立体选择性酰胺酶的筛选及其动力学拆分制备(S)-(+)-2,2-二甲基环丙烷甲酰胺的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
手性生物催化已成为制备光学纯化合物的经典方法。腈转化酶尤其是酰胺酶,底物范围广、立体选择性专一,在制备手性药物和农用化学品中间体中发挥越来越重要的作用。S-(+)-2,2-二甲基环丙烷甲酰胺是肾二肽脱氢酶抑制剂——西司他丁合成的关键中间体。通过R-立体选择性酰胺酶动力学拆分,制备S-(+)-2,2-二甲基环丙烷甲酰胺,反应条件温和、立体专一性好、环境友好,具有很好的工业化前景。本论文围绕该工艺路线,就生物催化剂的发现、表征、制备与应用等几方面展开研究。
     论文首先建立了一种新的立体选择性酰胺酶的筛选模型。该模型基于酰胺酶的酰基转移活性,即在盐酸羟胺存在的条件下,酰胺酶能够催化酰胺生成相应的氧肟酸。然后经氧肟酸/Fe(Ⅲ)复合物的显色反应,快速测定酰胺酶的活力及立体选择性。为验证模型的准确性,考察了酰胺酶催化的酰基转移反应和水解反应在立体选择性上的差异。通过该模型,从523株菌种中筛选到产酰胺酶的菌种8株,其中2株能够R-型立体选择性降解2,2-二甲基环丙烷甲酰胺。
     为了实现对生物拆分过程的监测和控制,研究了外消旋2,2-二甲基环丙烷甲酰胺及相应的甲酸在一根商品化的手性色谱柱BGB-175上的手性分离。根据动力学拆分过程中的手性平衡原理,建立了一种基于底物和产物的对映体过量值(ee)测定转化液中4种对映异构体浓度的新方法。由于该方法只引入相对量(ee),因此可以有效避免样品处理、进样方式等引入的误差,提高准确度。
     运用形态学、生理生化试验、ATB自动鉴定系统、16S rRNA序列及系统发育分析等手段,对由筛选模型得到的一株R-型酰胺酶产生菌ZJB-05174进行鉴定。该菌株鉴定为Delftia tsuruhatensis,这是该种内首次报道的产R-型酰胺酶的菌株。D.tsuruhatensis ZJB-05174在30℃下,水解外消旋2,2-二甲基环丙甲酰胺的平均对映体选择率(E)为27;该菌株胞内酰胺酶的热稳定性好,在30和40℃下的半衰期分别达到78.6和46.2h;酰胺酶的常用抑制剂——尿素对D.tsuruhatensis ZJB-05174酰胺酶的抑制效果不明显。这可能是该酰胺酶活性位点结构与其它酰胺酶不同引起的。
     验证了用以乙酰胺为底物的酰基转移反应替代直接水解外消旋2,2-二甲基环丙甲酰胺测定酰胺酶活力的可行性。通过单因素实验和正交试验,对D.tsuruhatensis ZJB-05174产酰胺酶的培养基组成进行了优化。确定较佳的培养基组成为(g/l):葡萄糖8.4,乙酰胺3.56,酵母抽提物6.3,蛋白胨0.7,KH_2PO_41.0,K_2HPO_4 1.0,NaCl1.0。D.tsuruhatensis ZJB-05174产酶的适宜培养条件为:温度30℃,初始pH 7.5,接种量4%(v/v),装液量16%(v/v)。上述条件下,该菌株指数生长期的比生长速率μ为0.33 h~(-1),培养20h后由酰基转移反应表示的酰胺酶的活力达到1.51U/ml发酵液,是优化前的2.65倍。
     论文还研究了酶催化反应的(微)环境对该酰胺酶活力和选择性的影响。结果表明,该酰胺酶的适宜工作pH为7.6~8.8。该酶在偏酸(pH 5.4)或偏碱(pH 9.4)的环境下,表现出比中性条件更高选择性,E值分别达到60和71。该酶在41℃时酶活最高,但其立体选择性随温度的升高而不断降低,直至立体选择性的完全反转。该酶催化反应过程的2个重要热力学参数,熵变和焓变在菌体热处理(56℃)前后发生改变,是造成立体选择性不可逆反转的根本原因。向反应体系中添加共溶剂乙醇和乙腈后,酶活力分别提高2.7和2.2倍,E值由32上升至91和140。经反应条件优化后,酰胺酶的活力由14.3μmol min~(-1)g~(-1)提高到91.8μmolmin~(-1)g~(-1),为原来的6.2倍。产物经分离、纯化,制备得到S-(+)-2,2-二甲基环丙烷甲酰胺样品,总收率达到43.6%。样品经旋光仪、红外光谱和核磁共振表征,表明其化学纯度和光学纯度均达到99%以上。
     论文最后考察了D.tsuruhatensis ZJB-05174酰胺酶催化的立体选择性酰基转移反应。结果表明,添加共溶剂会加快副反应——酰胺水解的速率,对酰基转移反应的初速率没有影响。但随着副反应的加剧,底物消耗量增加,酰基转移反应的速率随之降低。相反地,增加反应体系中羟胺的浓度,可以有效降低副反应的发生。当羟胺和底物的浓度比达到10:1时,酰基转移反应和水解反应的速度相当。对该酶催化的酰基转移反应的动力学研究表明,其催化过程属于双底物乒乓机制。其动力学参数如下:表观最大反应速率:V_m=129.9μmol min~(-1)g~(-1),对羟胺的米氏常数:K_(NH_2OH)=150 mM,对酰胺的米氏常数:K_(amide)=10mM。
Chiral biocatalysis has already been a classical method in preparationenantiomerically pure compounds. Nitrile-converting enzymes, especially amidase,with wide substrate spectrum and strict stereospecificity, are playing more and moreimportant roles in industrial biotransformations for production of optically purepharmaceuticals and agrochemicals. S-(+)-2,2-dimethylcyclopropane carboxamideis a key intermediate in the synthesis of cilastatin, a renal dehydropeptidase inhibitor.Preparation of S-(+)-2,2-dimethylcyclopropane carboxamide by R-enantioselectiveamidase catalyzed kinetic resolution proceeds under mild conditions with excellentenantioselectivity and has great potential for industrialization.
     A novel enantioselective amidase screening system was developed and proved tobe efficient and accurate. This screening system employed acyl transfer activity ofamidase in the presence of hydroxylamine, leading to the formation of hydroxamicacids, followed by spectrophotometric quantification of hydroxamic acid/iron (Ⅲ)complex. To prove the accuracy of the screening system, the difference betweenenantioselectivity of acyl transfer reaction and that of hydrolysis reaction wasevaluated. With this method, we obtained eight microorganism strains withenantioselective amidase from 523 isolates, two of which showed R-stereospecificactivity for (R,S)-2,2-dimethylcyclopropane carboxamide.
     In order to monitor and control the bioconversion process, enantioseparation of2,2-dimethylcyclopropanecarboxamide and corresponding acid was performed on acommercial chiral column BGB-175. Based on chiral balance in kinetic resolutionprogress, a novel method, employed enantiomeric excess of both substrate andproduct, was developed for determination of concentration of enantiomers in bioconversion broth. Since only relative quantity (ee) was required in the proposedmethod, calibration and cumbersome quantitative sample handling can be avoided andanalytical accuracy can be greatly improved.
     Strain ZJB-05174, capable of R-enantioselective degradation of2,2-dimethylcyclopropane carboxamide, was isolated through the screening system.Based on morphology, physiological tests, ATB system and the 16S rRNA sequence,this strain was identified as Delftia tsuruhatensis. This is the first report on strains inthis species with R-amidase activity. D. tsuruhatensis ZJB-05174 catalyzed hydrolysisof 2,2-dimethylcyclopropane carboxamide with an enantiomeric ratio (E value) of 27at 30℃. The intracellular amidase exhibited excellent thermostability with half-life(t_(1/2)) of 78.6 and 46.2 h at 30 and 40℃, respectively. Urea, regular inhibitor ofamidase, was not effective to amidase from D. tsuruhatensis ZJB-05174, whichsuggested that this amidase might have a different active site structure with otherreported ones.
     The effects of medium composition and culture conditions on the amidaseactivity of D. tsuruhatensis ZJB-05174 were evaluated experimentally. The acyltransfer activity catalyzed by amidase with acetamide as substrate was firstly provedto be in accordance with correspondence hydrolysis activity. The optimized mediumcomposition was as follows (g/l): glucose 8.4, acetamide 3.56, yeast extraction 6.3,peptone 0.7, KH_2PO_41, K_2HPO_4 1, NaCl 1. The satisfactory fermentation conditionsfor cell growth and formation of amidase were as follows: initial pH value, 7.0; 30℃;inoculum volume, 4% (v/v); medium volumetric ratio, 30% (v/v). Under theseconditions, D. tsuruhatensis ZJB-05174 multiplied with growth rate (μ) of 0.33 h~(-1).When D. tsuruhatensis ZJB-05174 was cultivated for 20h, the enzyme activity,expressed as acyl transfer activity, reached 1.51 U/ml of culture broth, which was 1.65times higher than before optimization.
     Influences of reaction conditions on amidase activity and enantioselectivity werealso investigated. Results indicated that optimal working pH of the amidase rangedfrom 7.6 to 8.8. Moreover, the amidase exhibited stricter stereospecificity underpartial acid (pH 5.4) or partial alkali (pH 9.4) conditions than it under neutral conditions. The amidase showed highest activity at 41℃, but its enantiomeric ratiodecreased with increase of temperature, until reversal of stereospecificity wasobserved. Two thermodynamic parameters of the reaction, activation enthalpy andactivation entropy, changed dramatically after cell suspensions pre-incubated at 56℃,which was the reason why the reversal of stereospeccificity was irreversible. Additionof cosolvent, ethanol and acetonitrile, had significant effect not only on enzymeactivity but also on enantioselectivity. The enzyme activity was 2.7 and 2.2 timeshigher, and E-value increased from 32 to 91 and 140, respectively. After optimizationof the reaction conditions, amidase activity increased from 14.3μmol min~(-1) g~(-1) to 91.8μmol min~(-1) g~(-1). S-(+)-2,2-dimethylcyclopropane carboxamide was isolated andpurified from reaction mixture with total yield of 43.6%. The sample wascharacterized by polarimeter, IR and ~1H NMR analysis, and the results demonstratedthat chemical and optical purity of the sample were both above 99%.
     Further, enantioselective acyl transfer reaction catalyzed by D. tsuruhatensisZJB-05174 was investigated. Results showed that addition of cosolvent acceleratedinitial reaction rate of amide hydrolysis, but had no effect on that of acyl transferreaction. However, acyl transfer reaction then slowed down because substrateconcentration dropped sharply due to accelerated side reaction. On the contrary,increasing hydroxylamine concentration effectively inhibited hydrolysis reaction.When concentration ratio of hydroxylamine and substrate reached 10:1, reaction rateof acyl transfer and hydrolysis was almost the same. Moreover, kinetic studies of theamidase catalyzed acyl transfer reaction demonstrated that the reaction occurredaccording to a Ping Pong Bi Bi mechanism. The kinetic constant were as follows:V_m=129.9μmol min~(-1) g~(-1), K_(NH_2OH)=150mM, K_(amide)=10mM.
引文
[1] Faber K. Biotransformation in organic synthesis (3rd ed.). Beilin Heidelberg:Springer-Verlag, 1997.
    [2] Martinkova, L., Mylerova, V. Synthetic application of nitrile-converting enzyme.Curt. Org. Chem. 2003, 7: 1297-1295.
    [3] Kobayashi, M., Shimizu, S. Nitrile hydrolases. Curr. Opin. Chem. Biol. 2000, 4:95~102.
    [4] O'Grady, D., Pembroke, J. Isolation of a novel Agrobacteriurn sp. capable ofdegrading a range ofnitrile compounds. Biotech. Lett. 1994, 16: 47~50.
    [5] de Raadt, A., Klempier, N., Faber, K., Griengl, H. Chemselective enzymatichydrolysis of aliphatic and alicyclic nitriles. J. Chem. Soc. Perkin. Trans. 1. 1992,137-140.
    [6] Wang, M. X., Feng, G. Q. Enzymatic synthesis of optically active 2-methyl and2, 2-dimethylcyclopropanecarboxylic acids and their derivatives. J. Mol. Catal. B:Enzymatic. 2002, 18:267-272.
    [7] Yamada, H., Kobayashi, M., Nitrile hydratase and its application to industrialproduction of acryamide. Biosci. Biotech. Biochem. 1996, 60:1391-1400.
    [8] Nagasawa, T., Mathew, C. D., Mauger, J., Yamada, H. Nitrile hydratase-catalyzedproduction of nicotinamide from 3-cyanopyridine in Rhodoccus rhodochrous J1.Appl. Environ. Microbiol. 1988, 54: 1766-1769.
    [9] Thomas, M., Dicosimo, R., Nagarajan, V. Biocatalysis: applications and potentialsfor the chemical industry. Trends Biotechnol. 2002, 20: 238-242.
    [10] 沈寅初,张国凡,韩建生微生物法生产丙烯酰胺.工业微生物.1994,24:24-32.
    [11] 张云桦,方仁萍,沈寅初 一株产丙烯腈水合酶菌株的研究.工业微生物. 1998, 28: 1-5.
    [12] Mayaux, J., Cerbelaud, E., Soubrier, F., Faucher, D., Petre, D. Purification,cloning, and primary structure of an enantiomer selective amidase fromBrevibacterium sp. R312: structural evidence for genetic coupling with nitrilehydrates. J. Bacteriol. 1990, 172: 6674-6773.
    [13] Asano, Y., Tachibana, M., Yamada, H. Purification and characterization ofamidases which participates in nitrile degradation. Agric. Biol. Chem. 1982, 46:1175-1181.
    [14] Kelly, J. L., Kornberg, H. L. Purification and properties of acyltransferases fromPseudomons aeruginosa. Biochem. J. 1964, 93: 557-568.
    [15] Jakoby, W., Fredericks, J. Reactions catalyzed by amidases. J. Biol. Chem. 1984,239: 1978-1982.
    [16] Arnaud, A., Galzy, P., Jallageas, J. C. Remarques sur I'activite nitrilasique dequelques bacteries. CR. Acad. Sci. Paris. 1976, 287: 571-573.
    [17] Martinkova, L., Kren, V. Nitrile- and amide-converting microbial enzymes:stereo-, regio- and chemoselectivity, Biocatal. Biotransform. 2002, 20: 73-93.
    [18] Lorenz, P., Eck, J. Screening for novel industrial biocatalysts. Eng. Life. Sci.2004, 4: 501-504.
    [19] Jaeger, K. E., Dijkstra, B. W., Reetz, M. T., Bacterial biocatalysts: molecularbiology, three-dimensional structures, and biotechnological applications oflipases. Annu. Rev. Microbiol. 1999, 53: 315-351.
    [20] Fournand, D., Arnaud, A. Aliphatic and enantioselective amidase: fromhydrolysis to acyl transfer activity. J. Appl. Microbiol. 2001, 91: 381-383.
    [21] Asano, Y., Yasuda, T., Tani, Y. A new enzymatic method of acrylamideproduction. Agric. Biol. Chem. 1982, 46:1183-1189.
    [22] Hirrlinger, B., Stolz, A., Knackmuss, H. Purification and characterization of anamidase from Rhodococcus erythropolis MP50 which enantioselectivehydrolyzes 2-arypropionamides. J. Bacteriol. 1996, 178: 3501-3507.
    [23] Stelkes-Ritter, U., Mcbride, K., Malyj, M. Purification and characterization of anewly screened microbiol peptide amidase. Appl. Microbiol. Biotechnol. 1995, 44: 393-398.
    [24] Kobayashi, M., Komeda, H., Nagasawa, T., Nishiyama, M., Horinouchi, S.,Beppu, T., Yamada, H., Shimizu, Sakayu. Amidase coupled withlow-molecular-mass nitrile hydratase from Rhodococcus rhodochrous J1. Eur. J.Biochem. 1993, 217: 327-336.
    [25] Ciskanik, L., Wilczek, J. M., Fallon, R. D. Purification and characterization of anenantioselective amidase from Pseudomonas chlororaphis B23. Appl. Environ.Microbiol. 1995, 61: 998-1003.
    [26] Egorova, K., Trauthwein, H., Verseck, S., Antranikian, G. Purification andproperties of an enantioselective and thermoactive amidase from thethermophilic actinomycete Pseudonocardia thermophila. Appl. Microbiol.Biotechnol. 2004, 65: 38-45.
    [27] Trott, S., Bauer, R., Knackmuss, H. -J. Genetic and biochemical characterizationof an enantioselective amidase from Agrobacterium tumefaciens strain d3.Microbiol. 2001, 147: 1815-1824.
    [28] Shaw, N. M., Naughton, A., Robins, K., Tinschert A., Schmid, E., Hischier,M. -L., Venetz, V., Werlen, J., Zimmermann, T., Brieden, W., de Riedmatten, P.,Rodiut, J. -P., Zimmermann, B., Neumuller, R. Selection, purification,characterisation, and cloning of a novel heat-stable stereo-specific amidase fromKlebsiella oxytoca, and its application in the synthesis of enantiomerically pure(R)- and (S)-3, 3, 3-trifluoro-2-hydroxy-2-methylpropionic acids and(S)-3, 3, 3-trifluoro-2-hydroxy-2-methylpropionamide. Org. Proc. Res. Dev. 2002,6, 497-504.
    [29] Komeda, H., Harada, H., Washika, S., Sakamoto, T., Ueda, M., Asano, Y. Anovel R-stereoselective amidase from Pseudomonas sp. MCI3434 acting onpiperazine-2-tert-butylcarboxamide. Eur. J. Biochem. 2004, 271:1580-1590.
    [30] Patel, R. N. Stereoselective biocatalysis. Marcel Dekker, New York, 2000.
    [31] Krieg, L., Ansorge-Schumacher, M. B., Kula, M-R. Screening for amidase:isolation and characterization of a novel D-amidase from Variovorax paradoxus.Adv. Synth. Catal. 2002, 344: 965-973.
    [32] Eichhorn, E., Roduit, J. -P., Shaw, N., Hernzmann, K., Kiener, A. Preparation of(S)-piperazine-2-carboxylic acid, (R)-piperazine-2-carboxylic,and(S)-piperidine-2-carboxylic acid by kinetic resolution of the correspondingracemic carboxamides with stereoselective amidases in the whole bacterial cells.Tetradron Asymmetry. 1997, 8: 2533-2536.
    [33] Baek, D. H., Song, J. J., Lee S. -E., Asano, Y., Sung, M. -H. New thermostableD-methionine amidase from Brevibacillus borstelensis BCS-1 and its applicationfor D-phenylalanine production. Enzyme Microb. Technol. 2003, 32:131-139.
    [34] Hayashi, T., Yamamoto, K., Matsuo, A., Otsubo, K, Muramatsu, S., Matsuda, A.,Komatsu, K. -I. Characterization and cloning of an enantioselctive amidase fromComamonas acidocorans KPO-2771-4. J. Ferment. Bioeng. 1997, 83: 139-145.
    [35] Bianchi, D., Battistel, E., Cesti, P., Golini, P., Tassinari, R. Substrate specificityand stereoselectivity of hydrolytic enzymes from Brevibacterium imperiale B222.Appl. Microbiol. Biotechnol. 1993, 40: 53-56.
    [36] Hongpattarakere, T., Komeda, H., Asano, Y. Purification, characterization, genecloning and nucleotide sequencing of D-stereospecific amino acid amidase fromsoil bacterium: Delftia acidovorans. J. Ind. Microbiol. Biotechnol. 2005, 32:567-576.
    [37] Komeda, H., Asano, Y. Gene cloning, nucleotide, sequencing, and purificationand characterization of the D-stereospecific amino-acid amidase fromOchrobactrum anthropi SV3. Eur. J. Biochem. 2000, 267: 2028-2035.
    [38] Ozaki, A., Kawasaki, H., Yagasaki, M., Hashimoto, Y. Enzymatic production ofD-alanine from D, L-alaninamide by novel D-alaninamide specific amidehydrolase. Biosci. Biotechnol. Biochem. 1992, 56: 1980-1984.
    [39] d'Abusco, A. S., Ammendola, S., Scandurra, R., Politi, L. Molecular andbiochemical characterization of the recombinant amidase fromhyperthermophilic archaeon sulfolobus solfataricus. Extremophiles. 2001, 5:183-192.
    [40] Suzuki, Y., Ohta, H. Identification of a thermostable and enantioselectiveamidase from the thermoacidophilic archaeon sulfolobus tokodaii strain 7. Protein Expres. Purif. 2006, 45: 368-373.
    [41] Chebrou, H., Bigey, F., Arnaud, A., Galzy, E, Study of the amidase signature group. Biochim. Biophys. Acta 1996, 1298: 285-293.
    [42] Nawaz, M., Davis, J. W., Wolfram, J. H., Chapatwala, K. D. Degradation of organic cyanides by Pseudomonas aeruginosa. Appl. Biochem. Biotechnol. 1991, 29/29: 865-875.
    [43] Skouloubris, S., Labigne, A., De Reuse, H. Identification and characterization of an aliphatic amidase in Helicobacterpylori. Mol. Microbiol. 1997, 25: 989-998.
    [44] Silman, N., Carver, M.A., Jones, C.W. Directed evolution of amidase in Methylophilus methylptrophus: purification and properties of amidases from wild-type and mutant strain. J. Gen. Microbiol. 1991, 13: 169-178.
    [45] Maestracci, M., Thiery, A., Arnaud, A., Galzy, P. A study of the mechanism of the reactions catalyzed by the amidase Brevibacterium sp. R312. Agric. Biol. Chem. 1986, 50: 2237-2241.
    [46] Fournand, D., Bigey, E, Ratomahenina, R., Arnaud, A., Galzy, E Biocatalyst improvent for the production of short-chain hydroxamic acid. Enzyme Microbiol. Technol. 1997, 20:424-431.
    [47] Hirrlinger, H., Stolz, A. Formation of a chiral hyroxamic acid with an amidase from Rhodococcus erythropolis MP50 and subsequent chemical lossen rearrangement to a chiral amine. Appl. Environ. Microbiol. 1997, 63: 3390-3393.
    [48] Ohta, H. Stereochemistry of enzymatic hydrolysis of nitriles. Chimia 1996, 50: 434-436.
    [49] Komeda, H., Harada, H., Washika, S, Sakamoto, Ueda, M., Asano, Y. S-Stereoselective piperazine-2-tert-butylcarboxamide hydrolase from Pseudomonas azotoformans IAM 1603 is a novel L-amino acid amidase. Eur. J. Biochem. 2004, 271: 1465-1475.
    [50] Wang, M. X., Feng, G. Q. Nitrile biotransformation for highly enantioselective synthesis of 3-substitued 2,2-diemthylcyclopropanecarboxylic acid and amides. J. Org. Chem. 2003, 68: 621-624.
    [51] Yamamoto, K., Otsubo, K., Matsuo, A., Hayashi, T., Fujimastu, I., Komatsu, K-I. Production of R-(-)-ketoprofen from an amide compound by Comamonas acidovorans KPO-2771-4. Appl. Environ. Microbiol. 1996, 62:152-155.
    [52] Bauer, R., Hirrlinger, B., Layh, H., Stolz, A., Kanckmuss, H.-J. Enantioselective hydrolysis of racemic 2-phenylpropionitrile and other (R,S)-2-arylpropionitriles by a new bacterial isolate, Agrobacterium tumefaciens strain d3. Appl. Mirobiol. Biotechnol. 1994, 42: 1-7.
    [53] Beard, T. M., Page, M. I. Enantioselective biotransformations using rhodococci. Antioie van Leeuwenhoek. 1998, 74: 99-106.
    [54] Petre, D., Cerbelaud, E., Mayaux, J. E., Yeh, E Enantioselective amidases and use thereof. 1998, US 5766918.
    [55] Bauer, L., Exner, O. The chemistry of hydroxamic acids and N-hydroxyimides. Angew. Chem. Int. Edit. 1974, 13: 376-384.
    [56] Fazary, A. Z., Khalil, M. M., Fahmy, A., Tantawy, T. The role of hydroxamic acids in biochemical processes. Med. J. Iala. Acad. Sci. 2001, 14: 107-114.
    [57] Ikeda, M., Maekawa, R., Tanaka, H., Matsumoto, M., Takeda, Y., Tamura, Y., Nemori, R., Yoshioka, T. Inhibition of gelatinolytic activity in tumor tissues by synthetic matrix metalloproteinase inhibitor: application of film in situ zymography. Clin. Cancer Res. 2000, 6: 3290-3296.
    [58] Cawston, T. E. Metalloproteinase inhibitors and the prevention of connective tissue breakdown. Pharmacol. Ther. 1996, 70: 163-182.
    [59] Brown, D. A., Chidambaram, M. V., Clarke, J. J., McAleese, D. M. Design of iron (Ⅲ) chelates in oral treatment of anemia: solution properties and absorption of iron (Ⅲ) acetohydroxamate in anemic rats. Bioinorg. Chem. 1978, 9: 255-275.
    [60] Gao, W.Y., Mitsuya, H., Driscoll, J.S., John, D. G. Enhancement by hydroxyurea of the antihuman immunodeficiency virus type Ⅰ potency of 2'-β-fluoro-2',3'-dideoxyadenosine in perpheral blood mononuclear cell. Biochem. Pharmacol. 1995, 50: 271-276.
    [61] Tsafack, A., Golenser, J., Shanzer, A., Cabantchik, Z.I. Mode of action of iron (Ⅲ) chelators as antimalarials. Ⅲ. Overadditive effects in the combined action of hydroxamate-based agents on in vitro growth of Plasmodium falciparum. Mol. Pharmacol. 1995, 47: 403-409.
    [62] Holmes, L. B. Hydroxamic acid: a potential human teratogea that could berecommended to treat ureaplasma. Teratol. 1996, 53: 227-229.
    [63] Apfel, C., Banner, D. W., Bur, D., Dietz, M., Hirata, T., Hubschwerlen, C., Locher,H., Page, M. G., Pirson, W., Rosse, G., Specklin, J. L. Hydroxamic acid derivativesas potent peptide deformylase inhibitors and antibacterial agents. J. Med. Chem.2000, 43:2324-2331.
    [64] Hamer, R. R. L, Tegeler, J. J., Kurtz, E. S., Allen, R. C., Bailey, S. C., Elliott, M. E.,Hellyer, L., Hessley, G. C., Przekop, P., Feed, B. S., White. J., Martin, L. L.Dibenzoxepinone hydroxylamines and hydroxamic acids: dual inhibitors ofcycloxygenase and 5-lipoxugenase with potent topical anti-inflammatory activity.J. Med. Chem. 1996, 39: 246-252.
    [65] Heitner, H. I. and Ryles, R. G.(1992) European Patent 0514648 B1.
    [66] Lewellyn, M. E. Blends of hydroxamated polymer emulsions with polyacrylateemulsions. 1996, WO96/14271.
    [67] Fournand, D., Arnaud, A., Galzy, P. Study of the acyl transfer activity of arecombinant amidase overproduced in an E. coli stain. Application forshort-chain hydroxamic acid and acid hydrazide synthesis. J. Mol. Catal. B:Enzymatic. 1997, 4: 77-90.
    [68] Fournand, D., Bigey, F., Arnaud, A. Acyl transfer activity of an amidase fromRhodococcus sp. R312: formation of a wide range of hydroxamic acids. Appl.Environ. Microbiol. 1998, 64: 2844-2582.
    [69] Hirrlinger, H., Stolz, A., Knackmuss, H. -J. Enzymatic synthesis of opticallyactive hydroxamic acid and their conversion into optically active primary amineby Lossen transposition. 1997, EP0935669.
    [70] Ghanem, A., Hoenen, H., Muller P., Aboul-Enein, H. Y. Enantiomeric separationof cyclopropane derivatives on a polysaccharide-based chiral phase. Anal. Chim.Acta 2005, 538:25-24
    [71] 边庆花,钟江春,刘丹,王敏.具有光学活性的环丙烷-1,2-二羧酸衍生物的 合成.化学试剂.2006,28:714-716.
    [72] 冯坚.具有光学活性的拟除虫菊酯杀虫剂开发概况.农药.2000,39:1-6.
    [73] Norrby, S. R., Urinary recovery of N-formimidoyl thienamycin (MK0787) asaffected by coadministration of N-formimidoyl thienamycin dehydropeptidaseinhibitors. Antimicrob. Agents Chemother, 1983, 23:300-302.
    [74] 张铸基.几种新型抗生素.中国医学杂志,1989,24:430-433.
    [75] 徐晓莉,王海山,吴剑波,张致平,刘浚.西司他丁的合成.中国医药工业杂志.1994,25:51-54.
    [76] 樊德厚,泰能的药理作用及临床应用概述.临床荟萃.2002,17:369-372.
    [77] 国家药典委员会.中华人民共和国药典.北京:化学工业出版社,2002年版(二部):647-649.
    [78] 徐济民,汪复,边友珍.临床实用新药手册.上海:上海科学技术出版社,1997,30.
    [79] 陈革,唐健雄,罗思钊,俞文鸿.泰能在急性胰腺炎病人中的应用.国外医药——合成药.生化药.制剂分册.2000,21:207-209.
    [80] 麦少珍,梁标,龙发,罗文熙,吴斌.泰能对肺部严重感染患者的疗效观察.广东医学院分院.2000,18:99-100.
    [81] 张潍,周斌,张军,刘忭利.泰能治疗中重度院内肺部感染的临床观察.临床医学.2000,20:37-38.
    [82] 岳玉桃,赵崇高,楚雅玲,郑灵芝.泰能与头孢他啶治疗老年严重细菌感染疗效观察.中国误诊学杂志.2006,6:892-893.
    [83] 郭永千.泰能治疗血液系统恶性疾病并发感染的治疗分析,山东医药.2002,42:27-28.
    [84] 曹晓颖,谢之芳,李秀松.亚胺培南/西司他丁治疗血液系统恶性肿瘤并发感染.上海第二医科大学学报.2000,20:558-561.
    [85] Graham, D. W., Ashton, W. T., Barash, L,, Brown, J. E., Brown, R. D., Canning,L. F., Chen, A., Springer, J. P., Rogers, E. F. Inhibition of the mammalianβ-lactamaserenaldipeptidase(dehydropeptidase-Ⅰ)byZ-2-(acylamino)-3-substitutedpropenoic acids. J. Med. Chem. 1987, 30:1074-1090.
    [86] Mori, A., Arai, I., Yamamoto, H., Nakai, H., Arai, Y. AsymmetricSimmons-Smith reactions using homochiral protecting groups. Tetrahedron,1986, 42: 6447-6458.
    [87] Aratani, T. Catalytic asymmetric synthesis of cyclopropanecarboxylic acids: anapplication of chiral copper carbenoid reaction. Pure & Appl. Chem. 1995, 57:1839-1844.
    [88] Singh, V. K., Dattagupta, A., Sekar, G. Catalytic enantioselectivecyclopropanation of olefins using carbenoid chemistry. Synthesis, 1997,12:137-149.
    [89] Wang, Q. W., Yang, F. K., Du, H., Hossain, M. M., Bennett, D., Grubisha, D. S. Thesynthesis of S-(+)-2, 2-dimeethylcyclopropane carboxylic acid: a precursor forcilastatin. Tetrahedron: Asymmetry. 1998, 9: 3971-3977.
    [90] Fujisawa, T., Ito, Y., Nishiura, S., Shimizu, M. Regioselective ring cleavage ofchiral β-trichloromethyl-β-propiolactone with organoaluminum compounds.Tetrahedron Lett. 1998, 39: 9735-9738.
    [91] 石晓华,周舞阗,陈新志.2,2-二甲基环丙烷甲酸的合成与拆分.高校化学工程学报.2005,19:384-387.
    [92] Thomas, M., Optically active carboxylic acid, carboxamide and carboxylateprodn. -comprises resolution of racemic carboxylic acid or halide with opticallyactive camitine, providing useful intermediates for agrochemicals etc. CH682485,1993.
    [93] 铃鸭刚夫,先砥庸治.2,2-二甲基环丙羧酸的拆分.日本公开特许公报,1985,JP:昭60-25956.
    [94] 金洁,杨细文,武燕彬,刘浚.西司他丁中间体(+)-(S)-2,2-二甲基环丙羧酸的合成.中国新药杂志,2004,13:419-420.
    [95] Thomas M, Process for resolution of 2, 2-dimethylcyclopropane carboxylic acidracemate. 1993, EP0461541.
    [96] Takeo, S., Masami, F. Optically active N-methylephedrine ester of2, 2-dimethylcyclopropanecarboxylic acid and salt thereof. 1985, JP60056942.
    [97] Thomas, M., Process for the resolution of racemic 2, 2-dimethyl cyclopropanecarboxylic acid. 1992, EP0474200.
    [98] Fujita, K., Minomura, M., Koizumi, J. Process for preparing optically active carboxylic acid derivative. 2002, WO2002/022543.
    [99] Lim, K.-M. Process for producing optically active amide. 2004, WO2004/005241 A1.
    [100] Robins, K., Gilligan, T. Bacteria capable of stereospecifically hydrolyzing R-(-)-2,2-dimethylcyclopropanecarboxamide. 1994, US5360731.
    [101] Zimmermann, T., Robins, K., Birch, O. M., Brhlen, E. Genetic engineering process for the production of S-(+)-2,2-dimethylcyclopropanecarboxamide by microorganisms. 1995, US5427934.
    [1] Banerjee, A., Kaul, P., Sharma, R., Banerjee, U. C. A high-throughput amenable colorimetric assay for enantioselctive screening of nitrilase-producing microorganisms using pH sensitive indicators. J. Biomol. Screen. 2003, 8: 559~565.
    [2] Baumann, M., Strumer, R., Bomscheuer, U. T. A high-throughput-screening method for the identification of active and enantioselective hydrolases. Angew. Chem. Int. Ed. 2001, 40: 4201~4204.
    [3] Henke, E., Bomscheuer, U. T. Fluorophoric Assay for the high-throughput determination of amidase activity. Anal. Chem. 2003, 75:255-260.
    [4] Duchateau, A. L. L., Hillemans-Crombach, M. G., Duijnhoven, A. van, Reiss, R., Sonke, T. A colorimetric method for determination of amino amidase activity. Anal. Biochem. 2004, 330: 362-364.
    [5] Klein, G., Reymond, J.-L. An enzyme assay using pM. Angew. Chem. Int. Ed. 2001, 40: 1771-1773.
    [6] Dean, K.E.S., Klein, G. Renaudet, O., Reymond, J.L. A green fluorescent chemosensor for amino acids provides a versatile high-throughput screening (HTS) assay for proteases. Bioorg. Med. Chem. Lett. 2003, 13: 1653-1656.
    [7] Borscheuer, U.T. High-throughput-screening systems for hydrolases. Eng. Life. Sci. 2004, 4: 539-542.
    [8] Reetz, M.T. New methods for the high-throughput screening of enantioselective catalysts and biocatalysts. Angew. Chem. Int. Ed. 2002, 41: 1335-1338.
    [9] Fournand, D., Arnaud, A., Galzy, R Study of the acyl transfer activity of a recombinant amidase overproduced in an Escherichia coli strain. Application for short-chain hydroxamic acid and acid hydrazide synthesis. J. Mol. Catal. B: Enzym. 1998, 4: 77-90.
    [10] Fournand, D., Pirat, J.L., Bigey, F., Arnaud, A., Galzy, R Spectrophotometric assay of a aliphatic monohydroxamic acid and α-, β-, and γ-aminohydroxamic acid in aqueous medium. Anal. Chim. Acta. 1997, 353: 359-366.
    [11] Buckles, R.E., Thelen, C.J. Qualitative determination of carboxylic esters. Anal. Chem. 1950, 22: 676-678.
    [12] Chen, C.S., Fujimoto, Y., Girdaukas, G., Sih, C.J. Quantitative analyses of biochemical kinetic resolutions of enantiomers. J. Am. Chem. Soc. 1982, 104: 7294-7299.
    [13] Fournand, D., Bigey, E, Arnaud, A. Acyl transfer activity of an amidase from Rhodococcus sp. R312: formation of a wide range of hydroxamic acids. Appl. Environ. Microbiol. 1998, 64: 2844-2582.
    [14] Hirrlinger, L., Stolz, A. Formation of a chiral hydroxamic acid with an amidase from Rhodococcus erythropolis MP50 and subsequent chemical Lossen rearrangement to a chiral amine. Appl. Environ. Microbiol. 1997, 63: 3390-3393.
    [15] Fawcett, J.K., Scott J.E. A rapid and precise method for the determination of urea. J. Clin. Path. 1960, 13:156-159.
    [16] Cawston, T.E. Metalloproteinase inhibitors and the prevention of connective tissue breakdown. Pharmacol. Ther. 1996, 70:163-182.
    [17] Nawaz, M., Khan, A., Bhattacharya, D., Sittoneu R, Cerniglia, C. Physical, Biochemical and immunological characterization of a thermostable amidase from klebsiella pneumoniae. J. Bacteriol. 1996, 178:2397-2401.
    [1] Donaldson, W. A. Synthesis of cyclopropane containing natural products.Tetrahedron. 2001, 57: 8589-8627.
    [2] Ghanem, A., Aboul-Enein, H. Y., Lacrampe, F., Grass, S., Jiang, Z. Muller P. Enantioselective gas chromatographic analysis of cyclopropane derivatives.Chromatographia. 2005, 61:103-111.
    [3] Graham, D. W., Ashton, W. T., Barash, L,, Brown, J. E., Brown, R. D., Canning, L. F.,Chen, A., Springer, J. P., Rogers, E. F. Inhibition of the mammalian β-lactamaserenal dipeptidase (dehydropeptidase-I) by Z-2-(acylamino)-3-substitutedpropenoic acids. J. Med. Chem. 1987, 30: 1074-1090.
    [4] Zimmermann, T., Robins, K., Birch, O. M., Boehlen, E. Process for thepreparations of S-(+)-2, 2-dimethyl-cyclopropane carboxamide by geneticallyengineered microorganisms, EU 0524604B1, 1993.
    [5] Wang, M. X., Feng, G. Q. Enzymatic synthesis of optically active 2-methyl- and2, 2-dimethylcyclopropanecarboxylic acids and their derivatives. J. Mol. Catal. B:Enzym. 2002, 18: 267-272.
    [6] Lim, K. M. Process for producing optically active amide. WO2004/005241A1,2004.
    [7] Shaw, N. M., Robins, K. T., Kiener, A. Lonza: 20 years ofbiotransformations. Adv.Synth. Catal. 2003, 345: 425~435.
    [8] Oi, N., Kitahara, H., Matsushita, Y., Kisu, N. Enantiomer separation by gas andhigh-performance liquid chromatography with tripeptide derivatives as chiralstationary phases. J. Chromatography A. 1996, 722: 229-232.
    [9] Straathof, A. J. J., Panke, S., Schmid, A. The production of fine chemicals bybiotransformations. Curr. Opin. Biotechnol. 2002, 13: 548-556.
    [10] Chen C. -S., Fujimoto, Y., Girdaukas, G., Sih, C. J. Quantitative analyses ofbiochemical kinetic resolutions of enantiomers. J. Am. Chem. Soc. 1982, 104:7294-7299.
    [11] Rakels, J. L. L., Straathof, A. J. J., Heijnen, J. J. A simple method to determine theenantiomeric ratio in enantioselective biocatalysis. Enzyme Microb. Technol.1993, 15: 1051-1056.
    [12] Straathof, A. J. J. The enantiomeric ratio: origin, determination and prediction.Enzyme Microb. Technol. 1997, 21: 559-571.
    [13] Ward, T. J. Chiral separations. Anal. Chem. 74: 2863-2872.
    [14] Xu, Y., Xu, J.H., Pan, J., Tang, Y.F. Biocatalytic resolution of glycidyl aryl ethers by Trichosporon loubierii: cell/substrate ratio influences the optical purity of (R)-epoxides. Biotechnol. Lett. 2004, 26: 1217-1221.
    [15] Wielechowska, M., Plenkiewicz, J. Lipase-catalyzed separation of the enantiomers of 1-substituted-3-arylthio-2-propanols. Tetrahedron: Asymmetry 2005, 16: 1199-1205.
    [16] Zimmermann. V., Beller, M., Kragl, U. Modelling the reaction course of a dynamic kinetic resolution of amino acid derivatives: identifying and overcoming bottlenecks. Org. Process. Res. Dev. 2006, 10: 622-627.
    [17] Kotik, M., Brichac, J., Kyslik, P. Novel microbial epoxide hydrolases for biohydrolysis of glycidyl derivatives. J. Biotechnol. 2005, 120: 364-375.
    [18] Romano, D., Ferrario, V., Molinari, F., Gardossi, L., Montero, J.M.S., Torre, P., Converti, A. Kinetic resolution of (R, S)-1,2-O-isopropylideneglycerol by esterification with dry mycelia of moulds. J. Mol. Catal. B: Enzym. 2006, 41: 71-74.
    [19] Berti, F., Felluga, F., Forzato, C., Furlan, G., Nitti, P., Pitacco, G., Valentin, E. Chemoenzymatic synthesis of diastereomeric ethyl γ-benzyl paraconates and determination of the absolute configurations of their acids. Tetrahedron: Asymmetry. 2006, 17: 2344-2353.
    [20] Straathof, A.J.J., Rakels, J.L.L., Heijnen, J.J. Mass balancing in kinetic resolution: calculating yield and enantiomeric excess using chiral balance. Biotechnol. Bioeng. 1995, 45: 536-538.
    [21] Mosandl, A., Rettinger, K., Fischer, K., Schmarr, H.G., Maas, B. Stereoisometric flavor compounds XLI: New applications of permathylated β-cyclodextrin phasse in chiral CGC analysis. J. High Resolut. Chromatogr. 1990, 13: 382-385.
    [21] Schurig, V. Gas chromatographic separation of enantiomers on optically active metal-complex-free stationary phases: New analytical methods. Angew. Chem. Int. Ed. Engl. 1984, 23: 747-765.
    [1] Faber, K. Biotransformations in Organic Chemistry: a text book. 3nd ed,Springer-Verlag, Berlin Heidelberg, 1997: 27-28.
    [2] Banerjee, A., Sharma, R., Banerjee, U. C. The nitrile-degrading enzymes: currentstatus and future prospects. Appl. Microbiol. Biotechnol. 2002, 60: 33-44.
    [3] Martinkova, L., Kren, V. Nitrile- and amide-converting microbial enzymes:stereo-, regio- and chemoselectivity. Biocatal. Biotransform. 2002, 20: 73-93.
    [4] Patel, R. N. Stereoselective Biocatalysis, Marcel Dekker, New York. 2000.
    [5] Komeda, H., Asano, Y. Gene cloning, nucleotide, sequencing, and purification andcharacterization of the D-stereospecific amino-acid amidase from Ochrobactrum anthropi SV3. Eur. J. Biochem. 2000, 267: 2028-2035.
    [6] Yamamoto, K., Otsubo, K., Matsuo, A., Hayashi, T., Fujimastu, I., Komatsu, K-I.Production of R-(-)-ketoprofen from an amide compound by Comamonasacidovorans KPO-2771-4. Appl. Environ. Microbiol. 1996, 62:152-155.
    [7] Krieg, L., Ansorge-Schumacher, M. B., Kula, M. -R. Screening for amidase:isolation and characterization of a novel D-amidase from Variovorax paradoxus.Adv. Synth. Catal. 2002, 344: 965-973.
    [8] Ozaki, A., Kawasaki, H., Yagasaki, M., Hashimoto, Y. Enzymatic production ofD-alanine from D,L-alaninamide by novel D-alaninamide specific amidehydrolase. Biosci. Biotechnol. Biochem. 1992, 56:1980-1984.
    [9] Shaw, N. M., Naughton, A., Robins, K., Tinschert A., Schmid, E., Hischier, M. -L., Venetz, V., Werlen, J., Zimmermann, T., Brieden, W., de Riedmantten, P.,Roduit, J. -P., Zimmerman, B., Neumuller, R. Selection, purification,characterization, and cloning of a novel heat-stable stereo-specific amidase fromKlebsiella oxytoca, and its application in the synthesis of enantiomerically pure(R)- and (S)-3, 3, 3-trifluoro-2-hydroxy-2-methylpropionic acids and(S)-3, 3, 3-trifluoro-2-hydroxy-2-methylpropionamide. Org. Proc. Res. Dev. 2002,6: 497-504.
    [10] Eichhom, E., Roduit, J-P., Shaw, N., Heinzmann, K., Keiner A. Preparation of(S)-piperazine-2-carboxylic acid, (R)-piperazine-2-carboxylic acid, and(S)-piperdine-2-carboxylic acid by kinetic resolution of the correspondenceracemic carboxamides with stereoselective amidases in whole bacterial cells.Tetrahedron: Asymmetry. 1997, 8: 2533-2536.
    [11] Back, D. H., Song, J. J., Lee S. -E., Asano, Y., Sung, M. -H. New thermostableD-methionine amidase from Brevibacillus borstelensis BCS-1 and its applicationfor D-phenylalanine production. Enzyme Microb. Tech. 2003, 32, 131~139.
    [12] Komeda, H., Harada, H., Washika, S., Sakamoto, T., Ueda, M., Asano, Y. Anovel R-stereoselective amidase from Pseudomonas sp. MCI3434 acting onpiperazine-2-tert-butylcarboxamide. Eur. J. Biochem. 2004, 271: 1580-1590.
    [13] Asano, Y., Nakazawa, A., Kato, Y., Kondo, K. Properties of a novelD-stereospecific aminopeptidase from Ochrobactrum anthropi. J. Biol. Chem.1989, 264: 14233-14239.
    [14] Komeda, H., Asano, Y. Gene cloning, nucleotide, sequencing, and purificationand characterization of the D-stereospecific amino-acid amidase fromOchrobactrum anthropi SV3. Eur. J. Biochem. 2000, 267: 2028-2035.
    [15] Graham, D. W., Ashton, W. T., Barash, L., Brown, J. E., Brown, R. D., Canning,L. F., Chen, A., Springer, J. P., Rogers, E. F. Inhibition of the mammalianβ-lactamaserenaldipeptidase(dehydropeptidase-I)byZ-2-(acylamino)-3-substituted-propenoic acids. J. Med. Chem. 1987, 30:1074-1090.
    [16] Lim K. M. Process for producing optically active amide, 2004, WO2004005241.
    [17] Wang, M.X., Feng, G.Q. Enzymatic synthesis of optically active 2-methyl-and 2,2-dimethylcyclopropanecarboxylic acids and their derivatives. J. Mol. Catal. B: Enzym. 2002, 18: 267-272.
    [18] Shaw, N.M., Robins, K.T., Kiener, A. Lonza: 20 years of biotransformations. Adv. Synth. Catal. 2003, 345: 425-435.
    [19] Holt, J. G. Bergey's Manual of Determinative Bacteriology, Williams and Wilkins, Baltimore, MD. 1984.
    [20] Wilson, K. In: Ausubel, F.M., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A., Struhl, K. (Eds.). Current Protocols in Molecular Biology, New York, Wiley, 1997: 241-245.
    [21] Shigematsu, T., Yumihara, K., Ueda, Y., Numaguchi, M., Morimura, S., Kida, K. Delfiia tsuruhatensis sp. nov., a terephthalate-assimilating bacterium isolated from activated sludge. Int. J. Syst. Evol. Microbiol. 2003, 53: 1479-1483.
    [22] Thompson, J.D., Higgins, D.G., Gibson, T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22: 4673-4680.
    [23] Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequence. J. Mol. Evol. 1980, 16: 111-120.
    [24] Fournand, D., Pirat, J.L., Bigey, F., Arnaud, A., Galzy, P. Spectrophotometric assay of an aliphatic monohydroxamic acids and α-, β-, and γ-aminohydroxamic acids in aqueous medium. Anal. Chim. Acta. 1997, 353,359-366.
    [25] Fawcett J.K., Scott J.E. A rapid and precise method for the determination of urea. J. Clin. Path. 1960, 13: 156-159.
    [26] Wen, A., Fegan, M., Hayward, C., Chakraborty, S., Sly, L.I. Phylogenetic relationships among members of the Comamonaceae, and description of Delftia acidocorans (den Dooren de Jong 1926 and Tamaoka et al. 1987) gen, nov., comb, nov.. Int. J. Syst. Bacteriol. 1999, 49: 567-576.
    [27] Shigematsu, T., Yumihara, K., Ueda, Y., Numaguchi, M., Morimura, S., Kida, K. Delftia tsuruhatensis sp. nov., a terephthalate-assimilating bacterium isolated from activated sludge. Int. J. Syst. Evol. Microbiol. 2003, 53: 1479-1483.
    [28] Hongpattarakere, T., Komeda, H., Asano, Y. Purification, characterization, gene cloning and nucleotide sequencing of D-stereospecific amino acid amidase from soil bacterium: Delftia acidovorans. J. Ind. Microbiol. Biotechnol. 2005, 32: 567-576.
    [29] Kaul, P. K., Banerjee, A., Mayilraj, S., Banerjee, U.C. Screening for enantioselective nitrilase: kinetic resolution of racemic mandelonitrile to (R)-(-)-mandelic acid by new bacterial isolates. Tetrahedron: Asymmetry. 2004, 15: 207-211.
    [30] Asano, Y., Tachibana, M., Tani, Y., Yamada H. Purification and characterization of amidase which participates in nitrile degradation. Agile. Biol. Chem. 1982, 46: 1175-1181.
    [31] Graham, D., Pereira, R., Barfield, D., Cowan, D. Nitrile biotransformations using free and immobilized cells of thermophilic Bacillus spp.. Enzyme Microb. Tech. 2000, 26: 368-373.
    [32] Gregoriou, M., Brown, P.R. Inhibition of the aliphatic amidase from Pseudomonas aeruginosa by urea and related compounds. Eur. J. Biochem. 1979, 96: 101-108.
    [33] Jakoby, W.B., Fredericks, J. Reactions catalyzed by amidases. J. Biol. Chem. 1964, 239: 1978-1982.
    [1] Krieg, L., Ansorge-Schumacher, M. B., Kula, M. -R. Screening for amidases:isolation and characterization of a novel D-amidase from Variocorax paradoxus.Adv. Syhth. Catal. 2002, 344: 965-973.
    [2] Komeda, H., Harada, H., Washika, S., Sakamoto, T., Ueda, M., Asano, Y. A novelR-stereoselective amidase from Pseudomonas sp. MCI3434 acting on piperazine-2-tert-butylcarboxamide. Eur. J. Biochem. 2004, 271: 1580-1590.
    [3] Maestracci, M., Thiery, A., Bui, K., Amaud, A., Galzy, P. Activity and regulationof an amidase (acylamide amidohydrolase, EC 3.5.1.4) with a wide substratespectrum from a Brevibacterium sp. Arch. Microbiol. 1984, 138: 315-320.
    [4] Yamamoto, K., Otsubo, K., Matsuo, A., Hayashi, T., Fujimatsu, I., Komatsu, K. -I.Production of R-(-)-ketoprofen from an amide compound by Comamonasacidovorans KPO-2771-4. Appl. Environ. Microbiol. 1996, 62:152-155.
    [5] Oziki, A., Kawasaki, H., Yagasaki, M., Hashimoto, Y. Enzymatic production of D-alanine from DL-alaninamide by novel D-alaninamide specific amide hydrolase.Biosci. Biotech. Biochem. 1992, 56: 1980-1984.
    [6] Mitomo, H., Hsieh, W. -C., Nishiwaki, K., Kasuya, K., Doi, Y. Poly(3-hydroxybutyrate -co-4-hydroxybutyrate) produced by Comamonas acidovorans.Polymer. 2001, 42: 3455-3461.
    [7] Lee, W. -H., Azizan, M. N. M., Sudesh, K. Effects of culture conditions on thecomposition ofpoly(3-hydroxybutyrate-co-4- hydroxybutyrate) synthesized byComamonas acidovorans. Polym. Degrad. Stabil. 2004, 84: 129-134.
    [8] Fournand, D., Pirat, J. L., Bigey, F., Arnaud, A., Galzy, P. Spectrophotometric assayof an aliphatic monohydroxamic acid and α-, β-, and γ-aminohydroxamic acid inaqueous medium. Anal. Chim. Acta. 1997, 353:359-366.
    [9] Fournand, D., Arnaud, A., Galzy, P. Study of the acyl transfer activity of arecombinant amidase overproduced in an Escherichia coli strain. Application forshort-chain hydroxamic acid and acid hydrazide synthesis, J. Mol. Catal. B.Enzym. 1998, 4: 77~90.
    [10] Kobayashi, M., Shimizu, S. Nitrile hydrolases. Curr. Opin. Chem. Biol. 2000, 4:95-102.
    [11] Baek, D. H., Song, J. J., Lee, S. -G., Kwon, S. J., Asano, Y., Sung, M. -H. Newthermostable D-methionine amidase from Brevibacillus borsrelensis BCS-1 and its application for D-phenylalanine production. Enzyme Microb. Technol. 2003,32: 131-139.
    [12] Kobayashi, M., Komeda, H., Nagasawa, T., Yamada, H., Shimizu, S. Occurrenceof amidases in the industrial microbe Rhodococcus rhodochrous J1. Biosci.Biotechnol. Biochem. 1993, 57:1949-1950.
    [13] Gerhardt,P.厦门大学生物系微生物教研室译.普通细菌学方法手册.厦门:厦门大学出版社,1989,257-259.
    [1] Liu, Y. Y., Xu, J. H., Xu, Q. G., Hu Y. Significant enhancement of lipaseenantioselectivity toward (S)-Ketoprofen ester at pH 2. Biotechnol. Lett. 1999,21:143-146.
    [2] Wescott, R., Klibanov, A. M. Solvent variation inverts substrate specificity of anenzyme. J. Am. Chem. Soc. 1993, 115:1629-1631.
    [3] Kaftzik, N., Wasserscheid, R, Kragl, U. Use of ionic liquids to increase the yieldand enzyme stability in the β-galatosidase catalyzed synthesis ofN-acetyllactosamine. Org. Proc. Res. Dev. 2002, 6: 553-557.
    [4] Sakai, T., Kawabata, I., Kashimoto, T., Ema, T., Utaka, M. Enhancement of theenantioselectivity in lipase-catalyzed kinetic reactions of 3-Phenyl-2H-azirine-2-methanol by lowing the temperature to -40℃. J. Org. Chem. 1997, 62:4906-4907.
    [5] Lam, L. K. P., Hui, R. A. H. F., Jones, J. B. Enzyme in organic synthesis. 35.Stereoselective pig liver esterase catalyzed hydrolysis of 3-substituted glutaratediesters. Optimization of enantiomeric excess via reaction conditions control. J.Org. Chem. 1986, 51: 2047-2050.
    [6] Keinan, E., Hateli, F. V., Seth, K. K., Lamed, R. Thermostable enzymes in organicsynthesis. 2. asymmetric reduction of ketones with alcohol dehydrogenase fromTherrnoanaerbium brockii. J. Am. Chem. Soc. 1986, 108: 162-169.
    [7] Miyazawa, T., Imagawa, K., Yanagihara, R., Yamada, T. Marked dependence ontemperature of enantioselectivity in the Aspergillus oryzae protease-catalyzedhydrolysis of amino acid esters. Biotechnol. Tech. 1997, 11:931-933.
    [8] Lopez-Serrano, P., Wegman, M. A., Rantwijk, F., Sheldon, R. A. Enantioselectiveenzyme catalyzed ammoniolysis of amino acid derivatives. Effect of temperature.Tetrahedron: Asymmetry. 2001, 12: 235-240.
    [9] Magnusson, A. O., Takwa, M., Hamberg, A., Hult K. An S-Selective lipase wascreated by rational redesign and the enantioselectivity increased with temperature.Angew. Chem. Int. Ed. 2005, 44: 4582-4585.
    [10] Pham, V. T., Phillips, R. S. Effect of Substrate structure and temperature on thestereospecificity of secondary accohol dehydrogenase from Thermoanaerobacterethnolicus. J. Am. Chem. Soc. 1990, 112: 3629-3632.
    [11] Carrea, G., Ottolina, G. and Riva, S. Role of solvents in the control of enzyme selectivity in organic media. Trends Biotechnol. 1995, 13: 63-70.
    [12] Chen, Y., Xu, J. H., Pan, J., Xu, Y., Shi, J. B. Catalytic resolution of RS-HMPCacetate by immobilized cells of Acinetobacter sp. CGMCC 0789 in a mediumwith organic cosolvent. J. Mol. Catal. B: Enzym. 2004, 30: 203-208.
    [13] Watanabe, K., Ueli, S. I. Dimethyl sulfoxide as a cosolvent dramatically enhancesthe enantioselectivity in lipase catalyzed resolution of 2-phenoxypropionic acylderivatives. J. Chem. Soc. Perkin. Trans. 2001, 1: 1386-1390.
    [14] Goto, M., Ogawa, H., Isobe, T., Kawashi, M., Kometani, T. 2-Propanol treatmentof Candida rugosa lipase and its hydrolytic activity. J. Mol. Catal. B: Enzym.2003, 24-25: 67-73.
    [15] Rakels J. L. L., Straathof A. J. J., Heijnen J. J. A simple method to determine theenantiomeric ratio in enantioselective biocatalysis. Enzyme Microb. Technol.1993, 15:1051-1056.
    [16] Cipiciani, A., Bellezza, F., Fringuelli, F., Silvestrini, M. G. Influence of pH andtemperature on the enantioselectivity of propan-2-ol-treated Candida rugosalipase in the kinetic resolution of (±)-4-acetoxy-[2, 2]-paracyclophane.Tetrahedron: Asymmertry. 2001, 12:2277-2281.
    [17] Liu Y. Y., Xu, J. H., Wu, H. Y., Shen, D. Integration of purification withimmolization of Candida rugosa lipase for kinetic resolution of racemicketoprofen. J. Biotechnol. 2004, 110: 209-217.
    [18] 岑沛霖,关怡新,林建平.生物反应工程.北京:高等教育出版社,2005:32-35.
    [19] Phillps, R. S. Temperature modulation of the stereochemistry of enzymaticcatalysis: prospects for exploitation. Trends Biotechnol. 1996, 14:13-16.
    [20] Faber, K. Biotransformations in organic chemistry: a text book, 3rd ed,Springer-Verlag, Berlin Heidelberg, 1997, 12-13.
    [21] Kaul, P., Banerjee, A. Banerjee, U. C. Stereoselective nitrile hydrolysis byimmobilized whole-cell biocatalyst. Biomacromolecules. 2006, 7:1536-1541.
    [22] Arroyo, M., Torres, R., de la Mata, I., Castillon, M. P., Acebal, C. Interactkion ofpenicillin Ⅴ acylase with organic solvents: catalytic activity modulation on thehydrolysis of penicillin Ⅴ. Enzyme Microb. Technol. 1999, 25: 378-383.
    [23] Liese, A., Seelbach, K., Wandrey, C. Industrial Biotransformations. Wiley-VCH,Wein-hein. 2006, 377-378.
    [24] Kondo, A., Liu, Y., Furuta, M., Fujita, Y., Matsumoto, T., Fukuda, H. Preparation of high activity whole cell biocatalyst by permeability of recombinant flocculent yeast with alcohol. Enzyme Microb. Technol. 2000, 27:806-811.
    [25] Fujisawa, T., Ito, T., Nishiura, S., Shimizu, M. Regioselective ring cleavage of chiral β-trichloromethyl-β-propiolactone with organoaluminum compounds for the synthesis of optically active intermediates. Tetrahedron Lett. 1998, 39: 9735-9738
    [1] Grossowicz, N., Wainfan, E., Borek, E., Waelsch, H. The enzymatic formation of hydroxamic acids form glutamine and asparagines. J. Biol. Chem. 1950, 187:111-125.
    [2] Fournand, D., Vaysse, L., Dubreucq, E., Amaud, A., Galzy, E Monohydroxamic acid biosynthesis. J. Mol. Catal. B: Enzym. 1998, 5: 207-211.
    [3] Schraml, J. Derivatives ofhydroxamic acids. Appl. Organometal. Chem. 2000, 14: 604-610.
    [4] Asano, Y., Tachibana, M., Tani, Y., Yamada, H. Purification and characterization of amidase which participates in nitrile degradation. Agric. Biol. Chem. 1982, 46: 1175-1181.
    [5] Ciskanik, L.M., Wilczek, J.M., Fallon, R.D. Purification and characterization of an enantioselective amidase from Pseudomonas chlororaphis B23. Appl. Environ. Microbiol. 1995, 61: 998~1003.
    [6] Kobayashi, M., Komeda, H., Nagasawa, T., Nishiyama, M., Horinouchi, S., Beppu, T., Yamada, H., Shimizu, S. Amidase coupled with low-molecular-mass nitrile hydratase from Rhodococcus rhodochrous J1. Eur. J. Biochem. 1993, 217: 327-336.
    [7] Fournand, D., Bigey, F., Arnaud, A. Acyl transfer activity of an amidase from Rhodococcus sp. strain R312: formation of a wide range of hydroxamic acids. Appl. Environ. Microbiol. 1998, 64: 2844-282.
    [8] Hirrlinger, B., Stolz, A. Formation of a chiral hydroxamic acid with an amidase from Rhodococcus erythropolis MP50 and subsequent chemical Lossen rearrangement to a chiral amine. Appl. Environ. Microbiol. 1997, 63: 3390-3393.
    [9] Egorova, K., Trauthwein, H., Verseck, S., Antranilian. G. Purification and properties of an enantioselective and thermoactive amidase from the thermophilic actinomycete Pseudonocardia thermophila. Appl. Microbiol. Biotechnol. 2004, 65: 38-45.
    [10] d'Abusco, A.S., Ammendola, S., Scandurra, R., Politi. L. Molecular and biochemical characterization of the recombinant amidase from hyperthermophilic archaeon Sulfolobus solfataricus. Extremophiles. 2001, 5: 183-192.
    [11] Fournand, D., Pirat, J.L., Bigey, F., Arnaud, A., Galzy, P. Spectrophotometric assay of a aliphatic monohydroxamic acid and α-, β-, and γ-aminohydroxamic acid in aqueous medium. Anal. Chim. Acta. 1997, 353: 359-366.
    [12] Fournand, D., Bigey, F., Arnaud, A. Acyl transfer activity of an amidase from Rhodococcus sp. R312: formation of a wide range of hydroxamic acids. Appl. Environ. Microbiol. 1998, 64: 2844-2582.
    [13] Fournand, D., Arnaud, A., Galzy, P. Study of the acyl transfer activity of a recombinant amidase overproduced in an Escherichia coli strain. Application for short-chain hydroxamic acid and acid hydrazide synthesis. J. Mol. Catal. B: Enzym. 1998, 4: 77-90.
    [14] 周晓云,酶学原理与酶工程.北京:中国轻工业出版社,2005,77-81.
    [15] Maesteracci, M., Thiery, A., Arnaud, A., Galzy, P. A study of the mechanism of the reactions catalyzed by the amidase from Brevibacterium sp. R312. Agric. Biol. Chem. 1986, 50: 2237-2241.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.