家庭服务机器人智能空间若干问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了实现移动机器人对家庭环境地图构建和自身的精确定位,利用智能空间的概念,可以将移动机器人同环境中的各种设备进行无线互连,扩展了移动机器人的感知能力,通过智能空间中的设备计算移动机器人携带传感器采集到的数据,减轻了移动机器人的负担。
     本文旨在以家庭环境为背景,构建智能空间,使得机器人能够快速准确地完成环境地图的构建和自身的精确定位。并在此前提下,进行路径规划,使移动机器人完成各项服务。主要研究内容如下:
     首先,给出了研究服务机器人的意义,介绍了智能空间这一新兴概念,并给出了智能空间构建的基本技术要求。在构建的智能空间下,利用图像处理的方法,得到二维环境地图。
     其次,对移动机器人的同时定位与建图技术进行了介绍,论述了该技术应用过程中所遇到的一些难点,给出了扩展卡尔曼滤波方法和Rao-Blackwellised粒子滤波方法解决移动机器人同时定位与建图的一般过程,通过将机器人同时定位与建图过程与智能空间技术相结合,采用了一种混合式的同时定位与建图方法,结合了Rao-Blackwellised粒子滤波和扩展卡尔曼滤波方法的优点,避免了两种方法的缺点,利用Rao-Blackwellised粒子滤波进行局部地图的创建,然后融合到全局地图中,通过与扩展卡尔曼滤波方法的仿真结果进行比较。
     最后,在智能空间构建地图的前提下,采用了人工势场法进行路径规划。该方法具有反应速度快,安全可靠的优点,可以保证移动机器人在环境中每个坐标点都有对应的运动方向,在家庭环境中,具有一定应用价值。
In order to make the mobile robot mapping and locate itself more accuracy, intelligent space should have flexibility and scalability so that the mobile robot can navigate easier.
     This paper is mainly aiming at home environment that is a dynamic and non-structured. We can treat the lab as a home, based on the lab, for the mobile robot, there are some technologies researched in the intelligent space as follows:
     First of all, this paper introduced the background of resarch and the concept of intelligent space, gave the reserch status at home and abroad in recent years. Besides, using the intelligent space technologies, we present that how to structure the intelligent sapce and give the basic elements. Based on it, we can get the 2d environment map.
     Second, in the intelligent space, mobile robot first needs to know the map, then based on the map, it can locate itself. This paper introduces Simultaneous localization and mapping technology, and gives some difficulties. Combining Simultaneous localization and mapping and intelligent sapce, the mobile robot can locate itself better, and estimated the map is more accuracy. We use a new SLAM algorithm, combining Rao-Blackwellised particle filter and Extended Kalman filter, we can use the advantages of two algorithms. Rao-Blackwellised particle filter produces the local map, which are saved into the intelligent space, and fused into EKF. Compared with EKF, we can avoid the weakness of two popular mapping strategies.
     Finally, based on the global map that is produced by intelligent space, the mobile robot can use artificial potential field achiveing motion palnning. The algorithm is safe and reliable. The mobile robot can move in every direction.
引文
[1]韩锐.未知环境下基于SLAM的移动机器人导航算法研究[D].武汉:武汉理工大学硕士学位论文, 2006: 1-2.
    [2]田国会,李晓磊,赵守鹏,等.家庭服务机器人智能空间技术研究与进展[J].山东大学学报(工学版), 2007, 37(5): 53-59.
    [3]王耀南.机器人智能控制工程[M].北京:科学出版社, 2004: 1-2.
    [4]王田苗,陈殿生,殷兰兰.辅助老年人生活的新模式和必要性[J].机器人技术与应用, 2010, 2(1): 2-5.
    [5]卜范骞.基于智能空间的服务机器人定位与构图技术研究[D].济南:山东大学硕士学位论文, 2008: 1-3.
    [6]赵守鹏.家庭服务机器人智能空间关键技术研究与设计[D].济南:山东大学硕士学位论文, 2007: 1-2.
    [7]李文锋.无线传感器网络与移动机器人控制[M].北京:科学出版社, 2009: 240-241.
    [8]齐伟.服务机器人智能空间的构建与实现[D].济南:山东建筑大学硕士学位论文, 2010: 2-3.
    [9] Brscic D, Sasaki T, Hashimoto H. Implementation of Mobile Robot Control in Intelligent Space[C]// SICE-ICASE International Joint Conference, October 18-21, 2006, Bexco, Busan, Korea: Inst. of Elec. and Elec. Eng. Computer Society, 2006: 1228-1233.
    [10] Brooks R A. Intelligent Room Project[C]// Proceedings of the 1997 2nd International Conference on Cognitive Technology, August 25-28, 1997, Fukushima, Japan, 1997: 271-278.
    [11] Yuanchun S, Weikai X, Guangyou X, et al. The Smart Classroom: Merging Technologies for Seamless Tele-education[J]. IEEE Pervasive Computing, 2003, 2(2): 47- 55.
    [12] Johanson B, Fox A, Winograd T. The Interactive Workspaces Project: Experiences with Ubiquitous Computing Rooms[J]. IEEE Pervasive Computing, 2002, 1(2): 67- 74.
    [13] Koch J, Wettach J, Bloch E, et al. Indoor Localisation of Humans, Objects, and Mobile Robots with RFID Infrastructure[C]// 7th International Conference on Hybrid Intelligent Systems, 2007: 271-276.
    [14] Brscic D, Sasaki T, Hashimoto H. Acting in Intelligent Space - Mobile Robot Control Based on Sensors Distributed in Space -[C]// 2007 IEEE/ASMEinternational conference on Advanced intelligent mechatronics, Zurich: Institute of Electrical and Electronics Engineers Inc, 2007: 1-6.
    [15] Wonpil Y, Jae-Yeong L, Young-Guk H, et al. Design and Implementation of a Ubiquitous Robotic Space[J]. IEEE Transactions on Automation Science and Engineering, 2009, 6(4): 633-640.
    [16] Bong K K, Tomokuni N, Ohara K, et al. Ubiquitous Localization and Mapping for Robots with Ambient Intelligence[C]// Proceedings of the 2006 IEEE/RSJ, International Conference on Intelligent Robots and Systems, October 9-15, 2006, Beijing, China, 2006: 4809-4814.
    [17] Lundh R, Karlsson L, Saffiotti A. Plan-Based Configuration of an Ecology of Robots[C]// 2007 IEEE International Conference on Robotics and Automation, April 10-14, 2007, Roman, Italy, 2007: 64-70.
    [18] Baker D I, McKee G T, Schenker P S. Network Robotics: a Framework for Dynamic Distributed Architectures[C]// Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, September 28- October 2, 2004, Sendai, Japan, 2004: 1768- 1773.
    [19] Gajeong-dong Y D. Wireless Localization Network for a Ubiquitous Robotic Space Background and Concept[C]// The 3rd International Conference on Ubiquitous Robots and Ambient Intelligence (URAI 2006), Jeju, Korea: Electronics and Telecommunication Research Institute (ETRI), 2006: 187-192.
    [20] Ahn H, Yu W, Lee J. Wireless Localization Network for Ubiquitous Robotic Space: Approaches and Experimental Test[C]// 16th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN, August 26-29, 2007, Jeju, Korea: Institute of Electrical and Electronics Engineers Inc, 2007: 481-486.
    [21] Joo-Ho L, Hashimoto H. Controlling Mobile Robots in Distributed Intelligent Sensor Network[J]. IEEE Transactions on Industrial Electronics, 2003, 50(5): 890- 902.
    [22] Smith R, Self M, Cheeseman P. Estimating uncertain spatial relationships in robotics[C]// 1987 IEEE International Conference on Robotics and Automation, 1987: 850- 850.
    [23] Gordon N J, Salmond D J, Smith A F M. Novel Approach to Nonlinear /Non-gaussian Bayesian State Estimation[J]. IEE Proceedings, Part F: Radar and Signal Processing, 1993, 140(2): 107-113.
    [24] Montemerlo M, Thrun S, Koller D, et al. FastSLAM: A factored solution to the simultaneous localization and mapping problem[C]// Proceedings of the National Conference on Artificial Intelligence, Edmonton, Alta, Canada, 2002: 593-598.
    [25] Thrun S, Fox D, Burgard W, et al. Robust Monte Carlo Localization for MobileRobots[J]. Artificial Intelligence, 2001, 128(1-2): 99-141.
    [26] Bar-Shalom Y, Fortmann T E. Tracking and Data Association[M]. Academic Press 1988: 20-30.
    [27] Bailey T, Durrant-Whyte H. Simultaneous Localization and Mapping (SLAM): part II State of the Art[J]. IEEE, Robotics & Automation Magazine, 2006, 13(3): 108-117.
    [28] Borenstein J, Koren Y. Real-time Obstacle Avoidance for Fast Mobile Robots in Cluttered Environments[C]// 1990 IEEE International Conference on Robotics and Automation, 1990: 572-577.
    [29] Khatib O. Real-time Obstacle Avoidance for Manipulators and Mobile Robots[C]// 1985 IEEE International Conference on Robotics and Automation, 1985: 500- 505.
    [30] Ulrich I, Borenstein J. VFH+: Reliable Obstacle Avoidance for Fast Mobile Robots[C]// 1998 IEEE International Conference on Robotics and Automation, 1998: 1572-1577.
    [31] Ulrich I, Borenstein J. VFH*: Local Obstacle Avoidance with Look-ahead Verification[C]// IEEE International Conference on Robotics and Automation, 2000: 2505-2511.
    [32] Fox D, Burgard W, Thrun S. The Dynamic Window Approach to Collision Avoidance[J]. IEEE Robotics & Automation Magazine, 1997, 4(1): 23-33.
    [33] Hart P E, Nilsson N J, Raphael B. A Formal Basis for the Heuristic Determination of Minimum Cost Paths[J]. IEEE Transactions on Systems Science and Cybernetics, 1968, 4(2): 100-107.
    [34] Stentz A. D* Algorithm for Real-Time Planning of Optimal Traverses[M]. Carnegie Mellon University Press: Pittsburgh 1994: 14-18.
    [35] Koenig S, Likhachev M. Fast Replanning for Navigation in Unknown Terrain[J]. IEEE Transactions on Robotics, 2005, 21(3): 354-363.
    [36] Sasaki T, Hashimoto H. Component Based Integration of Intelligent Space and its Application to Mobile Robot Navigation[C]// AIM 2009. IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Singapore: Institute of Electrical and Electronics Engineers Inc, 2009: 1486-1491.
    [37] Joo-Ho L, Ando N, Hashimoto H. Design policy of intelligent space[C]// IEEE SMC '99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics, Tokyo, 1999: 1077-1082.
    [38] Heesung C, Wonpil Y, Jaeyeong L, et al. Robot Localization Sensor for Development of Wireless Location Sensing Network[C]// Proceedings of 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems October 9-15, 2006, Beijing, China, 2006: 37-42.
    [39] Yu K, Montillet J P, Rabbachin A, et al. UWB Location and Tracking forWireless Embedded Networks[J]. Signal Processing, 2006, 86(9): 2153-2171.
    [40]李荣宽,田国会,刘贤楷,等.智能空间中基于ZigBee的无线传感器网络系统设计[J].北京联合大学学报(自然科学版) , 2009, 23(4): 21-24.
    [41] Talluri R, Aggarwal J K. Position Estimation for an Autonomous Mobile Robot in an Outdoor Environment[J]. IEEE Transactions on Robotics and Automation, 1992, 8(5): 573-584.
    [42] Durrant-Whyte H, Bailey T. Simultaneous Localization and Mapping: part I The Essential Algorithms[J]. IEEE, Robotics & Automation Magazine, 2006, 13(2): 99-110.
    [43] Fox D, Burgard W, Thrun S. Markov Localization for Mobile Robots in Dynamic Environments[J]. Journal of Artificial Intelligence Research, 1999, 11(1): 391-427.
    [44] Neira J, Tardos J D. Data association in stochastic mapping using the joint compatibility test[J]. IEEE Transactions on Robotics and Automation, 2001, 17(6): 890-897.
    [45] Robertson P, Angermann M, Krach B, et al. Inertial systems based joint mapping and positioning for pedestrian navigation[C]// 22nd International Technical Meeting of the Satellite Division of the Institute of Navigation, September 22-25, 2009, Savannah, GA, United states: Institute of Navigation, 2009: 3057-3068.
    [46] Bailey T, Nieto J, Nebot E. Consistency of the FastSLAM Algorithm[C]// Proceedings - IEEE International Conference on Robotics and Automation, Orlando, FL, United states, 2006: 424-429.
    [47] Zhenhe C, Samarabandu J. Using Multiple View Geometry within Extended Kalman Filter Framework for Simultaneous Localization and Map-building[C]// 2005 IEEE International Conference on Mechatronics and Automation, 2005: 695- 700.
    [48] Nieto J, Guivant J, Nebot E, et al. Real Time Data Association for FastSLAM[C]// Proceedings of the 2003 IEEE International Conference on Robotics and Automation, September 14-19, 2003, Taipei, Taiwan, 2003: 412- 418.
    [49] Williams S B, Dissanayake G, Durrant-Whyte H. An Efficient Approach to the Simultaneous Localisation and Mapping Problem[C]// Proceedings of the 2002 IEEE International Conference on Robotics and Automation, Washington DC, United states, 2002: 406- 411.
    [50]郑太雄,张毅,罗元.移动机器人技术及其应用[M].北京:电子工业出版社, 2007: 212-220.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.