船舶空调系统的建模与仿真
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
船舶空调系统是船舶的重要辅助设备,是设备正常运行的保障,能够有效改善人们生活和工作环境,以及卫生条件。建立能准确反映船舶空调系统的数学模型对系统的运行控制、仿真和性能分析,以及实验室的建设都有重要意义。制冷系统的稳态仿真技术已趋于成熟,但螺杆冷水机组制冷系统动态模型的研究还在发展、完善中。而且近年来国内外发生的许多船舶机损和船损事故大多是由人为失误和错误造成的,这迫切需要通过积极的询问和评价、连续不断对情境进行分析和监控、必要时采取果断行动等方法,来提高情景意识。
     基于此,本文以“育鲲”教学实习船的船舶空调系统为参考对象,通过用分布参数模型建立蒸发器和冷凝器数学模型、用集中参数模型建立压缩机和膨胀阀数学模型的方法,建立了冷水机组的数学模型,然后又基于热力学和传热学定律,通过建立PID三通电磁阀控制的冷却水与空气的热量传递关系,以及船舶供冷负荷关系,建立了夏季制冷除湿工况的空气处理系统模型,又通过建立PID三通电磁阀控制的蒸汽与空气的热量传递关系,以及船舶供热负荷关系,建立了冬季加温加湿工况时的空气处理系统模型,最后联立建立了船舶空调系统总模型的矩阵方程式。
     求解模型方程时,通过引入冷凝器进口制冷剂焓值hci为未知量,将密度的求导转换为对hci和冷凝温度的求导,避免了hci和密度求导时对多个变量求导的情况,简化了求导过程,再通过采用冷剂温度、压力、比容和比焓的拟合关系求取矩阵系数,以及用多变量函数的Taylor幂级数展开式代替原函数方程的方法,降阶线性优化方程,简化了模型状态方程系数求导过程。然后以Matlab为仿真工具,进行了仿真计算,与实船测试数据进行了对比分析,验证计算精度和仿真实时性有很大提高。
     本文详细分析了“育鲲”轮空调系统3套冷水机组、6台压缩机、3套冷媒水泵、6只膨胀阀等设备的启动控制,风机、冷却水泵与压缩机的连锁启动控制,压缩机的滑油低压、冷却水高温、冷却水低压报警,以及空气调节系统通风、制冷和制热控制的PLC程序和操作流程,并以此逻辑关系和条件为基础,基于VS.net通过建立龙格库塔解微分算法,调用船舶空调系统的数学模型,开发控件的方法,研发了船舶空调模拟器仿真软件。该软件功能完善,可以手动和自动操作系统设备,能依据空调室温度和设定温度的偏差来控制冷却水三通阀或蒸汽加温阀的开度,依据空调室湿度和设定湿度的偏差来控制蒸汽加湿阀的开度,可自动和手动调节冷却水三通电磁阀、加温电磁阀和加湿电磁阀的PID参数,并且能设置故障和更改系统变量,模拟故障发生后的压力、温度等参数变化情况;而且界面友好,可实时显示后台模型计算出的空气处理系统的新风、回风和供风的温度、湿度,以及冷水机组的的蒸发压力、冷凝压力等重要参数。
     基于3ds Max和Virtools三维仿真软件实现了压缩机、换热器、风机等设备和管系的三维建模,以及船舶空调室和冷水机组舱室三维视景的实时漫游,并通过C语言套接字的方法实现了三维场景和二维仿真软件之间的通讯和交互,可以在二维和三维场景中实现对空调设备的操作,并同时显示设备运行情况、按钮、旋钮指示灯等状态。
     最后依据某高校空调实验室的建筑结构特点,根据热力学和传热学定律,计算出房间夏季供冷负荷的制冷量和冬季供热负荷工况的制热量,并依此确定了匹配的压缩机型号、冷却水箱容积、冷却水泵排量和加热器功率,设计和编写了包括连锁保护和报警功能的逻辑控制程序,现场组织施工完成了空调实验室的建设。
The ship's refrigeration and air conditioning systems is a major ship auxiliary equipment, protection of the normal operation of the device, and can also improve people's living environment, working condition, as well as health situation. Accurately mathematical modeling of marine refrigeration and air conditioning system is very impprtant to the system operation control, simulation and performance analysis, and laboratory construction. The refrigeration system's stable state emulation technique is mature, but screw water chiller refrigeration system dynamic model is developing and imperfect. Moreover, in recent years, lots of domestic and foreign accidents about machine damage and ship damage are caused mostly by the artificial mistakes and errors, this needed to raise the scene consciousness urgently through the methods of actively inquire and evaluate, analysis and monitor to the situation continuously, and take decisive action if necessary.
     Based on this, the mathematical model of the water chiller is established, by the method of taking the refrigeration and air conditioning system of the wheel "Yu Kun" as the reference object, building the distributed parameter model of the evaporator and condenser, and the concentrated parameter model of the compressor and expansion valve. The summer ventilation system model of cooling and dehumidification is built through establishing heat equations of the cooling water controlled by three-way solenoid valve and the air, and cold load equation of the air-conditioned room, and the winter ventilation system model of warming and humidification is built through establishing heat equations of the steam controlled by three-way solenoid valve and the air, and heat load equation of the air-conditioned room, according to thermodynamics and heat transfer theory. At last, the matrix equation of the ship's refrigeration and the air-conditioning system general model is established by associating equations.
     The derivation process is simplified by supposing the enthalpy of refrigerant at condenser's import an unknown variable, converting the derivation of the density to the derivation about the variable hci and the condensing temperature, which avoiding to derivate about several variables, and the equation is reduced, lined and optimized, derivation process of state coefficient is simplified through the method that calculating matrix coefficients using relationships among refrigerant temperature, pressure, specific volume and enthalpy, and replacing the original function equation with multi-variable function's Taylor power series expansion equation. Then simulation and calculation is carried on, and compared analysis is took with the ship's test data basing on Matlab a simulation tool, which verifying that the accuracy and real-time simulation has greatly improved.
     The PLC Procedure and operating flow is analyzed, which including starting control about 3 chiller units,6 compressors,3 chilled water pumps,6 electronic expansion valves, Interlocking control about fans, cooling water pump and compressor, alarm about compressor low oil pressure, cooling water high temperature, cooling water low pressure, programming control about ventilating model, cooling model and heating model of the air conditioner. Based on VS.net, and taking the above logical relations and conditions as the basis, the marine refrigeration and air conditioning simulator simulation software is researched and developed, by establishing Runge-Kutta differential solution algorithm, calling the air-conditioning system's mathematical mode, and developing module. The software is fully functional, system equipment can be operated manually and automatically, cooling water three-way valve or warming steam three-way valve is controlled according to the deviation between the air-conditioned room temperature and the setting value, humidifying steam valve is controlled according to the deviation between the air-conditioned room humidity and the setting value, the PID parameter of cooling water three-way electromagnetic valve, warming solenoid valve and humidifying solenoid valve can be adjusted automatically and manually, the fault and variable can be set and changed, and the pressure, temperature and other parameters can changed really according to the simulated failure; Furthermore, the simulator's interface is friendly, the temperature and humidity of the ventilation system's fresh air, return air and supply air which calculated from background model, and the evaporation pressure, condensing pressure and other important parameters of the water chillers can be displayed.
     Based on three-dimensional simulation tool 3ds Max and Virtools, the three-dimensional model of the compressor, the heat exchanger, the fan, other equipment and the pipe is built, and real time roaming of three-dimensional scene about air conditioner cabin and chiller compartment is implemented.
     Through the sockets of C language, communication and interaction between the three-dimensional scene and two-dimensional simulation is achieved, air conditioning equipment can be operated simultaneously in the two-dimensional and three-dimensional scene, and the running situation of device, switch station of the button, knob, and lights can be displayed consistently.
     Finally, the cooling capacity of the summer's cooling load and the heat capacity of the winter's thermal load conditions in the room is calculated, according to a university refrigeration and air-conditioning laboratory building structure's characteristics, and according to the thermodynamics and heat transfer theory. And so, the compressor type, cooling water tank volume, cooling water pump displacement and the heater power which matching the condition is chosen, the logic control program including protection and alarm function is designed and compiled, the laboratory of the ship refrigeration and air conditioning system is constructed.
引文
[1]曹德胜.制冷空调系统的安全运行、维护管理及节能环保.北京:中国电力出版社,2003.
    [2]杨昭,马一太,吕灿仁.空调机开停损失分析及季节性能的模拟.制冷学报,1994,(2):10-16.
    [3]张文瑞,韦宗锶.毛细管之原理与应用.中国冷冻空调杂志(台湾),1995,(12):61-71.
    [4]陈文勇.蒸发器过热度稳定性机理与智能控制:(博士学位论文).西安:西安交通大学,1999.
    [5]伏龙.风冷热泵冷热水机组动态过程仿真.工程热物理学报,2003,(5):725-728.
    [6]Dhar M, Soedel W. Transient analysis of a vapor compression refrigeration system. In:Proc XY IIR Cong, Venice, Italy,1979.
    [7]Chi J, Didion D. A simulation of the transient performance of a heat pump. Int J Refrig,1982,5(3):1976-1984.
    [8]陈芝久.制冷系统热动力学.北京:机械工业出版社,1998.
    [9]陈红.制冷系统换热器建模与仿真方法研究:(博士学位论文).重庆:重庆大学,2006.
    [10]U Bonne, A Patani, R D Jacobson. Electic-driven heat pump systems:simulations and controls. ASHRAE Transaction,1980,86.
    [11]J Chi and D Dion. A simulation model of the transient performance of a heat pump. International Journal of Refrigeration, Vol5, No.3, May 1982.
    [12]P Domanski and D Didion. Computer modeling of the vapor compression cycle with constant flow area expansion device. NBS Building Science Series 155,1983.
    [13]H Yasuda, S Touber and C H M Machielsen. Simulation of a vapor compression refrigeration system. ASHRAE Transaction,1983,89 (part 2).
    [14]W E Murphy and Goldschmidt. Transient response of air conditioner-a qualitative interpretation through a sample case. ASHRAE Transaction,1985,91 (part 2).
    [15]徐周璇.单级蒸气压缩式制冷系统的仿真与实验研究:(硕士学位论文).保定:华北电力大学,2008.
    [16]周伟东.小型冷库特性仿真研究:(硕士学位论文).大连:大连海事大学,2003.
    [17]薛卫华.变频控制vrv空调系统运行特性与能耗分析研究:(博士学位论文).上海:同济大学,2000.
    [18]蒋德志.船舶制冷仿真系统的研究与开发:(硕士学位论文).大连:大连海事大学,2009.
    [19]赵灵晓.基于部件神经网络模型的制冷系统混合仿真方法及应用:(博士学位论文).上海:上海交通大学,2010.
    [20]伏龙.蒸汽压缩式制冷装置稳态仿真概述.压缩机技术,2001,(6):40-41.
    [21]Klein S A. Design consideration for refrigeration cycles. International Journal of Refrigeration,1994,15(2):181-185.
    [22]Ceechini C, Marchal D A. Simulation model of refrigeration and air-conditioning equipment based on experimental data. ASHRAE Transaction,1991,97(2):388-393.
    [23]Lee G H, Yoo J Y. Performance analysis and simulation of automobile air-condition system. International Journal of Refrigeration,2000,23(4):243-254.
    [24]Bansal P K, Purkayastha B. An NTU-ε model for alternative refrigerants. International Journal of Refrigeration,1998,21(5):281-391.
    [25]Joll P G, Tso C P, Wong Y W, et al. Simulation and measurement on the full-load performance of refrigeration system in a shipping container. International Journal of Refrigeration,2000,23(2):112-126.
    [26]周永明,孙文,陈芝久.用于控制的制冷系统稳态建模与仿真.上海交通大学学报,1999,33(3):255-258.
    [27]梁彩华,张小松,徐国英.过热度变化对制冷系统性能影响的仿真与试验研究.流体机械,2005,33(9):43-47.
    [28]Jia X, Tso C P, Joll Y P, et al. Distributed steady and dynamic modeling of dry-Expansion evaporators. International Journal of Refrigeration,1999, 22 (2):126-136.
    [29]陈江平,阙雄才,陈芝久.汽车空调层叠式蒸发器热力性能计算机辅助分析.低温工程,1998,(2):41-46,13.
    [30]陈林辉,田怀章,陈敬良,等.汽车空调管带式冷凝器数学模型研究.汽车工程,2004,26(4):496-499.
    [31]岳婷,刘楚芸,陈国栋,等.小型制冷装置冷凝器的仿真与实验研究.低温工程,2005,(5):46-48.
    [32]曾小林,吴业正,朱瑞琪,等.制冷剂在毛细管内的两相流特性研究.西安交通大学学报,2003,37(1):53-55.
    [33]Fiorelli F A S, Peixoto R A, Paiva M A S, et al. Analysis of R-410A and R-407C flow through capillary tubes suing a separated flow model. In:Proc 20th Int Conf Refrigeration,1999:1463-1470.
    [34]Melo C, Zangari J M, Ferreira R T S, et al. Experimental studies on non-adiabatic flow of HFC-134a through capillary tubes. Proc of the International Conference, Purdue University,2000:305-312.
    [35]Wongwises S, Chan P, Luesuwanatat N, et al. Two-phase separated flow model of refrigerants flowing through capillary tubes. Int Communications Heat Mass Transfer, 2000,27 (3):343-356.
    [36]丁国良,张春路.制冷空调装置智能仿真.北京:科学出版社,2002.
    [37]赵灵晓.基于部件神经网络模型的制冷系统混合仿真方法及应用:(博士学位论文).上海:上海交通大学,2010.
    [38]Rajendran N, Pate M B A. A computer model of the start-up transient in a vapor compression refrigeration system. Preprints of the IIR meeting, Purdue,1986:129-140.
    [39]Chi J, Didion D. Simuation model of the transient performance of a heat pump. International Journal of Refrigeration.1982,5(3):176-184.
    [40]Becker M, Hasse H, Grossmann K, et al. Top down model for the simulation of the dynamic behavior of cold storage plants.19th Inter Congr of Refrigeration, 1995:743-750.
    [41]周子成.房间空调器热泵运行时的瞬态仿真.制冷学报,1998,(4):14-18.
    [42]Vargas J V C, Paris J A R. Simulation in transient regime of a heat pump with closed-looped and on-off control. International Journal of Refrigeration,1995, 18(4):235-243.
    [43]陈武,周兴禧.双联变频空调系统建模与控制方法仿真研究.系统仿真学报,2002,14(5):643-646.
    [44]陈武,蔡振雄,周兴禧.一拖三变频空调系统建模方法与控制研究.系统仿真学报,2004,16(10):2123-2127.
    [45]丁国良,张春路,李灏,等.分体式家用空调器动态仿真.上海交通大学学报,1999,33(3):262-264.
    [46]孙晓岩.蒸汽动力和压缩制冷系统的综合与模拟:(硕士学位论文).青岛:青岛科技大学,2005.
    [47]孙学军,阙雄才,陈芝久.汽车空调系统动态特性与优化分析.上海交通大学学报,1999,33(8):928-933.
    [48]周伟东,伍志坚,岳丹婷.蒸气压缩制冷装置仿真的发展.大连海事大学学报,2003,29(2):108-111.
    [49]MacArthur J W. Transient heat pump behavior:a theoretical investigation. International Journal of Refrigeration,1984,7(2):123-131.
    [50]Jia X, Tso C P, Joll Y P G, et al. A distributed model for prediction of the transient response of an evaporator. International Journal of Refrigeration,1995, 18(3):336-342.
    [51]葛云亭,彦启森.蒸发器动态参数数学模型的建立与理论计算.制冷学报,1995,(1):9-17.
    [52]焦巍,孙晓岩.蒸汽动力和压缩制冷系统综合模拟优化研究进展.山西化工,2006,26(3):25-29.
    [53]Man-Hoe Kim, Clark W B. Dynamic characteristics of a R2410A split air-conditioning system. International Journal of Refrigeration,2001,24(7):652-659.
    [54]赵芳.直膨式太阳能辅助热泵实验系统仿真与实验研究:(硕士学位论文).济南:山东科技大学,2007.
    [55]孙正,陈芝久,谷波.管带式汽车空调器蒸发动态分布参数特性研究.上海交通大学学报,1994,28(4):16-20.
    [56]Mithraratne P, Wi jel Ysundera N E, Bong T Y. Dynamic simulation of a rmostatically controlled counterflow evaporator. International Journal of Refrigeration,2000, 23 (2):174-189.
    [57]丁国良,张春路,李灏,等.制冷空调装置的智能仿真方法初探.制冷学报,1998,(2):10-14.
    [58]丁国良,张春路.基于模型的制冷系统智能化仿真研究.工程热物理学报,2001,22(5):552-554.
    [59]Ding Guo Liang, Li Hao, Zhang Chunlu. Dynamic simulation of a rmostatically controlled counterflow evaporator. International Journal of Refrigeration,2000, 23 (2):174-189.
    [60]丁国良,张春路,詹涛,等.制冷压缩机热力计算的复合模糊模型.科学通报,2001,45(6):660-663.
    [61]丁国良,张春路,刘浩.基于模糊和神经网络的绝热毛细管快速仿真方法.工程热物理学报,2000,21(2):134-137.
    [62]丁国良,张春路,李灏.神经网络在空调器仿真中的应用研究.制冷学报,1999,(2):31-37.
    [63]丁国良,张春路,李灏.制冷系统仿真中定量参数的神经网络辨识.上海交通大学学报,1999,33(8):939-941.
    [64]张春路,丁国良.绝热毛细管流量特性的神经网络关联.应用基础与工程科学学报,2001,35(5):91-96.
    [65]刘浩,张春路,丁国良.结合人工神经网络的冷凝器稳态分布参数模型.上海交通大学学报,2000,34(9):1187-1190.
    [66]Swider D J, Browner M W, Bansal P K, et al. Modeling of vapour-compression liquid chillers with neural Inetworks. Applied Thermal Engineering,2001,(21):311-329.
    [67]Bechtler H, Browne M W, Bansal P K, et al. New approach to dynamic modeling of vapour-compression liquid chillers:artificial neural networks. Applied Thermal Engineering,2001,(21):941-953.
    [68]丁国良,张春路,詹涛.制冷压缩机热力性能的模糊建模方法.上海交通大学学报,2000,34(9):941-953.
    [69]邢子文,彭学院,束鹏程.螺杆压缩机设计计算软件的研究与开发.西安交通大学学报,1999,33(11):31-34.
    [70]王永,李承武,宋思洪.基于模块化控件的汽车空调系统仿真软件的开发.系统仿真学报,2005,17(10):2371-2375.
    [71]王嫒波.小型中央空调系统的建模研究:(硕士学位论文).沈阳:沈阳工业大学,2007.
    [72]曾青山,陈景峰,黄加亮.轮机模拟器的现状和发展趋势.集美大学学报(自然科学版),2003,8(1):74-79.
    [73]章云,郑华耀,叶银忠,等.轮机模拟器仿真软件的开发.上海铁道大学学报,1998,19(5):30-33.
    [74]冯志敏,王颖,胡海刚.轮机模拟器的系统结构及教学模式研究.高等理科教育,2003,48(2):52-55.
    [75]郑华耀.基于网络化技术的大型集装箱船舶轮机模拟器.系统仿真学报,2001,13(6):723-725.
    [76]杨志恒.船舶与陆上建筑工程空调通风设计.造船技术,1995,186(8):21-25.
    [77]魏辉.基于吸气压力实施流量控制的控制器的应用研究:(硕士学位论文).南京:南京理工大学,2007.
    [78]严浪涛.船舶空调系统建模与动态仿真的研究:(硕士学位论文).大连:大连海事大学,2007.
    [79]徐菱虹.用MATLAB数值计算软件辅助暖通空调工程设计与研究.工程设计CAD与智能建筑,2000,(1):50-52.
    [80]Ertunc H M Hosoz. M Applide Thermal" Artificial neural network analysis of a refrigeration system with an evaporation condenser". Engineering,2005, 26(5/6):627-635.
    [81]肇世华.冲击式压路机座椅悬架系统的研究:(硕士学位论文).太原:太原科技大学,2009.
    [82]丁国良,张春路.制冷空调装置仿真与优化.北京:科学出版社,2001.
    [83]杨慧鑫.二氧化碳饱和曲线的数值模型:(硕士学位论文).长春:吉林大学,2006.
    [84]Macarthur J W. Transient Heatpump Belhavior a Theorical Investigation. International Journal Refrigeration 1984,7(2).
    [85]陈芝久,蒋文强.制冷蒸发器与热力膨胀阀回来稳定性研究.上海交通大学学报,1990,(2).
    [86]李精明.船舶空调仿真系统的设计与实现:(硕士学位论文).大连:大连海事大学,2008.
    [87]费千.船舶辅机.大连:大连海事大学出版社,1998:240-256.
    [88]Sung-Tai Kim.小型全封闭压缩机的计算机模拟.制冷技术,1985,(4).
    [89]吴宝志.螺杆式制冷压缩机.北京:机械工业出版社,1985.
    [90]董天禄.离心式/螺杆式制冷机组及应用.北京:机械工业出版社,2002.
    [91]马国远.制冷压缩机及其应用.北京:中国建筑工业出版社,2008.
    [92]胡颖峰.如何有效利用螺杆压缩机,中国水泥.2009,(1):31-33.
    [93]陈亮,陈江平,刘敬辉,等.考虑壅塞特性的电子膨胀阀流量特性模型.上海交通大学学报,2010,44(1):111-115.
    [94]彭燕.汽车空调换热器分布参数模型及仿真研究:(硕士学位论文).重庆:重庆大学,2004.
    [95]唐双波,钟华.蒸发器过热度的模糊PID自适应控制.上海市制冷学会论文集,1999.
    [96]吕凡.汽车空调系统数学模型及仿真研究:(硕士学位论文).重庆:重庆大学,2007.
    [97]白梓运,陈芝久.电子膨胀阀及其在蒸发器过热度自适应控制中的应用.暖通空调,1996,(2).
    [98]周永明.用于控制的制冷系统稳态建模与仿真.上海交通大学学报,1999,33(3).
    [99]翁文斌.电子膨胀阀的制冷剂流量特性的实验研究.流体机械,1998,26(10).
    [100]MacArthur J W, Grald E W. Unsteady compressible two-phase flow model for predicting cycle heat pump performance and a comparison with experimental data. Int J Refrig,1989,12:29-41.
    [101]魏安,吕代臣,陈秋成.远洋船舶制冷装置运行经济性的要素分析.广州航海高等专科学校学报,2007,15(2):9-10.
    [102]王苏昊,孙博,毕学文,等.制冷系统组件动态特性的数模分析.吉林化工学院学报,2009,26(4):77-82.
    [103]孙建新,赵宇.应用Simulink对房间空调器进行动态仿真.制冷与空调,2009,23(3):41-46.
    [104]李君.翅片管式蒸发器的仿真与实验研究:(硕士学位论文).杭州:浙江大学,2005.
    [105]张洪臣,任益夫,李凤丽,等.船舶用小型冷库的动态仿真.河北渔业,2010,204(12):35-37.
    [106]邵世婷,王文.微型通道冷凝器数值模拟与分析.上海交通大学学报,2009,43(2):251-255.
    [107]丁炜堃,邓斌,陶文铨.小管径空调冷凝器数值模拟及流路设计.工程热物理学 报,2009,30(8):1389-1392.
    [108]王志远.制冷原理与应用.北京:机械工业出版社,2002.
    [109]杨宾.制冷系统中冷凝器模型的建立和数值分析.家电科技,2006,(3):34-36.
    [110]李承武.汽车空调系统换热器建模仿真:(硕士学位论文).重庆:重庆大学,2003.
    [111]严浪涛,任光,蒋青.船舶空调系统的仿真与建模.制冷与空调,2007,(1):97-99.
    [112]W M Kays, L London. Compact Heat Exchanges. NewYork:3nd. ed. MacGraco-Hill Book Company,1984.
    [113]杨世铭,陶文铨.传热学.北京:高等教育出版社,1998.
    [114]Stephenson D G, Mitalas G P. Calculation of heat conduction transfer functions for multi-layer slabs. ASHRAE Transactions,1991,77(2):117-126.
    [115]赵永良.空调制冷热泵教学综合实验台的研制:(硕士学位论文).哈尔滨:哈尔滨工业大学,2009.
    [116]张超.嵌入式中央空调智能控制系统的研究:(硕士学位论文).广州:华南理工大学,2009.
    [117]许力.智能控制与智能系统.北京:机械工业出版社,2006.
    [118]林叶锦.轮机自动化.大连:大连海事大学出版社,2009.
    [119]赵永国.过程辨识与PID自整定理论及其在暖通空调系统中的应用研究:(博士学位论文).济南:山东大学,2008.
    [120]赵文鑫.基于CAN总线及智能控制算法的汽车空调控制系统的设计:(硕士学位论文)上海:上海交通大学,2009.
    [121]陶永华.新型PID控制及其应用.北京:机械工业出版社,2000.
    [122]刘金琨.新进PID控制及其MATLAB仿真.北京:电子工业出版社,2004.
    [123]张江涛.变风量空调系统末端装置的控制特性仿真研究:(硕士学位论文).兰州:兰州理工大学,2003.
    [124]柴小峰.全年工况下VAV空调系统节能控制策略的研究与分析:(硕士学位论文).上海:上海交通大学,2009.
    [125]韩宝琦,李树林.制冷空调原理及应用.北京:机械工业出版社出版社,2002.
    [126]吴业正,厉彦忠.制冷与低温装置.北京:高等教育出版社出版社,2009.
    [127]梅建琴.微分方程组精确解及其解的规模的机械化算法:(博士学位论文).大连:大连理工大学,2006.
    [128]薛定宇,陈阳泉.高等应用数学问题的MATLAB求解.北京:清华大学出版社,2004.
    [129]丁国良,张春路,赵力.制冷空调新工质.上海:上海交通大学出版社,2003.
    [130]周长发.C#数值计算算法编程.北京:电子工业出版社,2007.
    [131]Eric White,杨浩,张哲峰,译.GDI+程序设计.北京:清华大学出版社,2002.
    [132]Simon Robinson,杨浩,译.C#高级编程.北京:清华大学出版社,2005.
    [133]毋玉芝.四阶龙格-库塔算法的C语言实现.焦作大学学报,2001,3(1):55-56.
    [134]苗玉敏,高志华.3DS MAX 2011中文版从入门到精通.北京:电子工业出版社,2011.
    [135]王玉梅,王梅君.3ds Max 2010效果图制作从入门到精通.北京:人民邮电出版社,2010.
    [136]付志勇,高鸣,丛书.三维游戏设计=Three dimensional game design by virtools dev4.0.北京:清华大学出版社,2008.
    [137]刘向群,吴彬.虚拟现实案例教程:基于Quest3D/VR-Platform/Virtools项目.北京:中国铁道出版社,2010.
    [138]张立.C#2.0宝典.北京:电子工业出版社,2007.
    [139]李乃文,傅游,沈学利.C#2008程序设计实践教程.北京:清华大学出版社,2009.
    [140]彭玉元,姜林辉.基于Virtools的三维虚拟校园漫游系统的实现.广西工学院学报,2009,20(4):60-64.
    [141]何武,许杰,李斌勇.基于Virtools的虚拟场景漫游系统设计与实现.电脑知识与技术,2010,6(19):5323-5324.
    [142]杨振华.运用环境仿真建模技术实现虚拟校园交互式漫游.南通纺织职业技术学院学报(综合版),2009,9(2):1-4.
    [143]陈沛霖.空调负荷计算理论与方法.上海:同济大学出版社,1987.
    [144]冯劲梅,连之伟,黄宋斌,等.办公建筑外墙传热系数对空调负荷的影响.四川建筑科学研究,2010,36(3):312-315.
    [145]周名侦,叶翠安,卢晓春,等.船舶中央空调的组态与PLC监控系统设计.制造业自动化,2010,32(7):81-83.
    [146]陈雅林.中央空调实现PLC自动化控制的设计要点.中国新技术新产品,2010,(16):18-19.
    [147]孔晓鸣,许敬德,马金平,等.基于PLC和触摸屏的制冷空调产品检测装置控制系统.机械与电子,2009,(1):40-42.
    [148]龚仲华.S7-200PLC应用技术提高篇.武汉:华中科技大学出版社,2005.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.