网络上集体行为的动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我们每个人都身处相互联系的网络世界中。比如互联网,电力网,合作网,铁路网,航空网,社会关系网,这些网络的良好运行直接关系到我们的生活和环境。网络信息的同步发送给我们带来信息阻塞,中国南方雪灾对铁路网的破坏使我们出行困难,恐怖主义事件的爆发严重影响人们生活和情绪。所以科学家们一直很关注网络以及网络上的一些现象并努力了解其动力学行为以及背后的运行机制。
     现在,网络研究已经渗透到各个科学领域,比如,社会学,生态学,各种自然学科。同时,网络研究也为我们提供了一个巨大的平台,帮助我们更好的应对各种重大社会挑战。为了研究网络上的现象和行为,我们不仅要从宏观上把整个系统作为研究对象,而且需要从微观上来探究每个个体之间的相互作用,通过微观的个体活动以及个体之间相互作用来预言丰富的整体行为并进一步揭示整个系统的宏观现象形成机理。总之,网络分析的观点帮助我们从一个新的高度来理解世界中各系统是如何运作的。
     本文的主要研究内容和创新点如下:
     (1)在同步能力方面,提出了广义自适应方法,在这种自适应方法中,节点所受到的耦合强度不仅仅根据节点和它的邻居之间的局域同步性质变化,而且受到它’的局域结构特征量—度的调节。我们从数值模拟和理论分析上都证明,广义自适应同步后,网络的输入耦合强度V和度k之间呈现幂律关系:V~k-θ,这里的指数θ为α的函数,他们之间存在关系θ=(1+α)/2。对广义自适应方法,节点的强度可以由α来调节,而且,当α≈1时,网络更加均匀,因此,比原始自适应方法有更好的同步能力。我们发现,网络的同步时间也能在很大程度上缩减。需要强调的是,我们的理论工作不仅仅对真实系统中网络结构和动力学之间的相互作用给出了更深的理解,而且提供了一种通过局域自适应来操控全局集体动力学的方法。
     (2)提出了一种具有历史记忆效应的意见动力学模型。考察了这个模型中四个参数对序参量超过某一临界值这一现象发生的时间间隔概率分布的影响。其中,记忆参数和序参数决定了分布曲线的所属类型。环境影响参数和类温参数决定了幂律分布的指数。
     (3)通过对经验数据的统计,考察了恐怖主义时间间隔的分布,并且用意见动力学模型解释了实证结果。实证结果表明:真实的恐怖主义爆发的时间间隔概率分布服从幂律形式。我们认为这是个人意见演变的宏观结果。假设在整个恐怖主义演变过程中,个体可以有反对和同意两种态度。当个体与邻居大部分人意见相同时,个体会受环境和记忆的影响,以一定概率改变自己意见。当个体的意见和周围邻居大部分人相反时,个体凭借记忆做出选择,在历史记忆的作用下以一定概率改变自己意见。这里,类温参数是社会混乱程度的一个衡量,环境因素和记忆效应的影响表现为以个体的社会从众性心理和自我认定心理为主的个人心理效应。我们定义了新的序参量来衡量群体反对意见强度,当反对意见强度超过一定极限,也就是序参量小于某个值时,恐怖主义事件爆发。最终,模型结果可以覆盖全部实证结果。我们的假设是正确的。
     这些工作已经分别发表于:Phy. Rev. E 81,026201 (2010); Chin. Phys. Lett.27, 068902 (2010).
Each of us is living in the world of connected networks, such as the Internet, power grids, collaboration networks, railway network, air network and social network. The good performance of these networks is directly related to our lives and the environment. Synchronization information sent to us can block the network, snowstorms in the south of China destructed the rail network and made our travel difficult, and the outbreaks of terrorism seriously impacts on people's lives and emotions. Thus scientists have been very concerned about all kinds of networks and the phenomena on networks. They have also been working hard tofind out the dynamic behavior and the underlying Mechanism.
     So far, the researches about network have penetrated into all fields of science, for example, sociology, ecology and natural subjects. Meanwhile, the networks also provide us a great platform which help us better deal with some major social challenges. In order to study the phenomena and the behaviors on networks, we should take the entire system as the research object from the macroscopic and should explore the interaction between each individual from the microscopic. We try our best to predict a rich macroscopic phenomenon and to reveal the underlying mechanism by individual activities and the interactions between individuals, In short, the methods of network analysis can help us understand how the system in the world works from a higher level.
     The main research content and innovations are as follows:
     In the aspect of synchronizability, we proposed the generalized adaptive coupling method where the coupling strength of a node from its neighbors not only develops adaptively according to the local synchronization property between the node and its neighbors (dynamical part) but also is modulated by its local structure, degree of the node. We can show the numerical and analytical results that the input coupling strength of the network after synchronization displays a power-law dependence on the degree, k-θ, where the exponent 6 is controlled by a andθ=(1+a)/2. Compared to the original adaptive coupling method, after the addition of modulation, the distribution of the node's intensity is tunable and can be more homogenous withα≈1, which results in the better synchronizability. It is also found that the synchronization time can shrink greatly. Our theoretical work in the context of synchronization provides not only a deeper understanding of the interaction between structure and dynamics in real world systems, such as opinion formation and concensus, but also potential approaches to manipulate the global collective dynamics through local adaptive control.
     We proposed an opinion dynamics model with history memory effect. Investigated the influences of four parameters in this model on probability distribution of the inter-event time where the order parameter exceeds a critical value. Finally, we found the memory parameter and order parameter determine the curve type of the distribution. Environmental impact parameter and the temperature-like parameter decide the exponent of power-law distribution.
     The inter-event time of terrorism attack events is investigated by empirical data and the analysis of opinion dynamics model. Empirical evidence shows that the distribution of inter-event time follows a scale-free property. Here we consider the assumption that the burst of a terrorism events is closely relative to the formation of opinions. In the progress of public opinion formation, every individual has his/her own viewpoint, support or opposition. The individual changes his/her own opinion with some probability determined by the circumstance and history memory when the individual has consistent opinion with the majority of his/her adjacent neighbors. However, the individual changes his/her own opinion with some probability according to the history memory in the opposite case. Here the temperature-like parameter is a measure of social chaos, and the environmental factor and the history memory effect represent the individual psychological effects of social conformity and self-affirmation. A new order parameter defined denotes the intensity of the public opposition opinion. The terrorism event outbreaks when the new order parameter is less than a critical value. Ultimately, the model results can cover all the empirical results and our assumption is correct.
引文
[1]Adrian Cho. Ourselves and Our Interactions:The Ultimate Physics Problem? Science 325 (2009) 406
    [2]John Bohannon Counterterrorism's New Tool:'Metanetwork'Analysis SCIENCE 325 (2009) 409
    [3]S. Milgram The Small World Problem Psychol. Today 1 (1967) 60
    [4]D. J. Watts and S.H. Strogatz Collective Dynamics of Small-World Networks Nature 393 (1998) 440
    [5]R. Albert, H. Jeong and A. L. Barabasi Diameter of the World-Wide Web Nature 401 (1999) 130
    [6]A. L. Barabasi R. Albert and H. Jeong Mean-Field Theory for Scale-free Random Networks Physica A 272(1999)173
    [7]P. Erdos and A. Renyi On the Evolution of Random Graphs [J]. Publications of the Mathematical Institute of the Hungarian Academy of Science 1960 (5) 17
    [8]S. Redner How Popular is Your Paper? An Empirical Study of the Citation Distribution Eur. Phys. J.B4(1998)131
    [9]S. H. Strogatz Exploring Complex Networks Nature 410 (2001) 268
    [10]A.L.Barabasi and R. Albert, Emergence of Scaling in Random Networks Science 286 (1999) 509
    [11]M. Barthelemy Betweenness Centrality in Large Complex Networks Eur.Phys.J.B 38 (2004) 163
    [12]M.E.J.Newman The Structure and Function of Complex Network cond-mat/0303516 2003
    [13]Wang X. F. Complex Networks:Topology, Dynamics and Synchronization Int. J. Bifurcation and Chaos 12(2002) 885
    [14]A. V. Goltsev S. N. Dorogovtsev and J. F. F. Mendes Critical phenomena in Networks Phys. Rev. E 67 (2003) 026123
    [15]Jiang L. L. Hua D. Y. and Chen T. Nonequilibrium Phase Transitions in a Model with Social Influence of Inflexible Units J. Phys. A:Math. Gen.40 (2007) 11271
    [16]L. M. Pecora and T. L. Carroll Master Stability Function for Synchronized Coupled Systems Phys. Rev. Lett.80 (1998) 2109
    [17]Wang X. F. and Chen G. R. Synchronization in Scale-Free Dynamical Networks:Robustness and Fragility IEEE Trans.Circuits Syst. I.49 (2002) 54
    [18]Wang X. F. and Chen G. R. Synchronization in Small-World Dynamical Networks Int. J. Bifurcation and Chaos 12(2002) 187
    [19]Chen Y. Rangarajan G. and Ding M. General Stability Analysis of Synchronized Dynamics in Coupled Systems Phys. Rev. E 67 (2003) 026209
    [20]Wu C. W. Synchronization in an Array of Chaotic Circuits Coupled via Hypergraphs:Static and Dynamic Coupling IEEE Trans. Circuits Syst. I.1998287
    [21]Wu C. W. Global Synchronization in Coupled Map Lattices IEEE Trans.Circuits Syst. I. (1998) 302
    [22]M. Timme F. Wolf and T. Geisel Coexistence of Regular and Irregular Dynamics in Complex Networks of Pulse-Coupled Oscillators Phys. Rev. Lett.89 (2002) 258701
    [23]M. G. Earl and S. H. Strogatz Synchronization in Oscillator Networks with Delayed Coupling:a Stability Criterion Phys. Rev. E 67 (2003) 036204
    [24]X. Guardiola et al. Synchronization, Dyversity, and Topology of Networks of Integrate and Fire Oscillators Phys. Pev. E 62 (2000) 5565
    [25]T. Nishikawa A. E. Motter Y. C. Lai and R. C. Hoppensteadt Heterogeneity in Oscillator Networks:Are SmallerWorlds Easier to Synchronize? Phys. Rev. Lett.91 (2003) 014101
    [26]H. Hong et al. Factors that Predict Better Synchronizability on Complex Networks Phys. Rev. E 69(2004)067105
    [27]Zhao M. et al. Physica A, Better Synchronizability Predicted by a New Coupling Method 371 (2006)773
    [28]A. E. Motter, C. Zhou and J. Kurths Network Synchronization, Diffusion, and the Paradox of Heterogeneity Phys. Rev. E 71,016116 (2005).
    [29]C. Zhou and J. Kurths Dynamical Weights and Enhanced Synchronization in Adaptive Complex Network Phys. Rev. Lett.96 (2006) 164102
    [30]S. Redner A Guide to First-passage Processes (2001) (Cambridge University Press, Cambridge, UK)
    [31]I. Dornic H. Chate J. Chave and H. Hinrichsen Election Results and the Sznajd Model on Barabasi Network Phys. Rev. Lett.87 (2001) 045701
    [32]F.Vazquez P. L. Krapivsky and S. Redner Constrained Opinion Dynamics:Freezing and Slow Evolution J. Phys. A 36 (2003) L61
    [33]R. Lambiotte and S. Redner Dynamics of Vacillating Voters J. Stat. Mech.:Theory Exp. (2007) L10001.
    [34]T. Zillio I. Volkov J. R. Banavar S. P. Hubbell and A. Maritan Spatial Scaling in Model Plant Communities Phys. Rev. Lett.95 (2005) 098101
    [35]T. Antal S. Redner and V. Sood Evolutionary Dynamics on Degree-Heterogeneous Graphs Phys. Rev. Lett.96 (2006) 188104
    [36]D. Watts and S. Strogatz Collective Dynamics of ‘Small-world’Networks Nature 393 (1998) 440
    [37]S.Galam Minority Opinion Spreading in Random Geometry Eur. Phys. J. B 25 (2002) 403
    [38]S.Galam Majority Rule, Hierarchical Structures and Democratic Totalitarism:A Statistical Approach J. Math. Psychol.30 (1986) 426
    [39]S Galam Social Paradoxes of Majority Rule Voting and Renormalization Group J. Stat. Phys.61 (1990)943
    [40]S.Galam Application of Statistical Physics to Politics Physica A 274 (1999) 132
    [41]S.Galam Real Space Renormalization Group and Totalitarian Paradox of Majority Rule Voting Physica A 285 (2000) 66
    [42]C. J. Tessone R. Toral P. Amengual H. S. Wio and M. San Miguel Neighborhood Models of Monority Opinion Spreading Eur. Phys. J. B 39 (2004) 535
    [43]P. Chen and S. Redner Majority Rule Dynamics in Finite Dimensions Phys. Rev. E 71 (2005) 036101
    [44]R. Lambiotte How does Degree Heterogeneity Affect an Order-disorder Transition? Europhys. Lett.78 (2007) 68002
    [45]D. Stauffer Percolation and Galam Theory of Minority Opinion Spreading Int. J. Mod. Phys. C 13 (2002) 975
    [46]S. Gekle L. Peliti and S. Galam Opinion Dynamics in a Three-Choice System Eur. Phys. J. B 45 (2005)569
    [47]S. Galam Heterogeneous Beliefs, Segregation, and Extremism in the Making of Public Opinions Phys. Rev. E 71 (2005) 046123
    [48]D. Stauffer in The Monte Carlo Method in the Physical Sciences, edited by J. E. Gubernatis, AIP Conf. Proc. New York AIP 690 (2003) 147
    [49]K. Sznajd-Weron Sznajd Model and its Application Acta Phys. Pol. B 36 (2005) 2537
    [50]K. Sznajd-Weron and J. Sznajd Opinion Evolution in Closed Community Int. J. Mod. Phys. C 11 (2000)1157
    [51]C. Castellano et al. Statistic Physics of Social Dynamics Reviews of Modern Physics 81 (2009) 591
    [52]Jiang L. L. Hua D.Y. and Chen T. Nonequilibrium Phase Transitions in a Model with Social Influence of Inflexible Units J. Phys. A 40 (2007) 11271
    [53]Jiang L. L. Hua D. Y. Zhu J.F. Wang B. H. and Zhou T. Opinion Dynamics on Directed Small-World Networks Eur. Phys. J. B 65 (2008) 251
    [54]G. Deffuant et al. Mixing Beliefs among Interacting Agents Adv. Complex Syst.3 (2000) 87
    [55]R. Hegselmann and U. Krause Opinion Dynamics and Bounded Confidence Models, Analysis, and Simulation J. Artif. Soc. Soc. Simul.5(3) (2002) paper 2.
    [56]L. F. Richardson Variation of the Frequency of Fatal Quarrels with Magnitude Amer. Stat. Assoc. 43(1948)523
    [57]L. Cederman Modeling the Size of Wars:From Billiard Balls to Sandpiles Amer. Pol. Sci. Rev. 97 (2003) 135
    [58]A.Clauset and M. Young Scale Invariance in Global Terrorism. e-print available at http://xxx.lanl.gov/abs/physics/0502014
    [59]N. Johnson et al. From Old Wars to New Wars and Global Terrorism (2005) arXiv: physics/0506213
    [60]N. Johnson et al. Universal Patterns Underlying Ongoing Wars and Terrorism (2006) arXiv: physics/0605035v1
    [61]Johnson N Complexity in Humuan Conflict (2008) Springer Berlin/Heidelberg New York
    [62]A. Clauset and F. W. Wiegel A Generalized Aggregation-Disintegration Model for the Frequency of Severe Terrorist Attacks (2009) arXiv:0902.0724v1
    [63]S. Galam The September 11 Attack:A Percolation of Individual Passive Support Eur. Phys. J. B 26(2002)269
    [64]S. Galam and A. Mauger On Reducing Terrorism Power:a Hint From Physics Physica A 323 (2003) 695
    [65]S. Galam Global Physics:From Percolation to Terrorism, Guerilla Warfare and Clandestine Activities Physica A 330 (2003) 139
    [66]S. Galam Sociophysics:A Review of Galam Model Int. J. Mod. Phys. C 19 (2008) 409
    [67]A. Clauset M. Young and K. S. Gleditsch On the Frequency of Severe Terrorist Attacks Journal of Conflict Resolution 51(1) (2007) 58
    [68]A. Clauset et al. The Strategic Calculus of Terrorism:Substitution and Competition in the Israel-Palestine Conflict Cooperation and Conflict 45 (2010) 6
    [69]M. Barahona and L. M. Pecora Synchronization in Small World Systems Phys. Rev. Lett.89 (2002) 054101
    [70]C. Zhou A. E. Motter and J. Kurths Universality in the Synchronization of Weighted Random Networks Phys. Rev. L.96 (2006) 034101
    [71]F. Chung et al. Spectra of Random Graphs with Given Expected Degrees Proc. Natl. Acad. Sci. U.S.A.100(2003)6313
    [72]H. Hong M. Y. Choi and B. J. Kim Synchronization on Small-World Networks Phys. Rev. E 65 (2002)026139
    [73]P. M. Gade and C. K. Hu Synchronization and Coherence in Thermosynamic Coupled Map Lattices with Intermediate-Range Coupling Phys. Rev. E 60 (1999) 4966
    [74]P. M. Gade and C. K. Hu Synchronous Chaos in Coupled Map Lattices with Small-world Interactions Phys. Rev. E 62 (2000) 6409
    [75]F. Qi Z. Hou and H. Xin Ordering Chaos by Random Shortcuts Phys. Rev. Lett.91 (2003) 064102
    [76]H. Hong et al. Factor that Predict Better Synchronizability on Complex Networks Phys. Rev. E 69(2004)067105.
    [77]Zhao M. et al. Relations between Average Distance, Heterogeneity and Network Synchronizability Physica A 371 (2006) 773
    [78]M. Chavez et al. Synchronization is Enhanced in Weighted Complex Network Phys. Rev. Lett. 94(2005)218701
    [79]D. U. Hwang et al. Synchronization in Complex Networks with Age Ordering 94 (2005) 138701
    [80]Zhu J. F. et al. Better Synchronizability in Generalized Adaptive Networks Phys. Rev. E.81 (2010)026201
    [81]A. Almendral and A. Diaz-Guilera Dynamical and Spectral Properties of Complex Networks New J. Phys.9(2007)187
    [82]R. D. Friedman and M. Friedman The Tyranny of the Status Quo (1984) (Harcourt Brace, Orlando, FL)
    [83]P. L. Krapivsky and S. Redner, Dynamics of Majority Rule in Two-State Interacting Spin Systems Phys. Rev. Lett.90 (2003) 238701
    [84]L. Behera and F. Schweitzer On Spatial Consensus Formation:Is the Sznajd Model Different From a Voter Model Int J. Mod. Phys. C 14 (2003) 1331
    [85]A. T. Bernardes D. Stauffer and J. Kertesz Election Results and the Sznajd Model on Barabasi Network Eur. Phys. J. B 25 (2002) 123
    [86]M. C. Gonzalez A. O. Sousa and H. J. Herrmann Opinion Formation on a Deterministic Pseudo-Fractal Network Int. J. Mod. Phys. C 15 (2004) 45
    [87]K. Sznajd-Weron and R. Weron How Effective is Advertising in Duopoly Market Physica A 324 (2003)437
    [88]K. Sznajd-Weron and R. Weron A Simple Model of Price Formation Int. J. Mod. Phys. C 13 (2002)115
    [89]K. I. Goh and A.L. Barabasi Burstiness and Memory in Complex Systems Europhys. Lett.81 (2008)48002.
    [90]W. Enders and T. Sandler The Effectiveness of Antiterrorism Policies:A Vector-Autoregression-Intervention Analysis American Political Science Review 87 (1993) 829
    [91]R. A. Pape The strategic Logic of Suicide Terrorism American Political Science Review 97 (2003) 343
    [92]R. J. Brym and B. Araj suicide Bombing as Strategy and Interaction:The Case of the Second Intifada Social Force 84 (2006) 1996
    [93]M. M. Bloom Palestinian Suicide Bombing:Public Support, Market Share, and Outbidding Political Science Quarterly 119 (2004) 61
    [94]A. Kydd and B. Watter Sabotaging the Peace:The politics of Extremist Violence International Organazation 56 (2002) 263
    [95]D. Sornette et al. Rank-Ordering Statistics of Extreme Events:Application to the Distribution of Large Earthquakes J. Geophys. Res.101 (1996) 13883
    [96]G. K. Zipf Human Behavior and the Principle of Least Effort (1949) Addison-Wesley Press, Cambridge, England.
    [97]M. E. J. Newman Power Laws, Pareto Distributions and Zipf s Law Contemporary Physics 46 (2005)323
    [98]Zhu J. F Han X. P. and Wang B. H. Statistic Property and Opinion Model for Inter-event Time of Terrorism Attack Chin. Phys. Lett.27 (2010) 068902
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.