首乌方对帕金森病大鼠血液-纹状体左旋多巴药动学及神经递质的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景及目的
     帕金森病(PD)是一种以黑质、纹状体区多巴胺(DA)能神经元进行性退变、DA含量明显减少为特征的中枢神经系统疾病,临床常用左旋多巴(L-DOPA)替代疗法治疗。L-DOPA在体内转化为DA,可以减轻PD的症状,但随着治疗时间延长,其疗效降低,副作用增强。PD发展导致脑DA储存能力下降,当L-DOPA血药浓度超过治疗阈,而神经元对DA水平波动缓冲能力丧失时,则形成波动性刺激,诱发症状波动、运动障碍等不良反应。L-DOPA自身氧化产生自由基,也可能加速PD患者神经元变性。因此,如何合理地使用L-DOPA,以较小的剂量发挥较大的药效,减少不良反应,是目前面临的重要课题。临床应用中药首乌方与L-DOPA制剂美多芭结合治疗PD,取得了良好效果。首乌方由首乌、鹿茸、天麻等中药组成,是在中医理论指导下针对PD选出的合理中药处方。研究表明,临床使用首乌方可以协同美多芭作用,减少美多芭用量。动物实验显示其可能通过影响兴奋性毒性、氧化损伤等减小、L-DOPA的神经损伤。
     微透析采样技术可以监测清醒自由活动动物特定组织细胞外液中物质的动态变化。近年来,该技术被应用于药代-药效学结合研究中,以阐明药物在作用靶部位的浓度-效应-时间三维关系。本实验通过建立血-脑双位点同步微透析采样、高效液相色谱-荧光检测(HPLC-FLD)和高效液相色谱-电化学检测(HPLC-ED)法,同步监测清醒自由活动大鼠L-DOPA血药浓度-靶部位(纹状体)药物浓度-靶部位递质水平变化情况。观察首乌方对6-羟基多巴胺(6-OHDA)导致的PD模型大鼠血液和纹状体细胞外液L-DOPA药代动力学的影响,以及由L-DOPA引起的脑内多巴胺及其代谢产物和羟自由基变化的影响,并进行药动-药效相结合的分析研究,进一步探讨首乌方对L-DOPA治疗PD的增效减毒和神经保护作用机制。
     研究方法
     1 HPLC-FLD测定L-DOPA的方法色谱柱为MERCK Lichrospher 100 C18 (5μm,4mm×250mm),预柱为Nova-Pak C18,柱温:35℃,激发波长278nm,发射波长325nm,流动相为:乙二胺四乙酸二钠(0.08mmol·L-1),磷酸二氢钾(70mmol·L-1),庚烷磺酸钠(2.08mmol·L-1),甲醇(10%)。流速1.0ml·min-1。
     2 HPLC-ED同步测定单胺类递质、羟自由基和L-DOPA的方法色谱柱为Antec Leyden BVC18分析柱(3μm, 2.1mm×100mm)。Antec DecadeⅡSDC电化学检测器,玻璃碳电极和Ag/AgCl参考电极,工作电压为0.52v。流动相为:乙二胺四乙酸二钠(0.027mmol·L-1)、辛烷磺酸钠(0.74mmol·L-1)、氯化钾(2mmol·L-1)、磷酸二氢钠(100mmol·L-1)、甲醇(15%)、乙腈(1%)、乙酸(0.05%),用磷酸调pH值至3.32,流速0.2mL·min-1。
     3大鼠纹状体注射6-OHDA造成PD模型微透析采样前7天,大鼠ip戊巴比妥钠麻醉(40mg·kg-1),埋入探针套管于右侧纹状体内(A:+0.2mm,L:+3mm,V:7.5mm),用牙科水泥固定,纹状体内缓慢注射0.2%的6-OHDA生理盐水溶液(32μg·kg-1 1μL·min-1),造成脑内单点注射6-OHDA所致的PD大鼠模型。对照组注射相应体积生理盐水。
     4首乌方对大鼠血液-纹状体细胞外液L-DOPA药代动力学及脑内递质的影响
     动物分组与药物处理SD大鼠随机分为6组:对照组、模型组、高剂量对照组、高剂量模型组、低剂量模型组,首乌方+低剂量模型组。参见上述方法造成PD模型,造模当天首次投药,高剂量对照组和高剂量模型组ig美多芭60mg·kg-1(L-DOPA 48mg·kg-1和苄丝肼12mg·kg-1),低剂量模型组ig美多芭30mg·kg-1(L-DOPA 24mg·kg-1和苄丝肼6mg·kg-1),首乌方+低剂量模型组ig首乌方煎剂(生药量:18g·kg-1)和美多芭30mg·kg-1,对照组和模型组ig等体积蒸馏水,连续6天。
     手术和微透析第6天以同样方法麻醉大鼠,左侧颈静脉插入血探针,复方氯化钠灌流2μl·min-1过夜。大鼠腹腔埋植导管,从背部引出并固定,用于次日微透析过程中腹腔给药。第7天大鼠清醒自由活动状态下插入脑探针,进行同步血、脑双位点微透析。双位点探针用复方氯化钠灌流(2.5μL·min-1)平衡60min后,脑探针灌流液改为5mmol·L-1的水杨酸钠-复方氯化钠溶液,平衡60min后,开始收集透析液,每15min收集1管。取前4管测定目标检测物,计算均值作为基础水平。之后,各组大鼠经腹腔留置的导管ip L-DOPA和苄丝肼,给药剂量见前。对照组和模型组ip等量生理盐水,收集血、脑透析液至给药后420min。
     研究结果
     1 HPLC-FLD测定血透析液中L-DOPA的方法测定0.3125~5mg·L-1 5个浓度的L-DOPA标准液,线性关系良好,相关系数(R2)为0.9987。测定0.3125-5mg·L-1的L-DOPA标准,日内、日间相对变异系数(RSD)≤4.9%,最低检测限19μg·L-1。
     2 HPLC-ED同时测定脑透析液中单胺类递质、羟自由基和L-DOPA的方法配置含L-DOPA、DA、3,4-二羟基苯乙酸(DOPAC)、5-羟吲哚乙酸(5-HIAA)、5-羟色胺(5-HT)、2,3-二羟基苯甲酸(2,3-DHBA).2,5-二羟基苯甲酸(2,5-DHBA)、肾上腺素(EP)、去甲肾上腺素(NE)、高香草酸(HVA)的10mix标准液。测定5个不同浓度的10mix标准液,线性关系良好,各物质R2≥0.9991。各检测物在3.125~250μg·L-1浓度的日内、日间RSD≤8.7%,检测限≤1.0μg·L-1。
     3 PD模型大鼠血液和纹状体细胞外液L-DOPA药代动力学同步研究PD大鼠腹腔注射L-DOPA后,药物迅速吸收入血,并通过血脑屏障进入纹状体。血液和纹状体细胞外液的药物浓度-时间曲线符合一室模型,纹状体细胞外液药物达峰时间(Tmax)晚于血液,药-时曲线下面积(AUC(o-∞))和达峰浓度(Cmax)小于血液。
     4 PD模型大鼠L-DOPA血液药动学-靶部位药动学-靶部位药效学指标的相关性研究L-DOPA药动学指标选择大鼠血液、纹状体细胞外液的药物浓度,药效学指标选择大鼠纹状体细胞外液DA变化率(△DA=(测定浓度-基础值)/基础值)。腹腔注射L-DOPA后,随着血液中L-DOPA浓度的增加,纹状体细胞外液L-DOPA、ΔDA水平也逐渐增加。血液浓度与纹状体细胞外液药物浓度、血药浓度与纹状体细胞外液△DA、纹状体细胞外液药物浓度与纹状体细胞外液△DA均呈现较好的相关性。血药浓度-效应曲线、纹状体细胞外液药物浓度-效应曲线均呈典型的逆时针滞后环。当血液、纹状体细胞外液LDOPA浓度达到最大时,纹状体DA水平并未达到最大值。
     5首乌方对PD模型大鼠血液和纹状体细胞外液L-DOPA药代动力学的影响与低剂量模型组相比,首乌方+低剂量模型组L-DOPA血药浓度在6个时间点升高,纹状体细胞外液药物浓度未见升高,而在15min时降低。首乌方使L-DOPA血液AUC(0-∞)增加,Tmax延后,平均驻留时间(MRT(0-∞)延长;使纹状体细胞外液Tmax滞后,MRT(0-t)延长。
     6首乌方对PD大鼠纹状体细胞外液DA及其代谢产物的影响6-OHDA造模使模型组纹状体细胞外液DA水平较对照组降低,DOPAC/DA、HVA/DA比率升高。与模型组相比,低剂量模型组、首乌方+低剂量模型组DA基础水平升高,DOPAC/DA、HVA/DA比率基础值降低。腹腔注射L-DOPA后,两组DA水平均迅速升高,然后缓慢回落。与低剂量模型组相比,首乌方+低剂量模型组DA水平升高更显著,而△DA升高幅度较低。两组间DOPAC/DA、HVA/DA比率基础值及变化无差异。
     7首乌方对PD大鼠纹状体细胞外液羟自由基的影响以总DHBA (2,3-DHBA与2,5-DHBA之和)代表羟自由基水平。模型组纹状体细胞外液总DHBA较对照组升高。与模型组相比,低剂量模型组、首乌方+低剂量模型组总DHBA基础水平降低。腹腔注射L-DOPA后,总DHBA逐渐升高,275min后缓慢回落。其中高剂量模型组升高最为显著,低剂量模型组居中,首乌方+低剂量模型组总DHBA最低,且有9个时间点低于低剂量模型组。
     结论
     1本实验建立了大鼠血-脑双位点微透析采样、HPLC-ED同时检测脑透析液中单胺类递质、羟自由基和L-DOPA的方法。成功地对清醒自由活动大鼠L-DOPA血药浓度-纹状体细胞外液药物浓度-纹状体细胞外液多种递质水平进行了相同生物个体的同步动态研究。
     2清醒PD模型大鼠L-DOPA血药浓度、纹状体细胞外液药物浓度、纹状体细胞外液△DA三者间具有明显的相关性,血药浓度可以在一定程度上反映靶部位药物浓度及效应指标的变化趋势。
     3首乌方可减慢L-DOPA消除,增加血液L-DOPA的吸收,减少纹状体L-DOPA药物浓度波动。
     4首乌方协同L-DOPA治疗PD,可使纹状体细胞外液DA浓度更长时间维持在较高水平,同时可以降低△DA,减少DA水平的波动。此协同作用与首乌方对L-DOPA药动学的影响密切相关。
     5低剂量L-DOPA可以降低纹状体细胞外液羟自由基基础水平,与首乌方合用降低作用更为显著。首乌方具有抗氧化作用。
Background and Objective
     Parkinson's disease (PD) is a central nervous system diseases, featured mainly by progressive neurodegeneration and reduce of DA content in the system of substantia nigral and striatum. Generally replacement therapy with L-DOPA, it conversion to DA, and abate the symptoms. But long-time administration can weaken L-DOPA curative effects and caused side effects. There a reduction of DA storage ability in neuron with the development of PD, when blood concentration of L-DOPA over the response threshold, and no buffer effect of neuron to DA fluctuation. L-DOPA oxidation and releases free radical, may improve process of PD. Thus rational administration of L-DOPA is important. Shouwu Fang is a clinical effective Chinese herbal formula, it consists of radix polygoni multiflori preparata, pilose Antler, Gastrodia elata, et al. It has been found that the treatment with integration of Shouwu Fang and western medicine can not only increase therapeutic action, but also reduce toxic and side-effects.
     Microdialysis is an in vivo sampling technique permitting the continuous determination of test substances. Recently, this technique has been used in pharmacokinetics-pharmacodynamics study to determine the relationship between drug's concentration, effects and time.
     The experiment combined dual blood-brain sites microdialysis technique with HPLC-FLD and HPLC-ED to synchronous monitor the level of L-DOPA in blood and striatum, and neurotransmitter in striatum. To observe the effects of Shouwu Fang on pharmacokinetics of Levodopa in blood and extracellular fluids of striatum, and the effects on neurotransmitter, such as monoamine transmitters and hydroxyl free radical, in normal and PD rats. And then, further analysis the data with method of pharmacokinetics-pharmacodynamics study, to investigate the mechanism of Shouwu Fang on effects of L-DOPA and treatment of PD.
     Methods
     1 The method of measuring the L-DOPA with HPLC-FLD. Aglient 1200 system was adopted with a fluorescence detector (λex=278nm,λem=325nm), a MERCK Lichrospher 100 C18 column (5μm,4mm×250mm), a Nova-Pak C18 pre-column, a mobile phase consisted of 90% solution (containing EDTA 0.08mmol·L-1, KH2PO4 70mmol·L-1, solium heptanesulfonate 2.08mmol·L-1) and 10% methanol, and using a flow rate of 1.0ml·min-1, temperature with 35℃.
     2 The method of synchronous measuring the neurotransmitter, hydroxyl free radical and L-DOPA with HPLC-ED. We used a Antec Leyden BV C18 column (3μm, 2.1mm×100mm), a Antec DecadeⅡSDC electrochemical detector was set at 0.52v with a glass carbon electrode and a Ag/AgCl reference electrode. The mobile phase (pH 3.32, adjusted with phosphoric acid)consisted of EDTA (0.027mmol·L-1), sodium octane sulfonate (0.74mmol·L-1), KCL (2mmol·L-1), KH2PO4(100mmol·L-1), methanol(15%), acetonitrile (1%), acetic acid (0.05%), using a flow rate of O.2mL·min-1
     3 To establish the PD rats model by injecting 6-OHDA into striatum. In this study, seven days before sampling, rats were anesthetized with sodium pentobarbital (40mg·kg-1) and placed on a stereotaxic frame. Unilateral injection of 6-OHDA (32μg·kg-1 1μL·min-1)was performed in striatum (coordinates with respect to bregma:A:+0.2mm, L:+3mm, V:7.5mm). The same volume normal saline was injected into the striatum of the control group rats.
     4 Effects of Shouwu Fang on pharmacokinetics of L-DOPA in blood and extracellular fluids of striatum and neurotransmitter in normal and PD rats.
     Rats grouping and dosage. Rats were randomly divided into six groups:control group, model group, control high dose group(L-DOPA 48mg-kg-1 and benserazide 12mg·kg-1), model high dose group(L-DOPA 48mg-kg-1 and benserazide 12mg·kg-1), model low dose group(L-DOPA 24mg·kg-1 and benserazide 6mg-kg-1), SWF+model low dose (L-DOPA 24mg·kg-1 and benserazide 6mg·kg-1, and Shouwu Fang 18g·kg-1 equivalent to herbs). The model groups establish the PD rats model by method above. The drugs or water were ig to rats for 6 days.
     Operation and blood-brain microdialysis. The rats were anesthetized with same method on the 6th day, the blood microdialysis probe was positioned within the jugular vein toward the right atrium and then was perfused with compound sodium chloride solution at a rate of 2.5μL·min-1. A piece of tubing was looped subcutaneously on the back of the rats to the surface of the neck from the abdominal space for the administration of drugs.
     On the 7th day of the experiment, a probe was inserted into the striatal guide, in freely moving rats. The blood and brain microdialysis probes were perfused with compound sodium chloride solution at a flow rate of 2.5μL·min-1 for 60 min, then the brain microdialysis probe was perfused with compound sodium chloride solution containing 5mmol·L-1 salicylic acid sodium salt. After a 60-min stabilization period, L-DOPA and benserazide were ip to rats at same dosage above. Brain and blood dialysates were collected in 15 min intervals for 420 min.
     Result
     1 The method of measuring the concentration of L-DOPA in blood with HPLC-FLD. Intra-day and inter-day RSD for L-DOPA(0.3125-5mg·L-1) were≤4.9%. correlation coefficients of linear regression equations from 0.3125 mg·L-1 to 5mg·L-1was 0.9987. the minimum detection limit of L-DOPA was 19μg·L-
     2 The method of synchronous measuring the neurotransmitter, hydroxyl free radical and L-DOPA with HPLC-ED. The 10mix standard liquid were consisted of L-DOPA, DA, DOPAC,5-HIAA,5-HT,2,3-DHBA,2,5-DHBA, EP, NE and HVA. Intra-day and inter-day RSD for 5 different concentrations of 10mix were≤8.7%. Correlation coefficients of linear regression equations of the each substance in 10 mix were≥0.9991。
     3 Synchronous pharmacokinetics study on Levodopa in PD rats blood and extracellular fluids of striatum. Both in normal and PD rats, drugs were absorbed in blood rapidly after administration through intraperitoneal injection, then entered the striatum through blood brain barrier. Both the blood and striatum concentration-time profiles of L-DOPA were described by a one compartment model. Tmax, AUC(o-∞) and Cmax in striatum were significantly different from that in blood.
     4 The relativity between the concentration of L-DOPA in blood, concentration of L-DOPA in target organ, and effects in target organ in PD rats. The target of pharmacokinetics is concentrations of L-DOPA in rat's blood or extracellular fluids of striatum. The target of pharmacodynamics is the level of DA in extracellular fluids of striatum, witch expressed asΔDA((determination value -basic value)/basic value). After administration of L-DOPA, ip, the L-DOPA concentration andΔDA value in extracellular fluids of striatum were increased, with the blood L-DOPA concentration was increased. The RSD showed strong correlation between L-DOPA concentration in blood and in extracellular fluids of striatum, between L-DOPA concentration in blood andΔDA value in extracellular fluids of striatum, between L-DOPA concentration andΔDA value in extracellular fluids of striatum.
     5 Synchronous pharmacokinetics study on effects of Shouwu Fang on L-DOPA in PD rats blood and extracellular fluids of striatum. Conmpared with model low dose group, the blood L-DOPA concentration of SWF+model low dose group were increased significantly at 6 time points, the concentration in striatum was decreased at 15 min after a administration. the blood AUC(o-∞) of SWF+model low dose group was increased, blood Tmax and MRT(o-t) were delayed, and striatum Tmax and MRT(o-t) were delayed too.
     6 Effects of Shouwu Fang on DA and its metabolic products in extracellular fluids of striatum in PD rats. After one week injection of 6-OHDA into stratum, compared with the control group, the DA in extracellular fluids of striatum significantly was decreased, the DOPAC/DA and HVA/DA were risen of model group. Compared with the model group, model low dose group and SWF +model low dose group DA basic value increased, DOPAC/DA and HVA/DA basic value decreased. After administration of L-DOPA, ip, DA level increased rapidly and then fell slowly. Compared with the model low dose group, the SWF+model low dose group DA increased more significant, andΔDA increased less.
     7 Effects of Shouwu Fang on hydroxyl free radical in extracellular fluids of striatum in PD rats. The target of hydroxyl free radical is total DHBA(2,3-DHBA +2,5-DHBA). The total DHBA of model group is above that of control group. Compared with model group, model low dose group and SWF +model low dose group total DHBA basic level decreased. After administration of L-DOPA, ip, total DHBA increased gradually, then fell slowly after 275min. The SWF +model low dose group DHBA increase is lowest, and lower than model low dose group significantly at 9 time points.
     Conclusion
     1 Through the combination of blood-brain microdialysis technique and HPLC-FLD and HPLC-ED, make it possible to simultaneous detection of the L-DOPA concentration in blood, L-DOPA concentration and DA and its metabolic products and hydroxyl free radical in extracellular fluids of striatum, in dialysates of freely moving rats.
     2 There are strong correlation between L-DOPA concentration in blood, L-DOPA concentration in extracellular fluids of striatum, andΔDA value in extracellular fluids of striatum in awake PD rats. The blood concentration of L-DOPA can reflected the concentration of L-DOPA and effects in target organ partly.
     3 Shouwu Fang delayed L-DOPA elimination, increased its absorption in blood, and reduced fluctuation of concentration in striarum.
     4 Shouwu Fang and L-DOPA synergy therapy PD. SWF can retain high level of DA in extracellular fluids of striatum for a longer time, and decreasesΔDA at the same time, and reduced the DA fluctuation. This synergy effect was closely related to SWF effects on L-DOPA pharmacokinetics.
     5 The hydroxyl free radical basic level in extracellular fluids of striatum was decreased when administration of low dose L-DOPA than model group. SWF can promote the decrease, have an antioxidant effect.
引文
[1]Takashima H, Tsujihata M, Kishikawa M, et al. Bromocriptine protects dopaminergic neurons from levodopa-induced toxicity by stimulating D(2) receptors. Exp Neurol,1999, 159:98-104.
    [2]陆建明,周厚广,鲍远程,等.左旋多巴对帕金森病大鼠毒性作用的实验研究.临床神经病学杂志,2004,17(5):354-356.
    [3]陆建明,周厚广,鲍远程.还原型谷胱甘肽对左旋多巴毒性拮抗作用的实验研究.中国临床神经科学,2004,(01):36-38.
    [4]周国庆,陈光辉,周孝达,等.左旋多巴对体外培养大鼠纹状体的神经毒性及其保护方法的研究.中风与神经疾病杂志,2000,(06):12-13.
    [5]王巍,赵德忠,孙晓芳,等.中药首茸方对左旋多巴诱发帕金森病大鼠脑内羟自由基增高的影响.中国中西医结合杂志,2003,23(特):50-53.
    [6]肖勤,翁中芳,张璟,等.左旋多巴对帕金森病大鼠血清兴奋性氨基酸及抗氧化指标的影响.临床神经病学杂志,2003,(02):69-71.
    [7]Maeda T, Cheng N, Kume T, et al. L-dopa neurotoxicity is mediated by glutamate release in cultured rat striatal neurons. Brain Res,1997,77:159-162.
    [8]范红杰,房晓,于维东,等.转bcl-2治疗缺血性脑血管病的研究进展.国外医学·脑血管疾病分册,2001,9(1):27-9.
    [9]曹非;骆芳;段国安,等.左旋多巴加速帕金森病大鼠黑质细胞凋亡的实验研究.临床神经电生理学杂志,2007,15(2):67-70.
    [10]Mena MA, Davila V. Sulzer D1 Neurotrophic effects of L-dopa in postnatal midbrain dopamine/cortical astrocyte cocultures. J Neurochem,1997,69:1398-1408.
    [11]Zou L, Jankovic J, Rowe DB, et all Neuroprotection by pramipexole against dopamine-and levodopa-induced cytotoxicity. Life Sci,1999,64:1275-1285.
    [12]肖勤,陈生弟.左旋多巴治疗对黑质细胞有神经毒作用吗?中华神经科杂志,2001,34(1):46-49.
    [13]Agid Y. Levodopa:is toxicity a myth? Neurology,1998,50:858-863.
    [14]Takashima H, Tsujihata M, Kishikawa M, et al. Bromocriptine protects dopaminergic neurons from levodopa-induced toxicity by stimulating D(2) receptors. Exp Neurol,1999, 159:98-104.
    [15]Zeng BY, Pearce RK, MacKenzie GM, et al. Chronic high dose L-dopa treatment does not alter the levels of dopamine D-1, D-2 or D-3 receptor in the striatum of normal monkeys:an autoradiographic study. J Neural Transm,2001,108 (829):925-941.
    [16]Datla KP, Blunt SB, Dexter DT. Chronic L-DOPA administration is not toxic to the remaining dopaminergic nigrostriatal neurons, but instead may promote their functional recovery, in rats with partial 6-OHDA or FeC13 nigrostriatal lesions. Mov Disord,2001, 16(3):424-434.
    [17]Dziewczapolski G, Murer G, Agid Y, et al. Absence of neurotoxicity of chronic L-dopa treatment in 6-hydroxydopamine lesioned rats. Neuroreport,1997,8:975-979.
    [18]肖勤,翁中芳,张璟,等.左旋多巴对帕金森病大鼠黑质多巴胺能神经元及纹状体多巴胺递质的影响.中华神经科杂志,2003,(05):26-29.
    [19]何建成,王文武,丁宏娟,等.50mg/kg剂量左旋多巴对帕金森病大鼠神经行为学和超微结构的影响.中国老年学杂志,2010,30(9):1209-1212.
    [20]韩金红,邢红霞,殷闯,等.长期应用不同剂量左旋多巴对帕金森病大鼠模型学习记忆能力和血浆同型半胱氨酸的影响.中国老年学杂志,2010,30(14):1990-1993
    [21]Rajput AH, Fenton M, Birdi S, et al. Is levodopa toxic to human substantia nigra? Mov Disord.1997,12(5):634-638.
    [22]Simuni T, Stern MB. Does levodopa accelerate Parkinson's disease? Drugs Aging,1999, 14(6):399-408.
    [23]Melamed E, Offen D, Shirvan A, et al. Levodopa--an exotoxin or a therapeutic drug? J Neurol,2000,247(12):135-139.
    [24]王红梅,葛许华,周联生,等.帕金森病患者左旋多巴治疗对血浆同型半胱氨酸的影响.中华神经科杂志,2006,30(9):609-611.
    [25]Muller T, Hefter H, Hueber R, et al. Is levodopa toxic? J Neurol,2004,251 (6):44-46.
    [26]Olanow CW, Agid Y, Mizuno Y, et al. Levodopa in the treatment of Parkinson's disease: current controversies. Mov Disord,2004,19(9):997-1005.
    [27]李丹,黄译腺,王晓君,等.左旋多巴诱发异动症6-羟基多巴帕金森病大鼠模型的建立及行为学评价.苏州大学学报(医学版),2010,30(2):236-239.
    [28]Pearce RK, Heikkila M, Linden IB, et al. L-dopa induces dyskinesia in normal monkeys: behavioural and pharmacokinetic observations. Psychopharmacology (Berl).2001, 156(4):402-409.
    [29]龙启才,袁进,赵树进.左旋多巴治疗帕金森病致症状波动的药动学机制.中国药房, 2001,12(6):374-375.
    [30]Calon F, Grondin R, Morissette M, et al. Molecular basis of levodopa-induced dyskinesias. Ann Neurol.2000,47(4 Suppl 1):S70-S78.
    [31]Bibbiani F, Costantini LC, Patel R, et al. Continuous dopaminergic stimulation reduces risk of motor complications in parkinsonian primates. Exp Neurol.2005,192(1):73-78.
    [32]Nyholm D, Askmark H, Gomes-Trolin C, et al. Optimizing levodopa pharmacokinetics: intestinal infusion versus oral sustained-release tablets. Clin Neuropharmacol.2003, 26(3):156-163.
    [33]张振涛,曹学兵,孙圣刚.左旋多巴治疗帕金森病若干问题的新认识.国际神经病学神经外科学杂志,2006,33(5):417-420.
    [34]管强,曹学兵,孙圣刚.非多巴胺能神经递质在左旋多巴诱导异动症中的作用及防治措施.国外医学神经病学神经外科学分册.2005,32(2):131-134.
    [35]Ouattara B, Belkhir S, Morissette M, et al. Implication of NMDA receptors in the antidyskinetic activity of cabergoline, CI-1041, and Ro 61-8048 in MPTP monkeys with levodopa-induced dyskinesias. J Mol Neurosci.2009,38(2):128-142.
    [36]Boehm J, Malinow R. AMPA receptor phosphorylation during synaptic plasticity. Biochem Soc Trans.2005,33(6):1354-1356.
    [37]Oh JD, Chase TN. Glutamate-mediated striatal dysregulation and the pathogenesis of motor response complications in Parkinson's disease. Amino Acids.2002, 23(1-3):133-139.
    [38]李芳,陈先文.谷氨酸能递质系统在左旋多巴诱发异动症形成机制中的作用.临床神经病学杂志.2010,23(4):308-310.
    [39]骆志坚,段凤菊,王涛,等.多巴胺D1和谷氨酸NMDA受体参与调控异动症大鼠纹状体ΔFosB蛋白的表达.卒中与神经疾病,2010,17(3):131-135.
    [40]管强,曹学兵,徐岩,等.左旋多巴诱导异动症大鼠模型纹状体棘状神经元电活动的研究.中风与神经疾病杂志,2006,23(1):9-11.
    [41]浦政,陆丽霞,刘振国.脑深部电刺激对帕金森病异动症大鼠纹状体谷氨酸和γ-氨基丁酸含量影响的研究.脑与神经疾病杂志,2009,17(4):241-244.
    [42]李丹,黄译腺,罗蔚锋,等.腺苷2A受体、亲代谢谷氨酸受体对异动症可塑性改变的影响.国际神经病学神经外科学杂志,2010,37(2):135-140.
    [43]苏雅茹. Istradefylline将是治疗帕金森病的新型药物.中国临床神经科学,2004,(1):85-88.
    [44]弓凯,范存刚,张庆俊.左旋多巴诱发异动症的相关机制.国际神经病学神经外科学杂志,2010,37(5):454-457.
    [45]马雅萍;刘振国;大麻素系统与帕金森病及其运动并发症关系的研究进展 中国临床神经科学.2008,16(1):99-102.
    [46]Brochie JM. CB1 cannabinoid receptor signaling in Parkinson's disease. Current Opinion in Pharmacology,2003,3(1):54-61.
    [47]Ferrer B, Asbrock N, Kathuria S, et al. Effects of levodopa on endocannabinoid levels in rat basal ganglia:implications for the treatment of levodopa-induced dyskinesias. Eur J Neurosci.2003,18(6):1607-1614.
    [48]Brochie JM. Nondopaminergic mechanisms in levodopa-induced dyskinesia. Movement Disord,2005,20(8):919-931.
    [49]Cenci MA, Ohlin KE, Rylander D. Plastic effects of L-DOPA treatment in the basal ganglia and their relevance to the development of dyskinesia. Parkinsonism Relat Disord. 2009,15(3):S59-S63.
    [50]Morgante F, Espay AJ, Gunraj C, et al. Motor cortex plasticity in Parkinson's disease and levodopa-induced dyskinesias. Brain.2006,129(Pt 4):1059-1069.
    [51]Mcclung CA, Ulery PG, Perrotti LI, et al. Δ FosB:a molecular switch for long-term adaptation in the brain. Brain Res Mol Brain Res,2004,132(2):146-154.
    [52]Nestler EJ, Kelz MB, Chen J. Delta FosB:a molecular mediator of long-term neural and behavioral plasticity. Brain Res,1999,835(1):10-17.
    [53]宋丽倩,曹学兵,李爱玲,等. FosB/Δ FosB在左旋多巴治疗帕金森病大鼠诱发异动症中的表达与作用.脑与神经疾病杂志,2010,18(5):350-354.
    [54]牛轶瑄,曹学兵,魏桂荣,等. DARPP-32磷酸化状态与左旋多巴诱发异动症形成间关系的研究.脑与神经疾病杂志,2008,16(1):1-4.
    [55]牛轶瑄,孙圣刚,魏桂荣,等.纹状体区神经肽表达的改变与左旋多巴诱发异动症的关系.华中科技大学学报(医学版),2008,(1):35-38.
    [56]管强,曹学兵,徐岩,等.反义FosB和反义CREB基因抑制左旋多巴诱发异动症大鼠前强啡肽原基因的表达.中华神经科杂志,2006,30(1):48-51.
    [57]cAMP应答元件结合蛋白在左旋多巴诱发异动症大鼠发病机制中的作用.中西医结合心脑血管病杂志,2006,4(4):313-315.
    [58]牛轶瑄,魏桂荣,曹学兵,等. NGFI-β与左旋多巴治疗诱发帕金森病异动症形成关系的研究.中国神经免疫学和神经病学杂志,2006,13(2):102-105.
    [59]徐岩,曹学兵,孙圣刚.左旋多巴诱发异动症的病理生理机制及防治策略.国外医学神经病学神经外科学分册.2002,29(6):521-524.
    [60]管强,曹学兵,孙圣刚,等.帕金森病及异动症大鼠模型纹状体神经元的电生理变化的研究.卒中与神经疾病,2005,12(6):323-325.
    [61]管强,曹学兵,孙圣刚,等.左旋多巴诱发异动症大鼠纹状体神经元电生理活动的变化.中华神经医学杂志,2006,5(9):875-879.
    [62]徐岩,张婷,曹学兵.左旋多巴诱发异动症大鼠模型黑质网状部电活动的研究.脑与神经疾病杂志,2008,16(6):663-665.
    [63]Olanow CW, Mytilineou C, Tatton WH. Status of selegiline as a neuro-protective agent in Parkinson disease. Mov Disord,1998,44(suppl 1):S55-S58.
    [64]Olanow CW, Jenner P, Brooks D. Dopamine agonists and neuroprotection in Parkinson disease. Ann Neurol,1998,44(suppl 1):S110-S119.
    [65]陈琳,黄红云.帕金森病脑内移植治疗的临床研究进展.中国微侵袭神经外科杂志,2010,15(2):88-90.
    [1]潘树义,王苏平,钟世镇.神经细胞损害机制和保护治疗的若干进展.国外医学·脑血管疾病分册,2001,9(1):24-27.
    [2]崔玲,于向东,崔军.自拟补肾平颤方配合美多芭片治疗帕金森病的临床疗效观察.中国中西医结合杂志,2003,23(7):504-507.
    [3]陈东丽,陈旭东,夏翠英.天麻对大鼠脑缺血再灌注神经细胞凋亡的影响.中国实验方剂学杂志,2011,17(03):148-150.
    [4]王云甫,余绍祖,范华燕. NMDA受体介导的缺血性脑损伤的治疗进展.国外医学·脑血管疾病分册,2000,8(1):29-31.
    [5]邹冈.基础神经药理学.科学出版社,1999,153-166.
    [6]陈文东,鲁晓莉,李林,等.天麻素对氯化钾诱导的培养神经细胞释放谷氨酸的影响.中国自然医学杂志,2000,2(1):8-10.
    [7]薛柳华,唐一鹏,洪庆涛,等.天麻素对谷氨酸致培养皮层神经细胞损伤的保护作用.北京中医药大学学报,1999,22(1):39-40.
    [8]Lee YS, Ha JH, Yong CS, et al. Inhibitory effects of constituents of Gastrodia elata Bl. on glutamate-induced apoptosis in IMR-32 human neuroblastoma cells. Arch Pharm Res, 1999,22(4):404-409.
    [9]傅建华,杜贵友.天麻促智颗粒对反复脑缺血再灌注小鼠脑组织递质性氨基酸含量的影响.中国中药杂志,2001,26(1):53-56.
    [10]曹春雨,杜贵友,左萍萍,等.天麻促智颗粒的脑保护机理研究.中国中药杂志,2001,26(4):269-272.
    [11]付蕾,毛艳华,高远,等.天麻素对大鼠皮层缺氧神经细胞NR1亚基mRNA表达的影响.中国中药杂志,2008,20(09):1049-1052.
    [12]柯开富,包仕尧.一氧化氮在缺血性脑损伤中的作用.国外医学·脑血管疾病分册,2000,8(2):82-4.
    [13]李茂进,胡俊峰,张春玲,等.天麻阿胶联合对染铅鼠脑一氧化氮及学习记忆的影响.中国公共卫生,2002,18(3):284-286.
    [14]胡建军,洪庆涛,唐一鹏,等.天麻素对缺血再灌注损伤星行胶质细胞的保护作用及其对一氧化氮合成酶活性的影响.北京中医药大学学报.2001,24(5):11-15.
    [15]胡京红,司银楚,洪庆涛,等.天麻素对体外模拟脑缺血损伤大鼠脑微血管内皮细胞的保护作用.中华中医药杂志,2007,22(2):124-126.
    [16]刘建新,周天达.天麻对大鼠大脑胶质细胞影响的实验研究.中国中医基础医学杂志,1997,3(6):23-25.
    [17]薛柳华,唐一鹏,孙承琳,等.天麻素对缺血再灌注神经细胞膜的保护作用.北京中医药大学学报,1998,21(3):18-21.
    [18]高南南,于澍仁,徐锦堂.天麻对老龄大鼠学习记忆的改善作用.中国中药杂志,1995,20(9):562-563.
    [19]白秀荣,白秀珍,杨氰,等.首乌、黄芪、天麻对血HOP、SOD含量影响的实验研究.数理医药学杂志,1996,9(2):180-182.
    [20]谢云峰,龙盛京.五种中药注射液对脂过氧化及活性氧自由基作用的影响.海峡药学,1999,11(3):29-30.
    [21]Hsieh CL, Chang CH, Chiang SY, et al. Anticonvulsive and free radical scavenging activities of vanillyl alcohol in ferric chloride-induced epileptic seizures in Sprague-Dawley rats. Life Sci,2000,67(10):1185-1195.
    [22]Liu J, Mori A. Antioxidant and pro-oxidant activities of p-hydroxybenzyl alcohol and vanillin:effects on free radicals, brain peroxidation and degradation of benzoate, deoxyribose, amino acids and DNA. Neuropharmacology,1993,32(7):659-669.
    [23]王文武,何建成,丁宏娟.天麻钩藤饮对帕金森病大鼠神经行为学及氧化应激反应的影响.中国老年学杂志,2010,30(12):1657-1659.
    [24]范红杰,房晓,于维东,等.转bcl-2治疗缺血性脑血管病的研究进展.国外医学·脑血管疾病分册,2001,9(1):27-29.
    [25]黄建梅,唐一鹏,洪庆涛.抗呆Ⅰ号对体外模拟脑缺血再灌注损伤海马神经元凋亡调控基因表达的影响.北京中医药大学学报,2002,25(1):38-42.
    [26]刘振华,冯建利,杜怡峰.复方天麻蜜环菌制剂对大鼠脑缺血再灌注后神经细胞凋亡的影响.中国医院药学杂志,2008,28(07):514-517.
    [27]陶陶,曾可斌,胡常林.天麻超微粉对大鼠脑缺血再灌注损伤的神经保护作用.中医杂志,05,(4):294-296.
    [28]何建成,王文武.天麻钩藤饮对帕金森病模型大鼠多巴胺能神经元凋亡的影响.中医杂志,2010,51(11):1024-1027.
    [29]杜冠华,张均田.能量代谢药理学.见:魏尔清主编.药理学前沿-信号、蛋白因子、基因与现代药理.第一版,北京:科学出版社,2001:407-415.
    [30]李力仙,戴黎萌.脑缺血再灌注相关的免疫细胞和细胞因子.国外医学·免疫学分册,2000,23(3):140-2.
    [31]黄泰康.常用中药成分与药理手册.第一版,北京:中国医药科技出版社,1994:486-503.
    [32]张媛元,毛瑞阳,杜晓红,等.天麻素对终末糖基化产物诱导神经小胶质细胞炎症因子表达的影响.中草药,2011,42(02):330-334.
    [1]吴兆恩,王丹巧,李鹏,等.帕金森病6-OHDA模型大鼠L-DOPA血药浓度与纹状体细胞外液氨基酸类递质结合研究的方法.中国药理学通报,2010,26(10):421-425.
    [2]李学君,潘柏申,张玲妹,等.大鼠脑内羟自由基的动态检测法.上海医科大学学报,1997,24(4):299-301.
    [3]王巍,王丹巧,孙晓芳,等.大鼠脑透析液中羟自由基和单胺类递质及其代谢产物同步监测的方法.中国药理学通报,2006,22(7):888~890.
    [1]周宏灏,颜光美,包定元,等.药理学[M].1版.北京:科学出版社,2007:115-116.
    [2]Zeng BY, Pearce RK, MacKenzie GM, et al. Alterations in preproenkephalin and adenosine-2a receptor mRNA, but not preprotachykinin mRNA correlate with occurrence of dyskinesia in normal monkeys chronically treated with L-DOPA. Eur J Neurosci,2000, 12(3):1096-1104.
    [3]Olanow CW, Agid Y, Mizuno Y, et al. Levodopa in the treatment of Parkinson's disease: current controversies. Mov Disord,2004,19(9):997-1005.
    [4]George Paxinos, Charles Watson,诸葛启钏,等.大鼠脑立体定位图谱[M].3版.北京:人民卫生出版社,2005:89.
    [5]林翠鸿,王长连,黄品芳,等.左旋多巴在大鼠血液和纹状体细胞外液中的药动学行为.中国药学杂志,2010,45(1):56-59.
    [6]王丹巧,王巍,景富春,赵晋宁.川芎嗪对左旋多巴处理的PD大鼠纹状体细胞外液DA及其代谢产物、羟自由基水平的影响.中国药学杂志,2007,42(1):28-32.
    [7]焦玥,王丹巧,吴兆恩,等.脑内灌流6-羟基多巴胺对大鼠纹状体细胞外液氨基酸类神经递质的影响及美多芭的作用.中国药理学通报,2009,25(8):1055-1059.
    [8]王丹巧,王巍,赵德忠.制首乌对脑内灌流6-羟基多巴胺所致大鼠纹状体细胞外液羟自由基升高的影响.中国中西医结合杂志,2006,26(3):236-239.
    [9]吴兆恩,王丹巧,李鹏,等.帕金森病6-OHDA模型大鼠L-DOPA血药浓度与纹状体细胞外液氨基酸类递质结合研究的方法.中国药理学通报,2010,26(10):421-425.
    [1]周宏灏,颜光美,包定元,等.药理学[M].1版.北京:科学出版社,2007:115-116.
    [2]Zeng B Y, Pearce R K, MacKenzie G M, et al. Alterations in preproenkephalin and adenosine-2a receptor mRNA, but not preprotachykinin mRNA correlate with occurrence of dyskinesia in normal monkeys chronically treated with L-DOPA. Eur J Neurosci,2000,12(3):1096-1104.
    [3]Olanow C W, Agid Y, Mizuno Y, et al. Levo DOPA in the treatment of Parkinson's disease: current controversies. Mov Disord,2004,19(9):997-1005.
    [4]崔玲,于向东,崔军.自拟补肾平颤方配合美多芭片治疗帕金森病的临床疗效观察.中国中西医结合杂志,2003,23(7):504-507.
    [5]王巍,赵德忠,孙晓芳,等.首茸方对利血平小鼠脑内多巴胺及其代谢产物的影响.中国中药杂志,2002,27(5):368-370.
    [6]王巍,赵德忠,孙晓芳,等.中药首茸方对左旋多巴诱发帕金森病大鼠脑内羟自由基增高的影响.中国中西医结合杂志,2003,23(特):50-53.
    [7]孙晓芳,王巍,王丹巧,等.天麻及其制剂神经保护机制的研究进展.中国中药杂志,2004,29(4):292-295.
    [8]龙启才,袁进,赵树进.左旋多巴治疗帕金森病致症状波动的药动学机制.中中国药房,2001,12(6):374-375.
    [9]张振涛,曹学兵,孙圣刚.左旋多巴治疗帕金森病若干问题的新认识.国际神经病学神经外科学杂志,2006,33(5):417-420.
    [1]王广基,刘晓东,柳晓泉,等.药物代谢动力学[M].1版.北京:化学工业出版社,2005:141-157.
    [2]苏如雄,林旭文,曾向宇.药动学-药效学结合模型的应用进展.中国药房,2008,19(10):784-785.
    [3]柳晓泉,陈渊成,郝琨,等.药动学-药效学结合模型的研究进展及在新药研发中的应用.中国药科大学学报,2007,38(6):481-488.
    [4]赵宁,程巧鸳,俞文英,等.微透析技术在药动-药效结合研究中的应用.国际药学研究杂志,2008,35(2):100-106.
    [5]Mikiro NAKASHIMA, Mei Feng ZHAo, Mihoko N. NAKASHIMA, at al. In Vivo microdialysis to determine the relative pharmacokinetics of drugs. Biol. Pharm. Bull,1996,19(7):988-994.
    [6]Shinji SATo, Toshinobu KOITABASHI, Akira KOSHIRO. Pharmacokinetic and pharmacodynamic studies of L-Dopa in rats. Ⅰ. Pharmacokinetic analysis of L-Dopa in rat plasma and striatum. Biol. Pharm. Bull,1994,17(12):1616-1621.
    [7]Shinji SATO, Toshinobu KOITABASHI, Akira KosHIRO. Pharmacokinetic and pharmacodynamic studies of L-Dopa in rats. Ⅱ. Effects of L-Dopa on dopamine and dopamine metabolite concentration in rat striatum. Biol. Pharm. Bull,1994,17(12):1622-1629.
    [8]Westerink BH, Korf J. Turnover of acid dopamine metabolites in striatal and mesolimbic tissue of the rat brain. Eur. J. Pharmacol,1976,37(2):249-255.
    [9]Westerink BH, Spaan SJ. Estimation of the turnover of 3-methoxytyramine in the rat striatum by HPLC with electrochemical detection:implications for the sequence in the cerebral metabolism of dopamine. J. Neurochem,1982,38(2):342-347.
    [1]崔玲,于向东,崔军.自拟补肾平颤方配合美多芭片治疗帕金森病的临床疗效观察.中国中西医结合杂志,2003,23(7):504-507.
    [2]王巍,赵德忠,孙晓芳,等.首茸方对利血平小鼠脑内多巴胺及其代谢产物的影响.中国中药杂志,2002,27(5):368-370.
    [3]王巍,赵德忠,孙晓芳,等.中药首茸方对左旋多巴诱发帕金森病大鼠脑内羟自由基增高的影响.中国中西医结合杂志,2003,23(特):50-53.
    [4]孙晓芳,王巍,王丹巧,等.天麻及其制剂神经保护机制的研究进展.中国中药杂志,2004,29(4):292-295.
    [5]栗超跃,史锡文,郭礼和.6-OHDA,DA和MPTP(MPP+)神经毒性作用机理.医学信息手术学分册,2006,19(1):69-73.
    [6]王丹巧,王巍,景富春,等.川芎嗪对左旋多巴处理的PD大鼠纹状体细胞外液DA及其代谢产物、羟自由基水平的影响.中国药学杂志,2007,42(1):28-32.
    [7]Shinji SATO, Toshinobu KOITABASHI, Akira KOSHIRO. Pharmacokinetic and pharmacodynamic studies of L-Dopa in rats. Ⅱ. Effects of L-Dopa on dopamine and dopamine metabolite concentration in rat striatum. Biol. Pharm. Bull,1994,17(12):1622-1629.
    [8]Keller RW Jr, Kuhr WG, Wightman RM, et al. The effect of L-dopa on in vivo dopamine release from nigrostriatal bundle neurons. Brain. Res,1988,447(1):191-194.
    [1]李振光,于战彩.从自由基学说探讨帕金森病的病因与治疗学.国外医学老年医学分册,1994,15(1):1-7.
    [2]王建,刘焯霖.帕金森病的生物学与病因学研究进展.国外医学内科学分册,1998,25(9):382-385.
    [3]王巍,赵德忠,孙晓芳,等.中药首茸方对左旋多巴诱发帕金森病大鼠脑内羟自由基增高的影响.中国中西医结合杂志,2003,23(特):50-53.
    [4]Mena MA, Davila V, Sulzer D. Neurotrophic effects of L-dopa in postnatal midbrain dopamine cortical astrocyte cocultures. J Neurochem,1997,69(4):1398-1408.
    [5]Zou L, Jankovic J, Rowe DB, et al. Neuroprotection by pramipexole against dopamine-and levodopa-induced cytotoxicity. Life Sci,1999,64(15):1275-1285.
    [6]Agid Y. Levodopa. is toxicity a myth?. Neurology,2001,57(10 Suppl 3):S46-51.
    [7]Rajput AH, Fenton ME, Birdi S, et al. Is levodopa toxic to human substantia nigra?. Mov Disord,1997,12(5):634-638.
    [8]Ogawa N, Asanuma M, Kondo Y, et al. Differential effects of chronic L-DOPA treatment on lipid peroxidation in the mouse brain with or without pretreatment with 6-hydroxydopamine. Neurosci Lett,1994,171(1-2):55-58.
    [9]Loeffler DA, LeWitt PA, Juneau PL, et al. Time-dependent effects of levodopa on regional brain dopamine metabolism and lipid peroxidation. Brain Res Bull,1999,47(6):663-667.
    [10]陆建明,周厚广,鲍远程,等.左旋多巴对帕金森病大鼠毒性作用的实验研究.临床神经病学杂志,2004;17(5):354-356.
    [11]王丹巧,王巍,景富春,等.川芎嗪对帕金森病大鼠脑内灌流左旋多巴引起的脑氧化损伤的作用.中国中西医结合杂志,2007,27(7):629-632.
    [12]Datla KP, Blunt SB, Dexter DT. Chronic L-DOPA administration is not toxic to the remaining dopaminergic nigrostriatal neurons, but instead may promote their functional recovery, in rats with partial 6-OHDA or FeCl(3) nigrostriatal lesions. Mov Disord,2001, 16(3):424-434.
    [13]Dziewczapolski G, Murer G, Agid Y, et al. Absence of neurotoxicity of chronic L-DOPA in 6-hydroxydopamine-lesioned rats. Neuroreport,1997,8(4):975-979.
    [14]肖勤,翁中芳,张璟,等.左旋多巴对帕金森病大鼠血清兴奋性氨基酸及抗氧化指标的影响.临床神经病学杂志,2003,16(2):69-71.
    [15]崔玲,于向东,崔军.自拟补肾平颤方配合美多芭片治疗帕金森病的临床疗效观察.中国中西医结合杂志,2003,23(7):504-507.
    [16]王巍,赵德忠,孙晓芳,等.首茸方对利血平小鼠脑内多巴胺及其代谢产物的影响.中国中药杂志,2002,27(5):368-370.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.