening precipitation in a Mg-4Y-3RE alloy, Acta Materialia, 2003, 51, 5335-5348
    [21] Apps P. J., Karimzadeh H., King J. F., Lorimer G. W., Precipitation Reactions in Magnesium-rare Earth Alloys Containing Yttrium, Gadolinium or Dysprosium. Scripta Materialia, 2003, 48, 1023-1028
    [22] Apps P. J., Karimzadeh H., King J. F., Lorimer G. W., Phase compositions in magnesium-rare earth alloys containing yttrium, gadolinium or dysprosium, Scripta Materialia, 2003, 48, 475–481
    [23] Lorimer G. W., Apps P. J., Karimzadeh H. and King J. F., Improving the performance of Mg-rare earth alloys by the use of Gd or Dy additions, Materials Science Forum, 2003, 419-422, 279-284
    [24] Antion C., Donnadieu P., Perrard F., Deschamps A., Tassin C., Pisch A., Hardening precipitation in a Mg-4Y-3RE alloy, Acta Materialia, 2003, 51, 5335-5348
    [25]李大全,Mg-Y-Sm-Zr系镁合金组织性能研究,[博士论文],上海,上海交通大学,2008
    [26] Zhi Cheng Li, Hong Zhang, Lu Liu et al., Growth and morphology ofβphase in an Mg-Y-Nd alloy, Materials Letters, 2004, 58, 3021-3024
    [27] J.F. Nie, Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys, Scripta Materialia, 2003, 48, 1009-1015
    [28]陈振华,镁合金,北京,化学工业出版社,2004
    [29]何上明,Mg-Gd-Y-Zr(-Ca)合金的微观组织演变、性能和断裂行为研究,[博士论文],上海,上海交通大学,2007
    [30] D.Hull, D.J.Bacon, Introduction to Dislocations, 4th Edition, Butterworth-Heinemann, Oxford, UK, 2001,p.216
    [31] J.F.Nie, Effect of precipitate shape and orientation on dispersion strengthening in magnesium alloys, Scripta Materialia, 2003,48,1009-1015
    [32] A.J.Ardell, Precipitation hardening, Metall. Trans.A, 1985,16,2131-2165
    [33]刘平,康布熙,曹兴国等.快速凝固Cu-Cr合金时效析出的共格强化效应,金属学报, 1996, 35(6), 651-564
    [34]C.S. Jog., Sankarasubramanian R. and Abinandanan T.A., Symmetry-breaking transitions in equilibrium shapes of coherent precipitates, Journal of the Mechanics and Physics of Solids, 2000, 48, 2363–2389
    [35]Gerold V., Haberkovn H., On the Critical Resolved Shear Stress of Solid Solutions Containing Coherent Precipitates, Phys. Status. Solidi., 1966, 16, 675-684
    [36] Hanse N., Polycrystalline Strengthening, Metall. Trans., 1985, 16A, 2167-2190
    [37] Z.C. Li, Hong Zhang, L. Liu, Y.B. Xu. Growth and morphology ofβphase in an Mg–Y–Nd alloy. Materials Letters, 2004, 58: 3021-3024
    [38] I.J. Polmear. Light Alloys, 3rd ed., London: Arnold, 1995
    [39] S.M. Zhu, J.F. Nie. Serrated flow and tensile properties of a Mg-Y-Nd alloy. Scripta Mater., 2004,50: 51-55
    [40] M.Matsuda, S.Ii, Y.Kawamura, etc, Interaction between long period stacking order phase and deformation twin in rapidly solidified Mg97ZnY2 alloy, Materials Science and Engineering A, 2004,386,447-452
    [41] Mitsuhiro Matsuda, Shinji Anda, Dislocation Structure in Rapidly Solidified Mg97ZnY2 Alloy with Long Period Stacking Order Phase, Materials Transaction, 2005,46,361-364
    [42] Gerardo Garces, Maria Maeso, Iain Todd, Deformation behaviour in rapidly solidified Mg97ZnY2 alloy, doi:10.1016/j.jallcom.2006.06.009
    [1] S.R. Agnew, K.C. Liu, E.A. Kenik, and S. Viswanathan, Tensile and compressive creep behavior of die cast magnesium alloy AM60B, in, Howard I. Kaplan, John Hyrn, and Byron Clow, Magnesium Technology, TMS, Warrendale, PA, 2000, 285-290
    [2]洪鹤,田素贵,郭华,徐永波,胡壮麒, AZ31镁合金高温蠕变特征及组织演化,沈阳工业大学学报, 2003, 25(1), 23-27
    [3] R.W.K. Honeycombe, The plastic deformation of metals (second edition), London, Edard Arnold, 1984
    [4]平修二,金属材料的高温强度理论.设计,北京,科学出版社, 1983
    [5] M.Vogel, O.Kraft, E.Arzt, Creep of Mg-Zn-Al-Alloys, Magnesium alloys and their applications, 2000, 693-698
    [6] M.Regev, A.Rosen, M.Bamberger, Qualitative Model for Creep of AZ91D Magnesium Alloy, Metall. and Mater. Trans. A, 2001, 32, 1335-1345
    [7] S Spigarelli; M Regev; E Evangelista etc, Review of creep behavior of AZ91 magnesium alloy produced by different technologies, Materials Science and Technology, 2001, 17, 627-638
    [8] S.M. Zhu, B.L. Mordike, and J.F. Nie, Creep studies of MRI153 magnesium alloy castings, in, NR Neelameggham, HI Kaplan, BR Powell, Magnesium Technology, Warrendale, PA, 2005, 429-434
    [9] S.R.Agnew, S.Viswanathan, E.A.Payzant, Tensile and Compressive Creep Behavior of Magnesium Die Casting Alloys Containing Aluminum, in, K.U. Kainer, Magnesium Alloys and their Application, Weinheim, 2000, 687-692
    [10] Vagarali S. S. and Langdon T. G., Deformation mechanisms in h. c. p. metals at elevated temperatures–I. creep behavior of magnesium, Acta metall., 1981, 29, 1969-1982
    [11] Vagarali S. S. and Langdon T. G., Deformation mechanisms in h. c. p. metals at elevated temperatures–II. creep behavior of a Mg-0.8%Al solid solution alloy, Acta metall., 1982, 30, 1157-1170
    [12]王敏敏,Ti40阻燃钛合金蠕变行为研究,[硕士论文],沈阳,东北大学,2003
    [13]刘满平,Mg-Al-Ca合金微观组织、力学性能和蠕变行为研究,[博士论文],上海,上海交通大学,2003
    [14]袁广银,铋和锑对镁铝合金显微组织和力学性能的影响,[博士论文],南京,东南大学,1999
    [15]闵学刚,几种合金元素对改善AZ91合金显微组织和力学性能的作用的研究,[博士论文],南京,东南大学,2002
    [16] Alan A. Luo, Michael P. Balogh, Bob R. Powell, Creep and microstructure of Magnesium-Aluminum-Calcium Based Alloys, Metallurgical and Materials Transactions A, 2002, 33, 567-574
    [17] A.A. Luo, Recent magnesium alloy development for elevated temperature application, International Materials Reviews, 2004, 49, 13-30
    [18] Mihriban O. Pekguleryuz, A. Arslan Kaya, Creep resistant magnesium alloys for powertrain applications, Advanced Engineering Materials, 2003, 5, 866-878
    [19] Hidetoshi Somekawa, Kinji Hirai, Hiroyuki Watanabe et al., Dislocation creep behavior in Mg-Al-Zn alloys, Materials Science and Engineering A, 2005, 407, 53-61
    [20]刘勤,金属的超塑性,上海,上海交通大学出版社,1989
    [21] Mayumi Suzuki, Hiroyuki Sato, Kouichi Maruyama et al., Creep behavior and deformation microstructures of Mg-Y alloys at 550K, Materials Science and Engineering A, 1998, 252, 248-255
    [22] Mayumi Suzuki, Hiroyuki Sato, Kouichi Maruyama et al., Creep deformation behavior and dislocation substructures of Mg-Y binary alloys, Materials Science and Engineering A, 2001, 319-321, 751-755
    [23] J.G. Wang, L.M. Hsiung, T.G. Nieh et al., Creep of a heat treated Mg-4Y-3RE alloy, Materials Science and Engineering A, 2001, 315, 81-88
    [24] B.L. Mordike, Creep-resistant magnesium alloys, Materials Science and Engineering A, 2002, 324, 103-112
    [25] B.L. Mordike, Development of highly creep resistant magnesium alloys, Journal of Materials Processing Technology, 2001, (117), 391-394
    [26] B. Smola, I. Stulikova, J. Pelcova et al., Significance of stable and metastable phases in high temperature creep resistant magnesium-rare earth base alloys, Journal of Alloys and Compounds, 2004, 378, 196-201
    [27] P. Zhang, Creep behavior of the die-cast Mg-Al alloy AS21, Scripta Materialia, 2005, 52, 277-282
    [28] S. Spigarelli, M. Cabibbo, E. Evangelista et al., Analysis of the creep behavior of a thixoformed AZ91 magnesium alloy, Materials Science and Engineering A, 2000, 289, 172-181
    [29] O.A. Ruano, O.D. Sherby, J. Wadsworth et al., Diffusional creep and diffusion controlleddislocation creep and their relation to denuded zones in Mg-ZrH2 materials, Scripta Materialia, 1998, 38, 1307-1314
    [30] Hidetoshi Somekawa, Kinji Hirai, Hiroyuki Watanabe et al., Dislocation creep behavior in Mg-Al-Zn alloys, Materials Science and Engineering A, 2005, 407, 53-61
    [31]李大全,Mg-Y-Sm-Zr系合金组织性能研究,[博士论文],上海,上海交通大学,2008
    [32] B.L. Mordike. Creep-resistant magnesium alloys. Mater Sci Engineering A. 2002, 324: 103-112
    [33] J.G. Wang, L.M. Hsiung, T.G. Nieh, M. Mabuchi. Creep of a heat treated Mg-4Y-3RE alloy, Mater Sci Engineering A. 2001, 315: 81-88
    [34]何上明,Mg-Gd-Y-Zr(-Ca)合金的微观组织演变、性能和断裂行为研究,[博士论文],上海,上海交通大学,2007
    [35] M.Socjusz-Podosek, L.Litynska, Effect of yttrium on structure and mechanical properties of Mg alloys. Materials Chemistry and Physics, 2003, 80:472-475
    [36] Luo Zhiping, Zhang Shaoqing, Tang Yali etc, Microstructures of Mg-Zn-Zr-RE alloys with high RE and low Zn contents, Journal of Alloys and Compounds,1994, 209: 275-278
    [37] G..W. Lorimer. Structure-property relationships in cast magnesium alloys, In: Proceedings Magnesium Technology, ed. by G..W Lorimer, London: Institute of Metals, 1986, 47-53
    [38] S. Kamado, Y. Kojima, R. Ninomiya, K. Kubota. Aging Characteristics and High Temperature Tensile Properties of Magnesium Alloys Containing Heavy Rare Earth Elements, In: G.W. Lorimer(Ed.), Proceedings of the 3rd International Magnesium Conference, Manchester, UK, 1996; Institute of Materials, 1997: 327-342
    [39]赵鹏,Mg-Al基耐热镁组织、性能及其蠕变行为的研究,[博士论文],上海,上海交通大学,2007
    [40]林明通,复相陶瓷高温蠕变研究,[博士论文],上海,中国科学院上海硅酸盐研究所,2002
    [41] Hermann Riedel, Fracture at high temperatures, Berlin Heidberg, Springer-Verlag, 1987
    [42] Stiegler, J.O., Farrell, K., Loh, B.T.M., McCoy, H.E., Nature of creep cavities in tungsten. Trans. ASM Quart. 1967, 60 (3), 494-503
    [43] Chen, I.-W., Argon, A.S., Creep cavitation in 304 stainless steel, Acta Metall, 1981, 29 (7), 1321-1333
    [1]陈振华,耐热镁合金,北京,化学工业出版社, 2007
    [2]郑开云,Mg-Gd-Nd-Zr系镁合金组织与性能研究,[博士论文],上海,上海交通大学,2008
    [3]张俊善,材料的高温变形与断裂,北京,科学出版社,2007
    [4]陈彬,高强度Mg-Y-Zn镁合金研究,[博士论文],上海,上海交通大学,2007
    [5]哈富宽,金属力学性质的微观理论,北京,科学出版社,1983,184
    [6]赫尔D.,培根D. J.著,丁树声,李齐译,位错导论,北京,科学出版社,1990
    [7] Christian J. W. and Mahajan S., Deformation twinning, Progress in Materials Science, 39 (1995):1-157
    [8] Mahajan S. and Williams D. F., Deformation twinning in metals and alloys, Intl. Met. Rev., 1973, 18, 43-61
    [9] P.Zhang, B.Watzinger and W. Blum. Changes in microstructure and deformation resistance during creep of the die-cast Mg-Al-base alloy AZ91hp at intermediate temperatures up to 150℃, phys. stat. sol. A, 1999,175, 481-489
    [10]Myers M A,V hringer O,Lubarda V A, The onset of twining in metals: a constitutive description, Acta Mater, 2001, 49, 4025-4039
    [11] M.Matsuda, S.Ii, Y.Kawamura, etc, Interaction between long period stacking order phase and deformation twin in rapidly solidified Mg97ZnY2 alloy, Materials Science and Engineering A, 2004, 386, 447-452
    [12]刘满平,Mg-Al-Ca合金微观组织、力学性能和蠕变行为研究,[博士论文],上海,上海交通大学,2003
    [13]宋余九,金属的晶界与强度,西安,西安交通大学出版社,1998
    [14]李德辉,Mg-Dy-Nd-Gd系合金组织与性能研究,[博士论文],上海,上海交通大学,2007
    [15] Dargusch M S, Dunlop G L, Pettersen K. In Mordike B L, Kainer K U (Eds), Werkstoff-informations-gesellschaft, Frankfurt, Germany, 1998:277-282
    [16] B.Lmordike, P.Lukac. Proc.3rd International Magnesium conference, 10-11 April ,1996,Institute of M aterials, London,1997, P 419
    [17] S. Spigarell, Creep of a thixofm and heat treated AZ91 Mg-AI-Zn alloys, Scripta mater,20 00,42 :39 7-402
    [18] Mclean D, J.Australian Inst.Met,8 (1963 ) 45
    [19]Alan A. Luo and Bob R. Powell, Tensile and compressive creep of magnesium-aluminum-calciumbased alloys, Magnesium Technology 2001, Edited by J. Hryn,TMS( TheM inerals,M etal& M aterialsS ociety),20 01:137-144
    [20] Kassner M E, Perez-Prado M T, Five-Power-Lawer Creep in single Phase Metals and Alloys, Progress in Materials Science, 2001,45:1-102
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.