西昌昔格达组的动力特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地震是一种常见的突发性地质现象,地震时引发的地面运动是导致建筑物破坏的直接原因。尤其是分布有多条重大断裂带的攀西地区,受断裂带活动的影响,地震活动频繁而强烈,加之这一地区广泛分布的昔格达具有明显不同于其他第四系地层的物理力学特性,因此研究攀西昔格达场地动力响应特性具有重大的现实意义。
     山区建筑往往将基地置于不同标高的多个平台之上,因此,研究场地的地震放大情况主要归结为考察平台标高、斜坡放坡坡度及挖填方对加速度放大的约束效应。本文以昔格达地层的物理力学特性为背景,固体介质中应力波的传播理论为基础,借助于MTS振动台试验和有限元数值模拟手段,对西昌昔格达地层的场地动力特性进行了探讨,具体工作有以下几个方面:
     (1)应用固体介质中的应力波传播理论分析了场地加速度响应的空间分布特征及其约束机制。分析得出地震波传播到两种介质交界面处会发生反射叠加,从而导致地表地震动放大。两种介质的泊松比差异越大,其放大效应越显著。具体表现在:入射P波和SV波时,其能量转换只与入射角及场地岩土泊松比有关,垂直入射时引起的自由界面上介质质点位移比介质内部质点的位移大一倍;而入射SH波时,无论以何种入射角入射,引起的地表地面运动均为入射波的两倍。
     (2)利用MTS振动台模型试验对不同放坡结构、不同频谱特性及0.25 g和0.5 g两种输入水准强度下的地震差异响应进行了模拟;利用有限元数值分析软件研究了昔格达地基动力响应行为的约束机制。研究结果表明:对于确定高差的两平台,放坡次数越多,顶级平台的加速度放大水平可能越低;输入地震动的强度越大,地表峰值加速度越大,但放大系数越小;同一输入地震动下,平台高差越大,地表地震动响应越强烈,且填方区地震动响应普遍大于挖方区域。
     所以,多级平台场地中的边坡应尽量采用分台放坡的结构形式,尽量避免采用直立挡墙,并应遵循“多挖少填”的原则。
Earthquakes are a common burst geological phenomenon. Strong ground motion which earthquake induced, in particular the Xichang region with a number of major active faults, is capable of causing damages to buildings. By the influence of active faults, coupling with the Xigeda stratum in this region has different physical-mechanical characteristics from other quaternary strata, leading to stability of crust is poor in this region, Therefore, it is extremely important to study dynamic response of the Xigeda stratum at region of Xichang.
     Researches on site amplification of earthquake mainly includes platform elevation, slope step-slope grade and restraint effect of acceleration amplification by cut-fill, because structures located in mountainous area often put the base on the platforms with variable elevations. This thesis which backing on physical-mechanical characteristics in Xigeda stratum, studied site dynamic characteristics of the Xigeda stratum by stress wave propagation theory in solid medium, MTS shaking table test, and finite element numerical simulation. The tasks done are follows:
     (1) Seismic wave reflected and Superposed when propagating to the two medium interface and inducing ground motion amplification, it is obtained based on analyzing spatial distributing characteristics of site acceleration response by stress wave propagation theory in solid medium and restriction mechanism. The bigger difference of Poisson ratio between two medium, the greater amplification effect. Energy conversion was related to incident angle and poisson's ratio while incident wave was P or SV. Particle displacement in free-interface is twice as much as inner at normal incidence. But whatever incident angle is, particle displacement in free-interface is twice the incident wave while it was SH wave.
     (2) Using MTS shaking table test, seismic response difference between different step-slope strutures, different spectrum characteristics and two input standard strength (0.25g and 0.5g) was simulated. And restriction mechanism of dynamic response in the Xigeda stratum was studied by finite element numerical simulation. The results show that as two platforms with specific height difference, the more slope units, the decreaser acceleration amplification level in the top platform, the greater input earthquake intensity, the increaser ground peak acceleration, but the smaller the magnification factor, as the same input eathquake intensity and spectrum characteristics, the greater the elevation platform, the more strongly surface ground motion on the top platform, seismic response in embankment section is larger than excavation section.
     Therefore, slope with multi-platforms should adopt structure of slope unit form accord- ing to platforms'height and try to avoid using vertical retaining-wall. The rules to be followed is "more excavation and less embankment".
引文
[1]高峰,张建.地震危险性分析研究[M].北京:科学出版社.2007
    [2]袁丽侠.场地土对地震波的放大效应[J].世界地震工程,2003,19(1):113-120
    [3]卢演俦,高维明,陈国星等.新构造与环境[M].北京:地震出版社,2001
    [4]阚荣举,张四昌,晏凤桐等.我国西南地区现代构造应力场与现代构造活动特征的探讨[J].地球物理学报,1977,20(2):96-109
    [5]时振梁,环文林,武宦英等.我国强震活动和板块构造[J].地质科学,1973,4
    [6]陈国兴.岩土地震工程学[M].北京:科学出版社.2007
    [7]薄景山,李秀领,刘红帅.土层结构对地表加速度峰值的影响[J].地震工程与工程振动,2003,23(3):35-40
    [8]王绍博,丁海平.土动力参数对土层动力反应的影响[J].地震工程与工程振动,2001,21(1):105-108
    [9]刘曾武,朱镜清等.场地的某些参数对地面振动反应的影响.中国科学院工程力学研究所地震工程报告集(四),北京:科学出版社,1981:68-78
    [10]周锡元等.场地地基设计地震[M].北京:地震出版设.1991
    [11]Geoffrey R. Martin and Ricardo Dobry. Earthquarke Site Response and Seismic Code Provisions. NCEER,1994,8 (4)
    [12]Rogers A M, Borcherdt R D, Covington P A, Perkins D M. A comparative ground response study near Los Angeles using recordings of Nevada nuclear tests and the 1971 San Fernando earthquake[J]. Bull Seis. Soc. Am.1984,74:1925-1949
    [13]Celedi M. Topographic and geological amplification determined from strong-motion and aftershock records of 3 March 1985 Chile earthquake[J]. Bull Seis. Soc. Am.1987,77:1147-1107
    [14]Ashford S A, Sitar N, Topographic amplification in the 1994 Northtidge earthquake. Analysis and observations[A].6th U.S. National Conference on Earthquake Engineering[C].1997
    [15]章文波,周雍年,谢礼立.场地放大效应的估计[J].地震工程与工程振动,2001,21(4):1-9
    [16]胡聿贤.地震工程学(第二版)[M].北京:地震出版社.2006
    [17]杨春侠.混凝土多孔砖砌体结构房屋拟动力试验研究及抗震性能分析:[博士学位论文].长沙:湖南大学土木工程学院,2007
    [18]袁复礼.中国西南区第四纪地质的一些资料.中国第四纪研究,1卷(2).北京:科学出版 社,1958
    [19]中国科学院地质研究所.中国区域地层表(草案).北京:科学出版设,1956
    [20]陈富斌,赵永涛.攀西地区新构造[M].成都:四川科学技术出版社,1988
    [21]刘昌森,吕美丽.上海地区地震放大效应的初步探讨[J].上海地质,1998,1:7-13
    [22]于玉贞,邓丽军,李荣建.砂土边坡地震动力响应离心模型试验[J].清华大学学报,2007,47(6):789-792
    [23]姚姚.地震波场与地震勘察[M].北京:地质科学出版社,2006
    [24]Trifunace M D. Scattering of plane sh-waves by a semi-cylindrical canyon[J]. Earthquake Engineering and Structural Dynamics,1973, (1):267-281
    [25]Liu Diankui, Han feng. Scattering of plane sh-waves by a cylindrical canyon of arbitrary shape[J]. Int. J. Soil. Dynamic and Earthquake Engineering,1991,10 (5):249-255
    [26]Yuan Xiaoming, Men Fulu. Scattering of plane SH-waves by a semi-cylindrical hill[J]. Earthq. Eng. and Struct. Dynamics,1992 (21):1091-1098
    [27]Lee V W, Chen,Hsu I R. Antiplane diffraction from canyon above subsurface[J]. Unlined Tunner. A. S. C. E. Eng. Div,1999,125 (2):668-674
    [28]Wang C Q, Liu Diankui. Scattering of SH-wave by multiple circular cavities in half space[J]. EEEV,2002,1 (1):36-44
    [29]Qiu Faqiang, Liu Diankui. Antiplane response of isosceles triangular hill to incident SH-waves[J]. Earth-Quake Engineering Vibration,2005,4 (1):37-46
    [30]吕晓棠,刘殿魁.SH波入射时半圆形凸起与凹陷地形的地震动.地震工程与工程振动,2006,26(5):14~20
    [31]景立平,卓旭炀,王祥建.复杂场地对地震波传播的影响.地震工程与工程振动,2005,25(6):16~23
    [32]刘洪兵,朱晞.地震中地形放大效应的观测和研究进展.世界地震工程,1999,15(3):20-25
    [33]曾忻耕.四川安宁河东侧的新构造运动迹象[J].地质评论,1965,23(2):95-102
    [34]第四纪冰川考察队.西南第四纪昔格达组的初步研究.见:中国地质科学院地质力学研究所.中国第四纪冰川论文集.北京:地质出版社,1977,144-154
    [35]昔格达组下部的孢粉组合及其在推论第四纪早期气候演变中的意义.见:中国地质科学院地质力学研究所.中国第四纪冰川论文集.北京:地质出版社,1977,164-178
    [36]黄万波,王景文,邱铸鼎等.元谋、龙街组及昔格达组的时代对比.见:中国地质科学院地 层古生物论文集编委会编.地层古生物论文集(第七辑).北京:地质出版社,1978,30-39
    [37]钱方,徐树金,陈富斌等.昔格达组磁性地层的研究[J].山地研究,1984,2(4):275~282
    [38]张宗祜.川滇南北构造带中断晚生代地质研究[M].北京:石油工业出版社,1994,234~253
    [39]蒋复初,吴锡浩,肖华国.泸定昔格达组时代与川西高原隆升[J].第四纪研究,1999,2
    [40]王书兵,赵志中,乔彦松等.泸定昔格达组时代认定与古环境[J].第四纪研究,2006,26(2):257~264
    [41]姚海涛,赵志中,乔彦松等.四川冕宁昔格达组磁性地层学初步研究及意义[J].第四纪研究,2007,27(1):74~84
    [42]赵希涛,胡道功,张永双.四川攀枝花昔格达组下伏砾石层成因和时代探讨与古金沙江河谷发育[J].地球学报,2008,29(1):1-12
    [43]罗运利,刘东生.昔格达组沉积环境演化与旋回地层学研究[J].第四纪研究,1998,4
    [44]李有恒,黄万波.四川锦屏地区新生代地质地质初步考察.见中国地质科学院地层古生物论文集编委会编.地层古生物论文集(第七辑).北京:地质出版社,1978:86~97
    [45]郭建强,朱学波.冕宁冶勒地区新生代孢粉组合特征[J].四川地质学报,1998,18(1):20-25
    [46]许学汉,裴静娴.渡口-西昌区域第四纪形成与新构造活动的热发光年龄及发展史研究[J].地质科学,1987,(4):374~383
    [47]王思敬,黄鼎臣.攀西地区环境工程地质[M].北京:海洋出版社,1990:1-355
    [48]傅建利,赵志中,李朝柱等.西昌大箐梁子组形成时代及沉积环境[J].第四纪研究,2007,27(4):620-631
    [49]蒋复初,吴锡浩,肖华国等.四川泸定昔格达组时代及其新构造意义[J].地质学报,1999,73(1):1-6
    [50]王书兵,赵志中,乔彦松等.泸定昔格达组时代认定与古环境[J].第四纪研究,200.6,26(2):257-264
    [51]周云金,曾联明.红格提水工程二级泵站昔格达地层特性及坡体变形成因分析[J].水电站设计,2000,16(2):16-20
    [52]李小泉.栗子坪水电站厂基昔格达土的工程特性[J].广西水资源与水电工程,1996,(1):16-20
    [53]孔德坊,黄俊.昔格达组粘土的力学特性及其与滑坡产生的关系[M].北京:地质出版社,1997
    [54]袁光国.二滩昔格达粉质粘土的物理力学特性[J].水电工程研究,1986,(1):76~81
    [55]Matsumura. S. Miki. S. Nighigaki. Y. Relationships between pore pressure coefficient-B and the degree of saturation of soft rock[J]. Tsuchi-To-Kiso JSSMFE, Soil Mechanics and Foundation Engineering,1987,35 (3):41-46
    [56]Izumi. K. Ogihara. H. Displacements of bridge Foundations on sedimentary soft rock; a case study on small strain stiffness[J]. Geotechnique,1997,47 (3):619-632
    [57]向贵府,任光明,聂德新等.昔格达土混合填料最优含水量研究[J].中国地质灾害与防治学报,2004,15(2):48~52
    [58]游宏,姚令侃.施工期间昔格达地层失稳机理分析[J].重庆交通大学学报,2007,26(4):90~94
    [59]李砰,汪良谋.云南川西地区地震地质基本特征的探讨[J].地质科学,1975,4:308~326
    [60]从柏林,赵大升,张雯华等.西昌地区岩浆活动特征及其与构造地质的关系[J].地质科学,1973,3:175-195
    [61]万天丰.中国大地构造学纲要[M].北京:地质出版社,2004
    [62]中国科学院地质研究所实验地震研究组.西南地区现代构造应力场与地震活动性的实验研究[J].地质科学,1977,2:159-171
    [63]张家涛,姚光亮.鲜水河断裂带的分段活动特征[J].地壳变形与地震,1990,10(3):54-60
    [64]韩渭宾,席敦礼,廖敬梅.鲜水河断裂带地震活动分段交替性及近期活动特征.鲜水河断裂带地学震术讨论会文集,北京:地震出版社,1985
    [65]唐荣昌,黄祖智,钱洪等.鲜水河断裂带近代构造活动性与地震.大陆地震活动性与地震预报国际会议论文集,北京:地震出版社,1985
    [66]邓天岗,龙德雄等.鲜水河活动断裂带[J].成都:四川科学出版社,1989
    [67]张新俊.鲜水河断裂带水平断错地貌特征与强震复发间隔估算[J],中国地震,3增刊,1987
    [68]冯元保,吾芝雄.鲜水河断裂带新构造特征与强震复发间隔估算.鲜水河断裂带地震学术讨论会文集,北京:地震出版社,1986
    [69]钱洪.鲜水河断裂带上潜在震源区的地质学判定[J].四川地震,1981,3:20-28
    [70]张世民,谢富仁.鲜水河—小江断裂带7级以上强震构造区的划分及其构造地貌特征[J].地震学报,2001,23(1):36~44
    [71]罗志立.龙门山造山带岩石圈演化的动力学模式.成都地质学院学报,1991,18(1):1-7
    [72]Burchfiel B.C., Chen Zhiliang, Liu Yuping, Royden L H. Tectonics of the Longmen Shan and adjacent regions, central China. International Geology Review,1995.37(8):661-735
    [73]Chen Shefa, Wilson C.J.L. Emplacement of the Longmen Shan thrust-nappe belt along the eastern margin of the Tibetan Plateau. Journal of Structure Geology,1996,18(4):413-430
    [74]杨晓平,蒋溥,宋方敏等.龙门山断裂带南段错断晚更新世以来地层的证据[J].地震地质,1999,21(4):341~345
    [75]林茂炳,吴山.龙门山推覆构造变形特征[A].罗志立.龙门山造山带的崛起和四川盆地的形成与演化[M].成都:成都科技大学出版社,1994, 179-187
    [76]Chen Zhuxin, Jia Dong, Zhang Qie, etal. Balanced Cross2section Analysis of the Fold-Thrust Belt of Longmen Mountains. Acta Geologica Sinica,2005,79(1):38-45
    [77]Chen Zhuxin, Jia Dong, Wei Guoqi, etal. Structural analysis of Kuangshanliang in the northern Longmenshan fold-thrust belt and its hydrocarbon exploration. Earth Science Frontiers,2005,12 (4):445-450.
    [78]Jia D, Wei G Q, Chen Z X, etal. LongmenShan fold-thrust belt and its relation to the western Sichuan Basin in central China:New insights from hydrocarbon exploration. AAPG Bulletin, 2006,90(9):1425-1447
    [79]林茂炳.汶川大地震与龙门山构造带[J].成都理工大学学报,2008,35(4):366-370
    [80]李忠权,应丹琳,郭晓玉等.龙门山汶川地震特征及构造动力学初析[J].成都理工大学学报,2008,35(4):426、~430
    [81]江道崇.龙么山地震带地震活动特征的研究[J].1995,4:10-18
    [82]蒋良文,王士天,王运生等.川西北断裂块东部区域活动构造体系及其对地震活动的控制作用[J].成都理工大学学报,2005,32(4):340-344
    [83]徐锡伟,闻学泽,郑荣章.川滇地区活动块体最新构造变动样式及其动力来源[J].中国科学,2003,33(增刊):151-162
    [84]张培震,邓起东,张国民等.中国大陆的强震活动与活动地块[J].中国科学.2003,33(增刊):12-20
    [85]闻学泽.四川西部鲜水河—安宁河—则木河断裂带的地震破裂分段特征[J].地震地质,2000,22(3):239-249
    [86]易桂喜,闻学泽,范军等.由地震活动参数分析安宁河—则木河断裂带的现今活动习性及地震危险性[J].地震学报,2004,26(3):294-303
    [87]冉勇康,陈立春,程建武等.安宁河断裂冕宁以北晚第四纪地表变形与强震破裂行为[J].中国科学,D辑:地球科学,2008,38(5):543-554
    [88]乔慧珍,程万正,陈学忠.安宁河—则木河断裂带地震视应力研究[J].地震研究,2006,29 (2):125-130
    [89]四川赛思特科技有限责任公司.攀钢(集团)公司西昌钒钛钢铁新基地工程场地地震安全性评价报告.2007
    [90]Seed H B, Idriss I M. Soil moduli and damping factors for dynamic response analysis[R]. Report No EERC70-10, Earthquake Engineering Research.Center, University of California. California: Berkely,1970
    [91]Seed H B, wong R T. Idriss I M, etal. Moduli and damping factors for dynamic analyses of cohesionless soil[J]. Journal of Geotechnical Engineering, ASCE,1986, (11):1016-1032
    [92]Idriss I M, Dobry R, Singh R M. Nonlinear behavior of soft clays during cyclic loading[J]. Journal of Geotechnical Engineering, SACE,1978, (12):1427-1447
    [93]孙静,袁晓铭.土的动模量和阻尼比研究述评[J].世界地震工程,2003,19(1):88~95
    [94]祝龙根,吴晓峰.低幅剪应变条件下砂土的动力特性的研究[J].大坝观测与土工测试,1988,12(1):27-33
    [95]张克绪,谢君斐.土动力学[M].北京:地震出版社,1989
    [96]谢君斐,石兆吉.原状饱和粘土动力性能的试验研究[R].哈尔滨:中国科学院工程力学研究所.1973
    [97]石兆吉,丰万玲.土壤动压缩模量共振柱法测定[J].岩土工程学报,1985,7(6):25-32
    [98]袁晓铭,孙锐,孙静等.常规土类动剪切模量和阻尼比试验研究[J].地震工程与工程振动,2000,20(4):133-139
    [99]丰万玲.煤灰土动力特性的试验研究[R].哈尔滨:国家地震局工程力学研究所,1984
    [100]孔宪京,邹德高等.大型静、动三轴仪测试技术研究[A].第六届全国土动力学学术会议论文集[C].南京:中国建筑工业出版社,2002,53~539
    [101]龚晓南.油罐软粘土地从性状.浙江大学博士学位论文,1984
    [102]王士先.攀枝市昔格选组地层工程地质特征.1987
    [103]彭盛思.昔格达组枯土的工程地质持性汇水文地质及工程地质[J].水文地质及工程地质,1986,(2):16-18
    [104]ZISMAN W. Comparison of the statically and seismologic ally determined elastic constants of rocks[J]. Proceedings of theNational Academy of Sciences of the United States of America,1933, 19(7):680-686.
    [105]王怡.土的动弹性模量与静变形模量关系的初探[J].广东土木与建筑,2002,5:25-27
    [106]林英松,葛洪魁,王顺昌.岩石动静力学参数的试验研究.岩石力学与工程学报,1998, 17(2):216~222
    [107]胡国忠,王宏图,贾剑青等.岩石的动静弹性模量的关系[J].重庆大学学报(自然科学版),2005,28(3)
    [108]聂运钧,肖国强,王法刚.声波法在三峡坝基岩石力学试验中的应用[J].岩土力学,2003,24(增):176~177
    [109]Kondner P L. Hyperbolic stress strain response:cohesive soils[J]. Journal of Soil Mechanics and Foundations. ASCE,1963, (1):115-143
    [110]Hardin B D, Drnevich V P. Shear Modulus and damping in soils:design equations and curves [J]. Journal of Soil Mechanics and Foundations, ASCE,1972, (7):667-692.
    [111]Finn W D, Lee K L, Martin G R. An effective stress model for liquefaction[J]. Journal of Geotech-nical Engineering, ASCE,1977, (6):517-533.
    [112]Matasovic N, Vucetic M. Cyclic characterization of liquefiable sands[J]. Journal of Geotechnical Engineering, ASCE,1993, (11):1085-1821.
    [113]陈国兴,庄海洋.基于Davidenkov骨架曲线的土体动力本构关系及其参数研究[J].岩土工程学报,2005,(8):860-864.
    [114]Martin P P, Seed H B, One dimensional dynamic ground response analysis[J]. Journal of Geotechnical Engineering, ASCE,1982, (7):935-952.
    [115]Ishihara K. Soil Behaviour in Earthquake Geotechnics[M]. Oxford:Claredon press,1996.
    [116]张克绪,谢君斐.土动力学[M].北京:地震出版社,1989.
    [117]Chen Guoxing, Liu Xuezhu. The preliminary study on dynamic characteristics of recently depoited soil in southern area of province, China[A]//Proceedings of the International Symposium on Innovation and Sustainability of Structures in Civil Engineering[C]. Nanjing, China,2005:1332-1339
    [118]Prevost J H. Mathematical modeling of monotonic and cyclic undrained clay behavior[J]. International Journal for Numerical and Analytical Methods in Geomechanics.1977, (2):195-216.
    [119]Mroz Z, Zienkiewicz O C. Uniform formulation of constitutive equation for clay and sands[A]//Desai C S, Gallagher R H, et al. Mechanics of Engineering Materials[C]. London: John Willey &Son,1984:78-95.
    [120]Mroz Z, Norris V A, Zienkiewicz O C. Application of an anisotropic hardening model in the analysis of elastoplastic deformation of soil[J]. Geotechnique,1979, (2):1-34.
    [121]Matsuoka H. Stress strain relationship of sand based on the mobilized plane[J]. Soil and Foundations,1974,14(2):1-27.
    [122]Carter J. P, Books J R. Wrothu C P. A critical state soil model for cyclic loading[A]//Pande G N, Zienkiewicz O C, et al. Soil Mechanics Transient and Cyclic Loading[C]. Chichester:John Wiley &Sons,1982:253-282.
    [123]Zhuang Haiyang, Chen Guoxing. A viscous-plastic model for soft soil under cyclic loadings[J]. Geotechnical Special Publication(GSP), ASCE,2006:343-350.
    [124]庄海洋,陈国兴,朱定华.土体动力粘塑性记忆型嵌套面本构模型及其验证[J].岩土工程学报,2006,(10):1267-1272.
    [125]Pyke R M. Nonlinear soil model for irregular cyclic loading[J]. Journal of Geotechnical Engineeri-ng, ASCE,1979, (6):715-726.
    [126]杜平安.有限元网格划分的基本原则[J].机械设计与制造,2000,2:34~36.
    [127]张鸿庆,王鸣.有限元的数学理论[M].科学出版社,1991.
    [128]J. Lasmer. R. L. Kuhlemeyer. Finite dynamic model for infinite media. Jr. Engrg. Mech Div, ASCE,1969,95(EM4)
    [129]王怀良,伍鹤皋,余成雪.尾水岔洞三维有限元分析[J].武汉大学学报(工学版),2004,(3):8-13.
    [130]张雪东,陈剑平,黄润秋.用FLAC分析呷爬滑坡的变形特征[J].岩土力学,2005,26(1):131-134.
    [131]陈灯红,彭刚,周丽娜.龙滩水电站左岸拐弯坝段动力结构分析[J].华北水利水电学院学报,2007,28(1):21~24.
    [132]刘晶波,刘祥庆,王宗纲.离心机振动台试验叠环式模型箱边界效应[J].北京工业大学学报,2008,34(9):931-937.
    [133]刘宏利,周得泉,王涛.浅层地震模型试验研究[J].长沙交通学院学报,2004,20(1):32-36.
    [134]李敏霞.地震模拟振动台试验系统频率特性估计的研究及应用[J].世界地震工程,1996,19-24
    [135]尚守平,刘方成,卢华喜.振动台试验模型地基土的设计与试验研究[J].地震工程与工程振动,2006,26(4):199~204.
    [136]于玉贞,邓丽军,李荣建.砂土边坡地震动力响应离心模型试验[J].清华大学学报(自然科学版),2007,47(6):789~792.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.