地震波作用下地下管道的动力响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于地下管道受周围土体或岩体的约束,一直以来,人们认为它具有良好的抗震性能。然而,根据震害资料显示,国内外历史上发生的多次地震都使地下管道系统遭受到一定程度的震害,它的发生不仅会直接破坏地下管道的正常使用功能,而且还可能引发水、火、爆炸及疾病等严重的次生灾害。为了减少地震作用对地下管道造成的破坏,确保生命线工程的安全和防止次生灾害的产生,开展在地震激励下埋地输流管道的响应研究,为地下管道的动力设计提供必要的理论基础,有着十分重要的意义。
     以波动理论为基础,采用大圆弧假定和复变函数法,给出地下单排复合管道在平面P波、SV波、SH波入射下的解析解,研究解明了管道参数、场地土类型、管道埋深以及地震波动参数对管道动应力集中的影响规律。
     针对实际工程中经常遇到相邻结构的动力相互作用问题,研究了地下多管道体系的动力相互作用。给出详细的理论计算过程,分析两种工况情况下入射P波、SV波和SH波对管道之间的动力相互作用的影响机理及作用规律,考虑场地土的变化,揭示不同参数下地震波对地下管道周围绕射和散射的特性。
     为了更好地揭示管道内的流体对管道受地震波作用的动力响应特点,利用流体中传播的声波方程,建立地下输流管道的流固耦联波函数,给出地下输流管道对平面P波、SV波入射下的波函数动力学方程,针对动应力集中问题分析管道内的流体受波传播振荡的影响规律。
     研究结果表明:管道内钢衬的厚度对管道的环向动应力集中峰值有很显著的影响,钢衬越薄,动应力集中程度越高;当管道周围的场地土较硬时,管道内的环向动应力集中峰值在入射P波、SV波和SH波的作用下均表现出明显的放大作用,且放大倍数显著,当管道周围的场地土较软时,环向动应力集中程度减弱;各管道之间的环向动力相互作用不仅与管道之间距离有关,还与管道的布置情况有关;管道内的流体影响了管道的径向应力集中分布。
Underground pipes are rarely considered to design to withstand the loads applied by earthquake ground motions, mainly because they have been held by surround soil or rock bound. However, the damage of underground pipelines observed in near-field earthquakes of inside and outside indicates that the occurrence of earthquake not only can damage the normal use of the underground pipelines directly, but also may lead to water, fire, explosion and serious diseases such as secondary disasters. In order to reduce conveying fluid pipelines damage caused by the seismic effect and ensure safety of lifeline works to prevent the emergence of secondary disasters, there is a need for improved analysis response of the buried pipelines under seismic wave forces, and has great significance to found theoretical design of underground pipeline to provide the necessary impetus.
     First of all, based on complex function of the wave theory and the assumption of large arc, the analytical solution of underground composite pipe in single-row under plane P wave, SV wave and SH-wave incidences is given, and the parameters of the pipe, media types, depth of pipe, as well as fluctuate parameters are investigated to explain the influencing rules.
     For the dynamic interaction problems of adjacent structures are often encountered in practical engineering, underground pipe system on dynamic interaction of each other is researched. A detailed theoretical calculation process is given and impact mechanism and the role of law of two surrounding conditions of pipes under incident P waves, SV waves and SH-waves on dynamic interaction between the pipes are analyzed to reveal the diffraction and scattering characteristics around underground pipes under different parameters of seismic waves.
     Making use of fluid-borne acoustic wave equation, analytical answer of the dynamic stress concentration to the underground liquid-filled pipe under the plane P wave, SV wave incident is given in order to better reveal the dynamic response characteristics of pipeline on the pipeline within the fluid effect of seismic waves. And the impact rules of fluid oscillation filled in pipe by the wave propagation is analysis.
     Analytical results show that steel-line thickness has a significant effect on peak dynamic stress concentration of the pipe, The thinner steel liner, a higher level of dynamic stress concentration; the peak values of hoop dynamic stress concentration impacted by the incident P waves, SV waves and SH waves are amplified obviously as the surrounding medium of pipeline is light soft and hoop dynamic stress concentration reduce when the surrounding medium of pipeline is very soft; The dynamic interaction between the pipes not only the distance of adjacent pipes but also has something to do with the layout of pipeline; the liquid filled in pipe impact the distribution of radial stress concentration.
引文
[1]孙绍平.中国埋地管线地震工程调查报告.北京市政工程研究所报告研究,1990.
    [2]梁建文.地下管线抗震研究述评.世界地震工程[J].1995,11 (2):1~6.
    [3]孙绍平,韩阳.生命线地震工程研究评述[J].2003,36(5):97~104.
    [4] Isoyama, R,Katayama.T, Practical performance evaluation of water supply networks during seismic disaster,Lifeline earthquake Engineering.The current state of Knowledge,NewYork: ASCE,1981,111~122.
    [5] Toki.k,and Sato.T,Estimation of damage of water distribution systems by earthquakes, Recent Advance in lifeline Earthquake Engineering in Japan,ASME, 1985,89~96.
    [6]赵成刚,冯启明等编著.生命线地震工程,地震出版社,1994:45~53.
    [7] Newmark N M; Effects of earthquakes on Dam sand Embankments [M];Geotechnique; 1965.
    [8]日本建设省建筑研究所,新耐震设计法(案),建筑研究报告No.79,1977,3: 137~139.
    [9] Parmelee R A, ludtke C A. Seismic soil-structure interaction of buried pipelines(A ). Proc of US National Conf Earthq Eng (C) Oakland: EERI 1975: 406~415.
    [10] S Takada. Earthquake resistant design of underground pipelines. Proc. of 6th WC E E. New Delphi,1977,132~145.
    [11] Muleski,G E,Ariman,T., Aumen. A shell model o f a buried pipe in a seismic environment. Journal of Pressure Vessel Technology.ASME.101,1979,44~50.
    [12] Hindy A,Novak M. Earthquake Response of Under Ground pipeline(J) Journal of Earthquake Engineering Structure Dynamic,1979,7(5): 451~476.
    [13] C C Chen,T Ariman. Elastic buckling analysis of buried pipelines under seismic loads .A S M E.1980,12~24.
    [14] Katsumi Matsubar, Masaru Hoshiya. Soil spring constants of buried pipelines for seismic design[J]. Journal of Engineering Mechanics. 2000,126(1): 76~83.
    [15]叶耀先,魏琏,陈耽.浅埋地下管线的振动性状[A].地震工程论文集[C].北京科学出版社,1982,12.
    [16]熊占路.用离散模型分析地下管道的地震应力[A].第二届全国地震工程会议论文集[C].北京:中国地震学会,1987.
    [17]甘文水,侯忠良.地震行波作用下埋设管线的反应计算[J].地震工程与工程振动,1988,8(2): 79~86.
    [18]张立翔,黄文虎,A S TIJSSELING.输流管道流固耦合振动研究进展[J].水动力学研究与进展A辑, 2000,(03).
    [19]江建详,黄幼玲.弹性支承输流管道固有频率计算[J].振动工程学报,1992,5(4): 396~402.
    [20]王世忠,刘玉兰,黄文虎.输送流体管道的固—液耦合动力学研究[J].应用数学和力学,1998,19(11): 987~993.
    [21]张立翔,黄文虎.输流管道非线性流固藕合振动的数学建模[J].水动力学研究与进展,2000,15(1):116~128.
    [22] Trifunac M D.Scatteirng of plane SH-waves by a semi-cylindrical canyon[J].Earthquake Engineeirng and Structural Dynamics,1973(1): 267~281.
    [23] Lee V W.,Trifunac M D. Response of tunnels to incident SH waves, Eng Mech Div,1979,21: 643~659.
    [24] Thambirajah Balendra,David P. Thambiratnam Dynamic response of twin circular tunnels due to incident SH-waves,Earthquake Engineering and Structural Dynamics1984,12(2): 181~201.
    [25] Liu D .K.,Gai B .Z.,Tao G Y. Applications of the Method of Complex Functions to Dynamic Stress Concentrations. Wave Motion. 1982,4: 293~307.
    [26]林宏,史文谱,刘殿魁.SH波入射时浅埋结构的动力分析.哈尔滨工程大学学报.2001,22(3):83~87.
    [27] Wang G. Q. and Liu D. K. Scattering of SH-wave by multiple circular cavities in half space. EEEV.2002,1(1):36~44.
    [28]刘殿魁,吕晓棠.浅埋圆柱形弹性夹杂附近的半圆形凸起对SH波的散射[J].哈尔滨工程大学学报,2006,27(2):189~195.
    [29]史文谱,陈瑞平,张春萍.直角平面内弹性圆夹杂对入射平面SH波的散射.应用力学学报,2007,24(1):34~47.
    [30] Lee V W.,Cao H. Diffraction of SV waves by circular canyons of various depths,J Eng Mech Div,1989,115(9): 2035~2056.
    [31] Cao H.,Lee V W. Scattering of plane P waves by circular Cylindrical canyons with various depth-to-width Ratio, Soil Dyn Earthq Eng,1990,9(3):141~150.
    [32] Lee V W.,Karl J. Diffraction of SV waves by underground circular cylindrical cavities, Soil Dyn Earthq Eng,1992,11:445~456.
    [33]纪晓东.地下圆形衬砌隧道对入射平面p波的散射:[硕士学位论文],天津:天津大学,2002.
    [34]梁建文,张浩,Lee V W.地下洞室群对地面运动影响问题的级数解答:P波入射,地震学报,2004,26(3):269~280.
    [35]梁建文,张浩,Lee V W.地下双洞室在SV波入射下动力响应问题解析解[J].振动工程学报,2004,17(2):132~140.
    [36]梁建文,巴振宁,Lee V W.平面P波在饱和半空间洞室周围的散射(I):解析解[J].地震工程与工程振动,2007,27(1):1~6.
    [37]梁建文,巴振宁,Lee V W.平面P波在饱和半空间洞室周围的散射(II):数值结果[J].地震工程与工程振动,2007,27(2):1~11.
    [38] D.M .Boore,S .C .Harmsen and S.T .Ha rding, Wave Scattering From a Step Change in Surface Topography, Bull. Soc.Am .,1972,71:117~125.
    [39] W. D. Smith. The Application of Finite-element Analysis to Body Wave Propagation Problems, Geophys. J .R .A str. Soc.,1975,42:747~768.
    [40] S .Harmsen and S .Harding,Surface Motion over a Sedimentary for Incident Plane P and SV Waves,Bull. Seism. Soc. Am. Valley 1981,71: 655~670.
    [41] A .Ohtsuki, H. Yamahara and T .Tazoh, Effect of Latrral In homo geneity on Seismic Wave,II. Observations and Analyses,Earthq. Eng. Struct. Dyn.,1984,12: 795~816.
    [42]廖振鹏,杨柏坡,袁一凡.三维地形对地震地面运动的影响,地震工程与工程振动,1981,1(1):1~13.
    [43] N.Cheng, Borehole Wave Propagation in sotropic and the Tube Wave, Geophysics,1993,58:1091~1098.
    [44]廖振鹏,杨光.稳态SH波动的有限元模拟[J].地震学报,1994, 16(1):96~105.
    [45]杨光,刘增武.地下隧道工程地震动分析的有限元一人工透射边界方法[J].工程力学,1994,11(4):122~130.
    [46]高峰等.隧道三维地震反映分析若干问题的研究[J].岩土工程学报,1998, 20(4):48~53.
    [47]黄菊花等.地基中振动波传播的有限元分析[J].振动与冲击,1999, 18(1): 38~43.
    [48]陈波,吕西林等.用ANSYS模拟结构一地基动力相互作用振动台试验的建模方法[J].地震工程与工程振动,2002,22(1):126~131.
    [49] C.A.Davis,V.W.Lee and J.P.Bardet. Transverse response of underground cavities and pipes to incident SV waves [J]. Earthquake Engineering and Structural Dynamics,2001(30): 383~410.
    [50]于翔,陈启亮,赵跃堂,等.地下结构抗震研究方法及其现状[J].解放军理工大学学报,2000,1(5): 63~69.
    [51] Pao Y H, Mow C C. Diffraction of Elastic Waves and Dynamics Stress Concentrations [M]. New York: Crane, Russak & Company Inc., 1973.
    [52]纪晓东,梁建文,杨建江.地下圆形衬砌洞室在平面P波和SV波入射下动应力集中问题的级数解[J].天津大学学报,2006,39(5):511~517.
    [53]房营光,孙钧.冲击环境下非线性岩土与相邻多个结构的相互作用[J].地震工程与工程振动,1993,13(2):38~47.
    [54]川岛一彦.地下结构の耐震设计[M].日本:鹿岛出版社, 1994, 15~48.
    [55] Takada S, Tanabe K. Three-dimensional seismic response analysis of buried continuous of jointed pipelines[J]. J of Pressure Vessel Technology,1987: 47~53.
    [56]沈荣瀛,胡剑凌.充液管道振动研究[J].噪声与振动控制,1996,(05):46~58.
    [57]王铁成.混凝土结构原理.天津大学出版社,2002.
    [58]梁建文.穿越三种土介质管线的动力分析[J].天津大学学报,1998,31(2): 163~168.
    [59]张社荣,陈荣.沟埋式管与土相互作用的动态有限单元法[J].天津大学学报,1995,28(3): 369~374.
    [60]谢旭,何玉熬.地下埋设管线通过不同介质时的地震反应研究[C].第二届全国地震工程会议论文集,1987.
    [61] Wang L.R.L.Cheng K M. Seismic response behavior of buried pipelines[J].J of Pressure Vessel Te chnology 1979: 21~30.
    [62] Nelsonl, Weidlinger P. Dynamic Seismic analysis of long segmented lifelined[J]. J of Pressure Vessel Technology. 1979: 10~20.
    [63]唐纯喜.长距离输水工程的关键结构体系可靠度研究.博士学位论文,浙江大学,2007.
    [64] Datta S K, Akily N E. Diffraction of Elastic waves in a Half Space I: integral Representations and Matched Asymptotic Expansions. In Modern Pr oblemsin Elasstic wave Propagation ed. Miklowitz J. and Achenbach J D. AWiley-Interscince, 1987,197~218.
    [65] Pao Y H, Ku G C C, Ziegler F. Application of the Theory of Generalized Rays to Diffraction of Transient waves by a Cylinder. Wave Motion,1983,5:385~398.
    [66] Han F.,Wei Y. and Liu D. K. The Interaction of Plane SH-wave and Circular Cavity Surfaced with Lining in Anisotropic Media. Applied Mathematics and Mechanics. 1995,16(2): 1067~1078.
    [67] Shi S. X. Han F. Wang Z. Q.,and Liu. D. K. The Interaction of Plane SH-wave and Non-circular Cavity Surfaced with Lining in Anisotropic Media, Applied Mathematics and Mechanics. 1996,17(9): 809~820.
    [68]胡超,刘殿魁.无限大板开孔弹性波的散射及动应力集中[J].力学学报.特刊1995.
    [69] Liu D. K. and Hu C. Scattering of Flexural Wave and Dynamic Stress Concentration in Mindlin’s Thick Plates With a Cutout. Acta Mechanica Sinica. 1996,12(2): 169~185.
    [70] Liu D.K. and Han F. Scattering of Plane SH-waves by Cylindrical Canyon of Arbitrary Shapes in Anisotropic Media. Acta Mechanica Sinica. 1990,6(3):256~266.
    [71] Liu D.K. and Han F. Scattering of plane SH-wave by Cylindrical Canyon of Arbitrary Shapes. Int. H. Soil. Dyn. and Ear. Eng. 1991,10(5): 249~255.
    [72] Nasser Moeen-Vaziri,Trifunac,M. D.,Anote on the Vibrations of a Semi-Circular Canal Excited by Plane SH-Wave, Bulletin of the Indian Society of Earthquake Technology,Vo1.18,1981,No.2,88~100.
    [73] Nasser Moeen-Vaziri,M.D.Trifunac,Scattering and diffraction of plane SH-waves by two-dimensional inhomogeneities:Part I,Soil Dynamics and Earthquake Engineering,Vol.7,1988,No.4,179~188.
    [74] Totorovska MI, Trifunac MD. Analytical model for inplane building foundation soil interaction: incident P-SV-and Rayleigh Waves. Rep. No.CE 90-01. Dept. of Civil Engrg,University of Southern California,Los Angeles,California,1990.
    [75] M.I.Totorovska,A. Hayir,M.D. Trifunac. Antiplane response of a dike on embedded foundation to incident SH waves. Soil Dynamics and Engineering, 2001,21:593~601.
    [76] Abdul Hayir, Maria I. Todorovska, Mihailo D. Trifunac. Antiplane response of a dike with flexible soil-structure interface to incident SH waves. Soil Dynamics and Engineering,2001,21:603~613.
    [77] David H. Marshall,P.E.,etc. Tarrant Regional Water District's Risk Management Plan for Prestressed Concrete Cylinder Pipe,Pipelines 2005.
    [78] V. W. Lee,S. Chen and I. R. Hsu. Antiplane Diffraction from Canyon Above Subsurface Unlined Tunner. A. S. C. E. Eng. Mech. Div. 1999.
    [79] Abdul Hayir,Maria I. Todorovska,Mihailo D. Trifunac. Antiplane response of a dike with flexible soil-structure interface to incident SH waves. Soil Dynamics and Engineering,2001,21:603~613.
    [80] M.I.Totorovska,A. Hayir,M.D. Trifunac. Antiplane response of a dike on embedded foundation to incident SH waves. Soil Dynamics and Engineering,2001,21:593~601.
    [81] Zarghamee, M. S.,and Dana,W. R. (1991). A step-by-step integration procedure for computing state of stress in prestressed concrete pipe. Computer analysis of the effects of creep, shrinkage, and temperature changes on concrete structures, ACISP-129, C. C. Fu and M. D. Daye, eds., American Concrete Institute (ACI),Detroit,Mich.,155~170.
    [82] Zarghamee M. S., Fok K. L.and Sikiotis E. S. Limit-states design of prestressed concrete pipe. II: Procedure. J. of Struct. Engrg., 116(8),2105~2126.
    [83] Zarghamee M.S., Eggers D.W., Ojdrovic R.P. and Valentine, D.P. Thrust Restraint Design of Concrete Pressure Pipe, Journal of Structural Engineering, ASCE, 130(1), January, 95–107 and Closure (2005), 131(9), September, 1478~1482.
    [84] Zarghamee M.S.and Fok, K.L., Analysis of Prestressed Concrete Pipe under Combined Loads. Journal of Structural Engineering, Vol. 116, No. 7:2022~2039.
    [85] Heger F. J., Zarghamee M. S., and Dana W. R. Limit states design of prestressed design of prestressed concrete pipe. I: Criteria. J. Struct. Engrg., ASCE, 116(8),2083~2104.
    [86]宋珺.地震作用下埋地长距离输水管道动力特性研究.硕士学位论文,太原理工大学,2005.
    [87] A.P.S.Selvadural著.范文田、何广汉、张式深、罗无量译,土与基础相互作用的弹性分析,北京:中国铁道出版社,1984.
    [88] Z.Celep, K.Güler, Static and dynamic response of a rigid circular plate on a tensionless Winkler foundation, Journal of Sound and Vibration 276(2004), 449~458.
    [89] K. Güler And Z. Celep, Static And Dynamic Responses of A Circular Plate On A Tensionless Elastic Foundation, Journal of Sound and Vibration (1995)183(2): 185~195.
    [90]梁建文.穿越三种土介质管线的动力分析[J].天津大学学报,1998,31(2): 163~168.
    [91]刘爱文.基于壳模型的埋地管线抗震分析.博士学位论文,中国地震局地球物理研究所,2002.
    [92]梁建文,何玉敖.地下管道轴向动态失稳分析[J].工程力学,1994,11(3): 129~136.
    [93] Isoyama, R,Katayama.T, Practical performance evaluation of water supply networks during seismic disaster,Lifeline earthquake Engineering.The current state of Knowledge, NewYork: ASCE, 1981, 111~122.
    [94] Toki.k, and Sato.T, Estimation of damage of water distribution systems by earthquakes, Recent Advance in lifeline Earthquake Engineering in Japan, ASME, 1985, 89~96.
    [95] Sun.S, The counter measures against earthquake for water supply,Proc.of Third China Japan-U.S Trilateral Symposium on lifeline Earthquake Engineering 1998, 341~348.
    [96]王东炜.地下管线震害预测初探[J].郑州工学院学报,1991, 12 (1):23~26.
    [97]高惠英.基于GIS的供水系统地震可靠性分析,博士学位论文.中国地震局工程力学研究所,2000, 65~69.
    [98] Leon Ruliang wang, Seismic Evaluation Model for Buried L ifelines, Lifeline Earthquake Engineering,The Current State of Knowledge,1981, 335~347.
    [99] Liang.J. Dynamic response of pipeline laid through riverbeds, PVP-Vol-312, ASME, 1995, 147~152.
    [100]刘为民,孙绍平.在地震行波作用下地下管道的反应.北京市政工程研究所研究报告,1994.
    [101]黄强兵,彭建兵,杨天亮.埋地管道在地震波作用下的抗震性能分析[J].工程勘察,2004,3: 64~67.
    [102]冯德益.地震波理论与应用.北京:地震出版社,1988,57~68.
    [103]中国建筑科学研究院结构所.地下管线抗震措施的试验研究,1987,77~78.
    [104]张陵,郭惠勇,孙清等.长输管道抗震研究的进展与趋向[J].西安交通大学学报,2001,35(2): 203~209.
    [105]张素灵,李亦纲,曲国胜等.生命线地震工程的发展与前瞻[J].世界地震工程,2001,11(2): 79~85.
    [106] Yasuo Ogawaa, Takeshi Koike. Structural design of buried pipelines for severe earthquakes[J].Soil Dynamics and Earthquake Engineering,2001,21:199~209.
    [107]郭海燕.竖向地震荷载下输液管道弯曲振动的有限元分析[J].振动工程学报,1995,8(4):384~389.
    [108]薛景宏,朱福祥,郝进锋.埋地输液管道轴向地震激励下的动力响应[J].大庆石油学院学报,2000,24(3):93~95.
    [109]薛景宏,崔大勇,王振等.埋地输液管道横向地震激励下的动力响应[J].大庆石油学院学报,2000,24(3):96~99.
    [110] D.C.Brooker. Numerical modeling of pipeline puncture under excavatorloading. PartI Development and validation of a finite element material failure model for puncture simulation[J]. International Journal of Pressure Vessels and Piping,2003, 80:715~725.
    [111]吴小刚,张土乔,张仪萍等.管道埋深对管一土耦合应力的影响规律浅析[J].水利水电科技进展,2003,23(6):64~67.
    [112]孙建刚,薛景宏,王振,地下输液管道动力反应分析[J].地震工程与工程振动,2000,20(3): 87~92.
    [113]刘敬喜,李天匀,刘土光等.基于波传播方法的埋地管道的振动特性分析[J].固体力学学报,2005, 26(2):187~192.
    [114]薛景宏,朱福祥,张永益.土特性改变对埋地管线轴向地震响应的影响[J].大庆石油学院学报,2001,25(2):63~65.
    [115]梁建文,穿越回填河谷及河床管线的动力特性[J].天津大学学报,1995,1(1):89~92.
    [116]王维佳.粘性可压缩流体中的波[J].地球物理学报,1984,27(1):84~93.
    [117] Yan Han,Shaoping Sun,Yuping C ui.Some parameters for seismic design and analysis of buried pipelines[C]. Proceedings of the ASCE International Conference on Pipeline Engineering and Construction. New Pipeline Technologies,Security and Safety. 2003,1135~1144.
    [118] Fuller C R,Fahy F J.Characteristic of wave propagation and energy distributions in cylindrical elastic shells titled with fluid.ASME Journal of Sound and Vibration,1982,81(4):501~518.
    [119] Fuller C R.Monopole excitation of vibrations in all infinite cylindrical elastic shell filled with fluid.ASME Journal of Sound and Vibration 1984,96(1):101~110.
    [120] Pavic G.Vibroacoustical energy flow through straight pipes.ASME Journal of Sound and Vibration,1992,142(2):293~310.
    [121] Jong C A F de. Analysis of pulsations and vibrations influid-filled pipe systems:[dissertation]. Eindhoven: Eindhoven University of Technology; The Netherlands,ISBN 90-386-0074-7.1994.
    [122] Lesmez M W,Wiggert D C,Hatfieid F J. Modal analysis of vibrations in liquid-filled piping-systems.ASM E J Fluids Eng,1990,112:311~318.
    [123] Hatfield F J. Wiggert D C. Seismic pressure surges in liquid filed pipelines. J Pressure Vessel Technol,1990,112:279~283.
    [124] Sender C,Li G X, Paidoussis P M. The nonlinear equations of motion of pipe conveying fluid. Journal of Sound and Vibration,1994,169(5):577~599.
    [125] Williams E G. Structural intensity in thin cylindrical shells. Journal of the Acoustic Society of America,1991,89(4):1615~1622.
    [126] Pavic G. Vibrational energy flow in elastic circular cylindrical shells. Journal of Sound and Vibratioh,1990,142:293~310.
    [127]薛景宏,退广东,李井水.埋地管道动力反应时程分析结果与规范比较[J].油气田地面工程,2005,24(11):11~24.
    [128]孙国富,孙国仓,盖京波.浅埋相邻多个圆形衬砌与SH波的相互作用[J].山东建筑工程学院学报,2006,21(1):19~25.
    [129]周德良,翁智远.弹性半空间中相邻两结构在SH波作用下的动力响应[J].固体力学学报,1992,13(3):244~248.
    [130]齐辉,王艳,刘殿魁.半无限空间界面附近SH波对圆形衬砌的散射[J].地震工程与工程振动,2003,23(3):41~46.
    [131]王会波,赵立敏,耿运生.地下涵管结构抗震分析概述[J].2007,5(3):85~88.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.