山地建筑结构设计地震动输入与侧向刚度控制方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
山地建筑在山地城市中被广泛应用且日益增多,而山地建筑结构抗震设计理论研究却严重滞后于工程实践的需要。在此背景下,本文系统地研究了山地建筑结构设计地震动输入问题和侧向刚度控制方法。主要研究工作及成果如下:
     ①为了满足山地建筑体系的需求和发展提出了与之对应的山地建筑结构概念,界定了山地建筑结构类型,澄清了山地建筑结构抗震设计关键问题,从而本文明确了山地建筑在设计时需要遵循山地建筑结构设计相关要求和规定。
     ②结合工程实际针对掉层结构不同的接地方式,提出了三种几何计算模型。从震害调查及工程实践中提炼和归纳了典型山地建筑结构存在的特殊问题,并基于掉层结构受力特性、动力特性及抗震性能的分析,将山地建筑结构抗震特殊问题梳理和概括为三个方面:地震动输入问题、竖向不规则问题和抗震措施问题。
     ③补充和完善了山地建筑结构设计地震动输入相关研究,为抗震规范相关内容的规定提供参考。采用有限元数值分析方法,计算了高度在10~70m范围,坡角在15°~ 60°范围内的28个粘弹性岩质坡地模型在水平和竖向白噪声输入下的线弹性响应,分析了坡高及坡角变化对坡地斜坡段反应谱及谱比的影响规律,给出了岩质山地建筑结构设计水平地震动放大系数;同时还给出了需要考虑竖向地震动影响的山地工程结构设计竖向地震动的放大系数。
     ④进行了山地建筑结构侧向刚度计算方法研究,利用等代柱的思想简化了山地建筑结构侧向刚度计算方法,揭示其内力分配规律。通过考虑掉层部分梁柱线刚度比的影响,给出等代柱高度计算方法,并验证等代柱方法的正确性。此外,通过考虑柱端转角的影响对单层单跨和多层多跨不等高框架柱抗侧刚度D值进行修正。相当于给出了掉层结构等代成底层不等高框架后手算底部刚度的方法。
     ⑤首次对山地建筑结构侧向刚度控制方法进行了研究,提出了山地建筑结构侧向刚度控制指标并给出了设计建议。主要包括:1)检验出现有层间受剪承载力指标和层刚度控制指标对掉层结构竖向不规则控制已经失效;2)根据掉层结构不等高接地的特点,针对掉层结构提出了“层内侧向刚度比”的概念;3)综合弹性层间位移角、层间剪力、相对屈强比的分布规律及弹塑性分析结果,给出了掉层结构层侧向刚度控制指标及薄弱层位置判定依据;4)给出了掉层结构计算起算点位置建议。5)给出了薄弱层内力调整和薄弱部位延性控制相关设计建议。
     本文为第一本《山地建筑结构设计规程》编制奠定了研究基础及理论依据。
Buildings on the slope are widely used and have been increasing in mountainous city, but the research on seismic design theory of structures on the slope has lagged behind the needs of engineering practice. Therefore, the design ground motion input problem and the lateral stiffness control method of structures on the slope are studied systemically. The achievements of this thesis are shown as follows:
     To satisfy the demands of the development of buildings on the slope, the concept of structures on the slope is proposed, the type of them is defined and the key problems of their seismic design are clarified. Thus the rules and requirements which should be conformed in the design of structures on the slope are verified in this thesis.
     Three geometric models of the structures supported by foundations with different locations are established according to engineering practice. The special problems of seismic design of typical structures on the slope are described and summarized from seismic damage investigation and engineering practice. Based on the analysis of the mechanical properties, dynamic characteristics and seismic behavior for structures supported by foundations with different locations, the special problems are summarized to three aspects: ground motion input, vertical irregularity and seismic measures.
     Research on the seismic input of the structures on the slope is supplemented and completed, which offers the reference to the code for seismic design of buildings. The elastic responses of 28 viscoelastic rock slope models under horizontal and vertical white noise input are analyzed by the finite-element method. And the slope height and the slope angle of the models are 10~70 meters and 15~60 degrees respectively. Furthermore, the amplification coefficients of horizontal ground motion of the structures on the rock slope are proposed, and the seismic input problem for the structures is solved; meanwhile, the amplification coefficients of vertical ground motion are proposed to the structures on the slope needing to take into account the influence of vertical ground motion.
     The method of calculation lateral stiffness of the structures on the slope, which is simplified via equivalent column method, is studied. And the distribution law of the internal force is revealed for the structures on the slope. Considering the influence of linear stiffness ratio between the column and beam of the losing-floor part, the method to compute the height of the equivalent column is proposed and verified properly. Furthermore, through considering the influence of rotation angle of the column end, the lateral stiffness D values of unequal height frame columns for the structures with“one story, one span”and“multilie-story, multilie-spans”are both modified.
     The control method of lateral stiffness of the structures on the slope is studied firstly, and the control index and some design suggestions are proposed. The main content includes the following parts: 1) The present control indexes of vertical irregularity that is the index of story shear bearing capacity and story lateral stiffness aren’t applicable to the structures supported by foundations with different locations. 2) According to the characteristics of foundations with different locations, the concept of“internal story equivalent lateral rigidity ratio”is put forward to the structures supported by foundations with different locations. 3) To summarize the distributing law of elastic story drift ratio, story shear and relative yield strength ratio and the results of the elastc-plastic analysis, the index of lateral stiffness and the criterion of the weakness floors is proposed. 4) The local of the initial calculation point of the structures supported by foundations with different locations is suggested. 5) Some design suggestions of internal force adjustment of the weakness stories and ductility control of the weakness part are given.
     This thesis prepares the basic study and theoretical basis for the draft of the first structure on the slope design code.
引文
[1]卢济威,王海松.山地建筑设计[M].中国建筑工业出版社, 2001.
    [2]戴志中.现在山地建筑接地诠释[J].城市建筑, 2006.
    [3]郭红雨.山地建筑意义的探寻[J].中华建筑, 2000, 18(3):16-20.
    [4]廖振鹏,杨柏坡.波动理论基础知识及其在地震工程中的初步应用(续)[J].华南地震, 1994, 14(4):84-88.
    [5]廖振鹏,袁一凡.波动理论基础知识及其在地震工程中的初步应用(续)[J].华南地震, 1994, 14(3):93-98.
    [6]廖振鹏,袁一凡.波动理论基础知识及其在地震工程中的初步应用(续)[J].华南地震, 1994, 14(2):68-73.
    [7]廖振鹏,袁一凡.波动理论基础知识及其在地震工程中的初步应用(续)[J].华南地震, 1994, 14(1):70-76.
    [8] LIAO Zhenpeng. Normal transmitting boundary conditions[J]. Science In China, 1996, 39(3):244-254.
    [9] LIAO Zhenpeng. Transmitting boundary and radiation conditions[J]. Science In China, 2001, 44(2):178-186.
    [10] LIAO Zhenpeng, H. L. Wong, Yang Baipo, Yuan Yifan. A transmitting boundary for transient wave analyses[J]. Scientia Sinica(Series A):1063-1076.
    [11]廖振鹏.近场波动的有限元模拟[J].地震工程与工程振动, 1984, 4(2):1-14.
    [12]廖振鹏,刘晶波.波动的有限元模拟[J].地震工程与工程振动, 1989, 9(4):1-14.
    [13]廖振鹏.近场波动的数值模拟[J].力学进展, 1997, 27(2):193-212.
    [14]廖振鹏,杨柏坡.频域透射边界[J].地震工程与工程振动, 1986, 6(4):1-9.
    [15]廖振鹏.透射边界与无穷远辐射条件[J].中国科学(E)辑, 2001, 31(3):254-262.
    [16]杨柏坡,杨笑梅.复杂场地上结构地震反应的研究[J].地震工程与结构振动, 1997, 17(2).
    [17]杨柏坡,杨笑梅.二维不均匀场地地震地面运动的估算[J].华南地震, 1996, 16(2).
    [18]杨柏坡,杨笑梅.陡坎对地震地面运动的影响[R].国家地震局工程力学研究所研究报告, 1994.
    [19] Boore, D. M. , S. C. Harmsen and S. T. Harding. Wave Scattering from A Step Change in Surface Topography [J ]. Bull. Seism. Soc. Am. , 1981, 71(1):117-124.
    [20]李山有,廖振鹏.地震体波斜入射情形下台阶地形引起的波型转换[J].地震工程与结构振动, 2002, 22(4).
    [21]李山有,王学良,周正华.地震波斜入射情形下水平成层半空间自由场的时域计算[J].吉林大学学报(地球科学版), 2003, 33(3):372-376.
    [22]李山有,金星,陈先,马强.地震动强度与地震烈度速报研究[J].地震工程与工程振动, 2002, 22(6):1-7.
    [23]刘晶波.局部不规则地形对地震地面运动的影响[J].地震学报, 1996, 18(2):239-245.
    [24]王艳,刘晶波.地震波斜入射时软土层对地震地面位移峰值的影响[J].防灾减灾工程学报, 2007, 27(2):28-32.
    [25]刘立平,杨实君,李英民.软夹层对边坡动力特性的影响分析[J].重庆大学学报(自然科学版), 2007, 30(5):31-34.
    [26]吕晓棠. SH波对夹杂裂纹附近半圆形凸起的散射[D].博士学位论文,哈尔滨工程大学, 2007.
    [27]李文华. SH波入射时两个等腰三角形凸起地形的相互作用[D].硕士学位论文,哈尔滨工程大学, 2006.
    [28]张倩.场地土层地震反应特征研究[D].硕士学位论文,中国地震局地球物理研究所, 2002.
    [29] Anooshehpoor A, Brune J N. Foam rubber modeling of topographic and dam interaction effecs at pacoima dam [J]. Bull. Seis. Soc. Am. 1989, 79:1347-1360.
    [30] Ashford S A, Sitar N. Analysis of topographic amplifieation of inclined shear waves in a steep coastal Bluff [J]. Bull. Seis. Soc. AM. 1997, 87:692-700.
    [31] Ashford S A, Sitar N. In the1994 Northridge earthquake:Analysis and observations[A]. 6th U. S. National Conferece on Eathtaquake Engineering[c], 1997.
    [32] Boore D M. A note on the effect of simple topography on seismic SH waves[J]. Bull. Seis. Soc. Am. 1972, 62:275-284.
    [33] Ashford S A, Sitar N, Lymer J, Deng N. ToPographic effee on the seismic response of steep[J]. Bull. Seis, Soe. Am. 1997, 87:701-709.
    [34] Bard P Y. Diffraeted waves and displacement field over two-dimensional elevated topographies[J]. GeoPhys. J. R. Astr. Soc. 1982, 71:731-760.
    [35] Bard P Y, Tueke rB E. Undeground and ridge site effects:a comparison of observation and heory[J]. Bull. Seis. Soc. Am. 1985, 75:905-922.
    [36] Bouchon M. Effect of topography on surface motion[J]. Bull. Seis. Soc. Am. 1973, 63:615-632.
    [37] Celebi M. Topographic and geological amplification determined from strong-motion and aftershock records of 3 March 1985 Chile earthquake [J]. Bull. Seis. Am. 1987, 77:1147-1107.
    [38] Davis L L, West R. observed effects of topography on ground motion[J]. Bull. Seis. Soc. Am. 1973, 63:283-298.
    [39] Geli L, Bard P Y, Jullien B. The effects of topography on earthquake ground motion:A review and new results[J]. Bull. Seis, 5. Soc. Am. 1988, 78:42-63.
    [40]王一功,杨佑发.多层接地框架土-结构共同作用分析.世界地震工程, 2005.
    [41]杨佑发,王一功,李元初.山区台地框架建筑抗震性能研究[J].振动与冲击, 2007, 26(6):36-51.
    [42]杨佑发,王一功.倾斜基岩上的土—框架相互作用研究[J].地震工程与结构振动, 2005, 25(2).
    [43]韩军,李英民,刘立平等. 5. 12汶川地震绵阳市区房屋震害统计与分析[J].重庆建筑大学学报, 2008, 30(5):21-27.
    [44]李裕澈,秋教,石川有三. 1975年海城7. 3级地震在朝鲜半岛的震害及对日本九州地区的影响[J].地震学报, 2007, 29(2):214-221.
    [45]王可,黄志广. 2005年江西九江地震建筑震害与分析[J].建筑结构, 2006, 36(6):21-24.
    [46]非明伦,周光全,卢永坤等. 2007年宁洱6. 4级地震宁洱县城现代建筑典型震害分析[J].地震研究, 2007, 30(4):359-363.
    [47]李宏男,赵衍刚.日本新泻县中越大地震震害调查及分析[J].自然灾害学报, 2005, 14(1):165-174.
    [48] Apostolakis G. . QU Bing, Ecemis, et al. NurhanField reconnaissance of the 2007 Niigata-Chuetsu Oki earthquake[J]. Earthquake Engineering and Engineering Vibration, 2007, 6(4):317-330.
    [49]蔡之瑞,孙柏涛.唐山地震震害与重建唐山[J].世界地震工程, 1996(4):48-50.
    [50]李建中,吕西林,李翔等.汶川地震中钢筋混凝土框架结构的震害[J].结构工程师, 2008, 24(3):9-11.
    [51] Irtern E, Turker K, Hasgul U. Causes of collapse and damage to low-rise RC buildings in recent Turkish earthquakes[J]. Journal of Performance of Constructed Facilities, 2007, 21(5): 351-360.
    [52] Jain A, SIMSIR C C, DUMORTIER A P, et al. Investigation of damage to a masonry condominium building from the 1994 Northridge Earthquake[J]. Proceedings of the Fourth Forensic Engineering Congress. 2007:183-194.
    [53] Yashiro K, Kojima Y, SHIMIZU M. Historical earthquake damage to tunnels in Japan and case studies of railway tunnels in the 2004 Niigataken-Chuetsu earthquake[R]. Quarterly Report of RTRI (Railway Technical Research Institute) (Japan), 2007, 48(3):136-141.
    [54] Inel M, Ozmen H B, Bilgin H. Re-evaluation of building damage during recent earthquakes in Turkey[J]. Engineering Structures, 2008, 30(2): 412-427.
    [55] Alarcon J E. , Taucerf S E, The 15 august 2007 PISCO, PERU earthquake- post–earthquakefield survey[C]//14th World Conference On Earthquake Engineering, October 12-17, 2008, Beijing, China. Beijing:14WCEE, 01-1067.
    [56] Gupta A, Mcdoanld B M. Performance of building structures during the October 15, 2006 Hawaii earthquake[C]//14th World Conference On Earthquake Engineering, October 12-17, 2008, Beijing, China. Beijing:14WCEE, 01-1035.
    [57]李英民,刘立平.汶川地震建筑震害与思考[M].重庆:重庆大学出版社, 2008.
    [58]黄耀志.山地城市生态特点及发展模式研究[D].重庆建筑大学硕士学位论文, 1995.
    [59]潘国梁.从环境地质观点论本省山坡地之开发[M].山地坡地开发专集(二), 2001.
    [60]傅抱璞.城市规划与环境[M].科学出版社. 1983.
    [61]赫尔曼R(西德).水文学导论[M].高等教育出版社, 1984.
    [62]荣棉水,李小军.局部地形对出平面运动谱特性的影响分析[J].中国地震, 2007, 23(2):147-156.
    [63]荣棉水,李小军,吕悦军,尤红兵.平台地形地面运动特征周期值的影响[J].中国地震, 2009, 25(2):178-182.
    [64]中华人民共和国建设部.建筑抗震设计规范[S].北京:中国建筑工业出版社, 2008
    [65]胡聿贤.地震工程学[M].北京:地震出版社, 2006.
    [66]李杰,李国强[M].北京:地震出版社, 2002.
    [67] Hartzell S H, Carver D L, King K W. Initial investigation of site and topographic effects at Robinwood ridge, California[J]. Bull. Seis. Soc. Am. 1994, 84:1336-1349.
    [68] Kawase H. Time-domain reponse of a semi-circular canyon for incident SV, P and Rayleigh waves calculated by the discrete wavenumber boundary element method[J]. Bull. Seis. Soc. Am. 1988, 79:145-1437.
    [69] Kawase H. Topographic effect at the critical SV waves incidence:Possible explanation of damage pattren by the Whittier Narrow, Califomia, earthquake of octorber 1987[J]. Bull. Seis. Soc. Am. 1990, 80:1-22.
    [70] PedersenH, Le Brun B, Hatzfeld D, CamPillo M, Bard P Y. Ground rnotion amPlitude across ridges[J]. Bull. Seis. Soc Am. 1994, 84:1786-1800.
    [71] Pedersen H, Sanchez-Sesma F J, M. Three-dimensional scattering CamPillo by two dimensional topographies[J]. Bull. Seis. Soc. Am. 1994, 84:1169-1183.
    [72] Rogers A M, Borcherdt R D, Covington P A, Perkins D M. A comParative ground response study near Los Angeles using recordings of Nevada nuclear test s and the 1971 SanFernando earthquake[J]. Bull Seis. Soc. Am. 1984, 74:1925-1949.
    [73] Sanchez-Sesma F J, Herrera I, Avils J. A boundary method for elastic wave diffraction application to scattering SH waves by surfaece irregularities [J]. Bull. Seis. Soc. Am. 1982,72: 473-490.
    [74] Sanehez-Sesma F J, Bravo M A, Herrera I. Surface motion of topographic irregularities f or incident P, SV and Rayleigh waves [J]. Bull. Seis. Soc. Am. 1985, 75:437-456.
    [75] Sanchez-Sesma F J, CamPillo M. Diffraction of P, SV and Rayleigh waves by topographic feature, :A boundary Integral Formulation[J]. Bull. Seis. Soc. Am. 1991, 81:2234-2253.
    [76]彭承光,李运贵.场地地震效应工程勘察基础[M].北京地震出版社, 189-217.
    [77] Trifunac M D. Surface motion of a scmi-cylindrical valley for incidelat plane SH waves[J]. Bulletin of the Seismological Society of America, 1971, 61:1755-1770.
    [78] Wlong, H L and Trifunac, M D. Surface motion of a semi-elliptical alluvial valley for incident plane SH waves[J]. BSSA, 1974, 64:1389-1408.
    [79] Lee V W. A note on scattering of elastic plane waves by a hemispherical canyon[J]. Soil Dynamics and Earthquake Engineering, 1982, 1:122-129.
    [80] Todorovska M, Lee V W. Motion of shallow circular alluvial valleys for incident plane SH waves:analytical solution[J]. Soil Dynamic and Earthquake Engineering, 1991, 4:192-200.
    [81]袁晓铭,廖振鹏.圆弧形凹陷地形对平面SH波散射问题的级数解答[J].地震工程与工程振动, 1993, 13 (2):1-11.
    [82]袁晓铭,廖振鹏.圆弧型沉积盆地对平面SH波的散射[J].华南地震, 1995, 15(2):1-8.
    [83]梁建文,严林隽.圆弧形层状沉积谷地对入射平面SV波散射解析解[J].地震工程与工程震动, 2001, 24(2):235-243.
    [84]梁建文,张郁山.圆弧形层状凹陷地形对平面SH波的散射[J].地震工程与工程震动, 2003, 16(2):158-164.
    [85]李方杰.局部不规则场地对Rayleigh波的散射[D].天津:天津大学, 2004.
    [86]李小军,廖振鹏,关慧敏.粘弹性场地地形对地震动影响分析的显式有限元有限差分方法[J].地震学报, 1995, 17(3):362-3690.
    [87]杜修力,熊建国等.平面SH波散射问题的边界积分方程分析法[J].中国地震, 1993, 3:30-40.
    [88]廖振鹏.近场波动的有限元模拟[J].地震工程与工程振动, 1984, 4(2):1-14.
    [89]杨柏坡,陈庆彬,袁一凡.地震小区划中复杂场地影响的修正方法[J].地震工程与工程振动, 1991, 11(4):19-27.
    [90]李小军,廖振鹏,关慧敏.粘弹性场地地形对地震动影响分析的显式有限元有限差分方法[J].地震学报, 1995, 17(3):362-369.
    [91]朱镜清.论结构动力分析中的数值稳定性[J].力学学报, 1983, 1(4):388-394.
    [92]孙焕纯.非线性结构动力分析的改进θ法[J].力学学报, 1981, 2:31-40.
    [93]程民宪.负屈服刚度条件下数值积分的收敛性和稳定性[J].力学学报, 1988, 2(1):31-40.
    [94]杜修力,王进廷.阻尼弹性结构动力计算的显式差分法[J].工程力学, 2000, 17(5):36-43.
    [95]杨柏坡,陈庆彬.显式中心差分有限单元法在复杂场地地震反应分析中的应用[J].地震研究, 1992, 15(1):70-78.
    [96]李小军,廖振鹏,杜修力.有阻尼体系动力问题的一种显示差分解法[J].地震工程与工程振动, 1992, 12(4):74-80.
    [97]景立平.波动有限元方程显式逐步积分格式稳定性分析[J].地震工程与工程振动, 2004, 24(5):20-26.
    [98]廖振鹏,黄孔亮,杨柏坡等.暂态波透射边界[J].中国科学(A辑), 1984, 26(6):50-56.
    [99] Lysmer J, Kulemeyer R L. Finite Dynamic Model for Infinite Media[J]. Journal of Engineering Mechanics. ASCE, 1969, 95:859-877.
    [100] Deeks A J, Randolph M F. Axisymmetric. Time-domain Transmitting Boundaries[J]. Journal of Engineering Mechanics, 1994, 120(1):25-42.
    [101]刘晶波,杜义欣,闫秋实.粘弹性人工边界及地震动输入在通用有限元软件中的实现[J].防灾减灾工程学报, 2007. 4, 27:37-42.
    [102]刘晶波,吕彦东.结构-动力相互作用问题分析的一种直接方法[J].土木工程学报, 1998, 31(3):55-64.
    [103]刘晶波,李彬.三维粘弹性静-动力统一人工边界[J].中国科学E辑, 2005, 35(9):966-980.
    [104]刘晶波,吕彦东.结构–地基动力相互作用问题分析的一种直接方法[J].土木工程学报, 1998, 31(3):55-64.
    [105]杜修力,赵密.基于黏弹性边界的拱坝地震反应分析方法[J].水利学报, 2006, 37(9):1063-1069.
    [106]廖振鹏,刘晶波.离散网格中的弹性波动[J].地震工程与工程振动, 1986, 6(2):1-16.
    [107]赵建锋,杜修力,韩强,李立云.外源波动问题数值模拟的一种实现方式[J].工程力学, 2007. 4, 24(4), 52-58.
    [108]刘晶波,杜修力.结构动力学[M].北京:机械工业出版社, 2004
    [109]薄景山,李秀领,刘德东,刘红帅.土层结构对反应谱平台值的影响[J].地震工程与工程震动. 2003, 8. 23(4). 29-33.
    [110] Assimaki D, Gazetas G. Soil and topographic amplification on canyon banks and the 1999 Athens earthquake[J]. JEE, 2004, 8(1):1-43.
    [111]刘洪兵,朱晞.地震中地形放大效应的观测和研究进展[J].世界地震工程, 1999, 15(3):20-26.
    [112]俞载道,曹国敖.随机振动理论及其应用[M].上海:同济大学出版社, 1988.
    [113]荣棉水,李小军,吕悦军,尤红兵.平台地形地面运动特征周期值的影响[J].中国地震,2009, 25(2):178-182.
    [114]荣棉水,李小军.局部地形对出平面运动谱特性的影响分析[J].中国地震, 2007, 23(2):147-156.
    [115] Trifunac, M D. Surface motion of a scmi-cylindrical valley for incidelat plane SH waves[J]. Bulletin of the Seismological Society of America, 1971, 61:1755-1770
    [116] Wlong, H L, Trifunac, M D. Surface motion of a semi-elliptical alluvial valley for incident plane SH waves[J]. BSSA, 1974, 64:1389-1408.
    [117] Lee, v w. A note on scattering of elastic plane waves by a hemispherical canyon[J]. Soil Dynamics and Earthquake Engineering, 1982, 1:122-129.
    [118]刘晶波.局部不规则地形对地震地面运动的影响[J].地震学报, 1996, 18(2):239-245.
    [119]李文华. SH波入射时两个等腰三角形凸起地形的相互作用[D].硕士学位论文,哈尔滨工程大学, 2006.
    [120]张川,王伟,陈剑锋.水平侧力下D值法在底层不等高框架内力计算中的应用[J].世界地震工程, 2002, (4).
    [121]徐培福,傅学怡,王翠坤等.复杂高层建筑结构设计[M].北京:中国建筑工业出版社, 2005.
    [122]王松涛,曹资.现代抗震设计方法[M].北京:中国建筑工业出版社, 1997.
    [123] T.鲍雷, M. J. N.普里斯特利.钢筋混凝土和砌体结构的抗震设计[M].北京:中国建筑工业出版社, 1999.
    [124]唐曹民,徐培福,徐自国.钢筋混凝土框架结构楼层刚度比限值方法研究[J].土木工程学报. 2009. 12, Vo1. 42, No. 4: 128-134.
    [125]郑会丰.框支短肢剪力墙结构侧向刚度比与抗震性能研究[D].华中科技大学, 2008,硕士学位论文.
    [126]魏琏.建筑结构抗震设计[M].北京:万国学术出版社, 1991.
    [127]包世华.新编高层建筑结构[M].北京:中国水利水电出版社, 2001.
    [128]赵西安.高层建筑结构实用设计方法[M].上海:同济大学出版社, 1998.
    [129]吕西林.高层建筑结构[M].武汉:武汉理工大学出版社, 2003.
    [130]胡青昌.建筑结构抗震设计与研究[M].北京:中国建筑工业出版社, 2001.
    [131]柳炳康,沈小璞.工程结构抗震设计[M].武汉:武汉理工大学出版社, 2005.
    [132]杨茀康,李家宝.结构力学[M].北京:高等教育出版社, 1998.
    [133]东南大学,清华大学.建筑结构抗震设计[M].北京:中国建筑工业出版社, 1999.
    [134]高小旺,龚四礼,苏经宇等.建筑抗震设计规范理解与应用[M].北京:中国建筑工业出版社, 2002.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.