黄连素抑制福氏志贺菌的作用机理及GadB蛋白功能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
志贺氏菌(Shigella spp.)是一种最常见的引起人类腹泻的病原菌,严重威胁人类健康。抗生素作为一种见效快、成本低和易推广的治疗志贺氏菌的方法具有其现实意义。但是随之产生的细菌耐药性问题也困扰着抗生素治疗的发展。因此研究抗生素对志贺氏菌作用的分子机理和志贺氏菌致病机理具有较大的理论意义和应用价值。论文以福氏2a志贺菌301为材料,探究黄连素对福氏2a志贺菌301的作用机理,得到了以下主要结果:
     首先,在对数早期和平台早期的福氏2a志贺菌301培养物中分别添加160μg/mL浓度的黄连素,发现黄连素添加时间不同,作用效果不同。志贺氏菌在黄连素孵育情况下的存活率:对数期实验组为62.45 %,对数期对照组为152.6 %;平台期实验组为91.22 %,平台期对照组为93.01 %。可见黄连素在对数早期对志贺氏菌生长表型的影响大于在平台早期时的影响。
     应用双向电泳技术分析了添加160μg/mL浓度的黄连素后对福氏2a志贺菌301蛋白质表达谱的影响。结果表明,不同时期添加黄连素,对福氏2a志贺菌301蛋白质表达的影响也不尽相同,对数生长早期可引起9个蛋白质表达差异:谷氨酸脱羧酶B(GadB),谷氨酸脱羧酶A(GadA),高渗诱导周质蛋白(OsmY),超氧化物歧化酶前体(SodC)、细菌铁蛋白(Bfr),假想蛋白(YgiW),yhbH的sigma调节因子(YfiA),可能为Mxi-Spa途径分泌蛋白(OspC2)和假想蛋白(YqhE),它们均被下调;其中OsmY与细胞渗透压调控有关;GadB和GadA参与调节细胞抗酸性;OspC2与志贺氏菌毒力有关, SodC与细胞抗氧化胁迫有关。平台早期处理的引起3个蛋白质表达差异,其中上调的为:球面调节蛋白(Dps)和3-磷酸甘油醛脱氢酶A(GapA),下调的为:3-氧酰基还原酶(FabG)。有趣的是,谷氨酸脱羧酶(GadB)的表达量在黄连素处理后发生较大的变化,它可能在福氏2a志贺菌301致病中具有重要作用。
     继而,利用λ-Red重组系统构建了gadB缺失突变株,研究了GadB在豚鼠角膜侵袭中的可能作用。结果表明,gadB基因缺失株不能利用甘油作为碳源代谢,豚鼠角膜炎症反应稍轻于野生株。基因缺失导致其全菌蛋白表达谱出现10个差异蛋白,主要包括6个与能量和生物大分子代谢有关的蛋白质:葡糖磷酸异构酶(Pgi)、磷酸甘油酸激酶(Pgk)、葡萄糖酸激酶(Gntk)、琥珀酸脱氢酶(SdhB)、硫辛酰胺脱氢酶(LpdA)和L-乳酸脱氢酶(LldD)。2个应激性激活的蛋白质烷基氢过氧化物还原酶(AphF)和FK结合蛋白型肽酰-脯氨酰-顺反异构酶(FkpA)。上述发现的差异蛋白为GadB蛋白潜在功能的进一步研究提供了线索和可能性。
Shigella spp. is one of the most common causes of diarrhea of human pathogen. It is still a serious threat to human health. Since antibiotics have some advantages such as a quick effect and low cost, antibiotics treatment of Shigella spp. has its practical significance. But the antibiotic resistance plagued the development of antibiotic treatment. So to study the molecular mechanism of antibiotic resistance in Shigella spp. and pathogenesis posseses a certain theoretical significance and has potential applicable value. In the present thesis, Shigella flexneri 2a stain 301 was utilized as biomaterials, the effect of berberine on the growth and its mechanisms were investigated, and the data were showed as follows:
     First, effect of berberine on the growth of Shigella flexneri 2a stain 301 was dependent on the time of berberine treatment. The survival ratio of strains treated by berberine in the early logarithmic phase was much lower than that treated in early stationary phase, which was 62.45% (control, 152.6%) and 91.22% (control, 93.01%) respectively.
     The two-dimensional gel electrophoresis (2-DE) was applied to detect the effect of berberine on the expressing of proteins of Shigella flexneri 2a stain 301. The results revealed that effect of berberine on the expressing of proteins was dependent on the addition time. Nine proteins were identified as berberine influenced proteins when the strain was treated by 160μg/mL in early logarithmic phase, e.g. GadB, GadA, OsmY, SodC, Bfr, YgiW, YfiA, OspC2 and YqhE, which were down regulated. In these proteins, OsmY is involved in osmotic regulation; GadB and GadA are related to acid resistance, OspC2 is correlated to virology, and SodC is involved in antioxidant. Three proteins were identified as berberine influenced proteins when the strain was treated by 160μg/mL in early stationary phase, e.g. Dps and GapA were up-regulated and FabG was down regulated. It was interested that the expression of GadB, the glutamate decarboxylase was significantly down regulated by berberine. The enzyme might have important role in the pathogenesis of Shigella flexneri 2a stain 301.
     The null-mutant strain of gadB was successfully constructed. The mutant could not use glycerol as the only carbon source. Sereny test revealed that the virulence of gadB mutant were slightly weaker than wild-type strain. Deletion of gadB would influence the expressions of some proteins.A total of 10 proteins were identified as differentially expressed proteins according to the comparative proteomic results. The six proteins, Pgi, Pgk, Gntk, SdhB, LpdA and LldD were involved in energy and macromolecule metabolisms and two proteins, AphF and FkpA were related to shock responses. These data provided some trails for the function research of GadB.
引文
2. Kotloff KL, Winickoff JP, Ivanoff B, et al. Global burden of Shigella infections: implications for vaccine development and implementation of control strategies. Bull World Health Organ[J]. 1999, 77(8):651-666.
    3. DuPont HL, Levine MM, Hornick RB, et al. Inoculum size in shigellosis and implications for expected mode of transmission[J]. J Infect Dis. 1989, 159(6):1126-1128.
    4. Small P, Blankenhorn D, Welty D, et al. Acid and base resistance in Escherichia coli and Shigella flexneri: role of rpoS and growth pH[J]. J Bacteriol. 1994, 176(6):1729-1737.
    5. Hathaway LJ, Griffin GE, Sansonetti PJ, et al. Human monocytes kill Shigella flexneri but then die by apoptosis associated with suppression of proinflammatory cytokine production[J]. Infect Immun. 2002, 70(7):3833-3842.
    6. Zychlinsky A, Thirumalai K, Arondel J, et al. In vivo apoptosis in Shigella flexneri infections[J]. Infect Immun. 1996, 64(12):5357-5365.
    7. Sansonetti PJ, Tran Van Nhieu G, Egile C. Rupture of the intestinal epithelial barrier and mucosal invasion by Shigella flexneri[J]. Clin Infect Dis. 1999, 28(3):466-475.
    8. Philpott DJ, Edgeworth JD, Sansonetti PJ. The pathogenesis of Shigella flexneri infection: lessons from in vitro and in vivo studies[J]. Philos Trans R Soc Lond B Biol Sci. 2000, 355(1397):575-586.
    9. Jennison AV, Verma NK. Shigella flexneri infection: pathogenesis and vaccine development[J]. FEMS Microbiol Rev. 2004, 28(1):43-58.
    10. Schroeder GN, Hilbi H. Molecular pathogenesis of Shigella spp.: controlling host cell signaling, invasion, and death by type III secretion[J]. Clin Microbiol Rev. 2008, 21(1):134-156.
    11. Castanie-Cornet MP, Penfound TA, Smith D, et al. Control of acid resistance in Escherichia coli[J]. J Bacteriol. 1999, 181(11):3525-3535.
    12. De Biase D, Tramonti A, Bossa F, et al. The response to stationary-phase stress conditions in Escherichia coli: role and regulation of the glutamic acid decarboxylase system[J]. Mol Microbiol. 1999, 32(6):1198-1211.
    13.赵艳,梁新乐,张虹.大肠杆菌谷氨酸脱羧酶的结构、功能及其基因表达调控[J].食品与发酵工业,2006,32(7):75-78.
    14. Lin J, Smith MP, Chapin KC, et al. Mechanisms of acid resistance in enterohemorrhagic Escherichia coli[J]. Appl Environ Microbiol. 1996, 62(9):3094-3100.
    15. Bearson S, Bearson B, Foster JW. Acid stress responses in enterobacteria[J].FEMS Microbiol Lett. 1997, 147(2):173-180.
    16. Tucker DL, Tucker N, Ma Z, et al. Genes of the GadX-GadW regulon in Escherichia coli[J]. J Bacteriol. 2003, 185(10):3190-3201.
    17. Shin S, Castanie-Cornet MP, Foster JW, et al. An activator of glutamate decarboxylase genes regulates the expression of enteropathogenic Escherichia coli virulence genes through control of the plasmid-encoded regulator, Per. Mol Microbiol[J]. 2001, 41(5):1133-1150.
    18. Bauman R W. Microbiology [ M ] . Pearson Education, Inc. 2004, 289-296.
    19. Fu H, Liu LG, Peng JP, et al. Transcriptional profile of the Shigella flexneri response to an alkaloid: berberine[J]. FEMS Microbiol Lett. 2010, 303(2):169-175.
    20. Yamamoto K, Takase H, Abe K, et al. [Pharmacological studies on antidiarrheal effects of a preparation containing berberine and geranii herba[J]. Nihon Yakurigaku Zasshi. 1993, 101(3): 169-175.
    21. Brezova V, Dvoranova D, Kost'alova D. Oxygen activation by photoexcited protoberberinium alkaloids from Mahonia aquifolium[J]. Phytother Res. 2004, 8(8):640-646.
    22. Ghosh AK, Bhattacharyya FK, Ghosh DK. Leishmania donovani: amastigote inhibition and mode of action of berberine[J]. Exp Parasitol. 1985, 60(3):404-413.
    23. Sack RB, Froehlich JL. Berberine inhibits intestinal secretory response of Vibrio cholerae and Escherichia coli enterotoxins[J]. Infect Immun. 1982, 35(2):471-475.
    24. Neu HC. The crisis in antibiotic resistance[J]. Science. 1992, 257(5073):1064-1073.
    25. Abzug MJ. Meeting the challenge of antibiotic resistance: an evidence-based approach to treatment[J]. Pediatr Ann. 1999, 28(7):460-467.
    26. Kumarasamy KK, Toleman MA, Walsh TR, et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study[J]. Lancet Infect Dis. 2010, 10(9):597-602.
    27. Walsh C. Molecular mechanisms that confer antibacterial drug resistance[J]. Nature. 2000, 406(6797):775-781.
    28. Stewart PS, Costerton JW. Antibiotic resistance of bacteria in biofilms[J]. Lancet. 2001, 358(9276):135-138.
    29.郑学学.志贺氏菌福氏2a 2457T全菌蛋白质组图谱的重建及功能研究[D].[硕士学位论文]无锡:江南大学, 2009
    30.葛堂栋,冯尔玲,晏本菊,等.痢疾杆菌酸抗性系统相关基因缺失突变体的构建[J].生物技术通讯,2005,16(5):488-491.
    31.张静飞.福氏2a志贺氏菌2457T mxiE基因功能的研究[D].[硕士学位论文]南昌:南昌大学, 2008
    32. Way SS, Sallustio S, Magliozzo RS, et al. Impact of either elevated or decreased levels of cytochromebd expression on Shigella flexneri[J]. Bacteriol, 1999, 181(4): 1229-1237.
    33. De Biase D, Tramonti A, John RA, et al. Isolation, over expression, and biochemical characterization of the two isoforms of glutamic acid decarboxylase from Escherichia coli[J]. Protein Expr Purif. 1996, 8(4):430-438.
    34. Yim HH, Villarejo M. osmY, a new hyperosmotically inducible gene, encodes a periplasmic protein in Escherichia coli[J]. J Bacteriol. 1992, 74(11):3637-3644.
    35. Goldman SR, Tu Y, Goldberg MB. Differential regulation by magnesium of the two MsbB paralogs of Shigella flexneri[J]. J Bacteriol. 2008, 190(10):3526-3537.
    36. Zychlinsky A, Prevost MC, Sansonetti PJ. Shigella flexneri induces apoptosis in infected macrophages[J]. Nature. 1992, 358(6382):167-169.
    37. Schutzer SE, Coyle PK, Krupp LB, et al. Simultaneous expression of Borrelia OspA and OspC and IgM response in cerebrospinal fluid in early neurologic Lyme disease[J]. J Clin Invest. 1997, 100(4):763-767.
    38. Benov LT, Fridovich I. Escherichia coli expresses a copper- and zinc-containing superoxide dismutase[J]. J Biol Chem. 1994, 269(41):25310-25314.
    39. Lange R, Barth M, Hengge-Aronis R. Complex transcriptional control of the sigma s-dependent stationary-phase-induced and osmotically regulated osmY (csi-5) gene suggests novel roles for Lrp, cyclic AMP (cAMP) receptor protein-cAMP complex, and integration host factor in the stationary-phase response of Escherichia coli[J]. J Bacteriol. 1993, 175(24):7910-7917.
    40. Lacour S, Landini P. SigmaS-dependent gene expression at the onset of stationary phase in Escherichia coli: function of sigmaS-dependent genes and identification of their promoter sequences[J]. J Bacteriol. 2004, 186(21):7186-7195.
    41. Gort AS, Ferber DM, ImLay JA. The regulation and role of the periplasmic copper, zinc superoxide dismutase of Escherichia coli[J]. Mol Microbiol. 1999, 32(1):179-191.
    42. Grant RA, Filman DJ, Finkel SE, et al. The crystal structure of Dps, a ferritin homolog that binds and protects DNA[J]. Nat Struct Biol. 1998, 5(4):294-303.
    43. Rychlewski L, Zhang B, Godzik A. Functional insights from structural predictions: analysis of the Escherichia coli genome[J]. Protein Sci. 1999, 8(3):614-624.
    44. Zhao G, Ceci P, Ilari A, et al. Iron and hydrogen peroxide detoxification properties of DNA-binding protein from starved cells. A ferritin-like DNA-binding protein of Escherichia coli[J]. J Biol Chem. 2002, 277(31):27689-27696.
    45. Seta FD, Boschi-Muller S, Vignais ML, et al. Characterization of Escherichia coli strains with gapA and gapB genes deleted[J]. J Bacteriol. 1997, 179(16):5218-5221.
    46. Heath RJ, Rock CO. Roles of the FabA and FabZ beta-hydroxyacyl-acyl carrier protein dehydratases in Escherichia coli fatty acid biosynthesis[J]. J Biol Chem. 1996, 271(44):27795-27801.
    47. De Biase D, Tramonti A, Bossa F, et al. The response to stationary-phase stress conditions in Escherichia coli: role and regulation of the glutamic acid decarboxylase system[J]. Mol Microbiol. 1999, 32(6):1198-1211.
    48. Zhang A, Belfort M. Nucleotide sequence of a newly-identified Escherichia coli gene, stpA, encoding an H-NS-like protein[J]. Nucleic Acids Res. 1992, 20(24):6735.
    49. Sonnenfield JM, Burns CM, Higgins CF, et al. The nucleoid-associated protein StpA binds curved DNA, has a greater DNA-binding affinity than H-NS and is present in significant levels in hns mutants[J] . Biochimie. 2001, 83(2):243-249.
    50. Spurio R, Falconi M, Brandi A, et al. The oligomeric structure of nucleoid protein H-NS is necessary for recognition of intrinsically curved DNA and for DNA bending[J]. EMBO J, 1997, 16: 1795-1805.
    51. Hullmann J, Patzer SI, R?mer C,et al. Periplasmic chaperone FkpA is essential for imported colicin M toxicity [J]. Mol Microbiol, 2008, 69(4): 926-937.
    52. Arie JP, Sassoon N, Betton JM. Chaperone function of FkpA, a heat shock prolyl isomerase, in the periplasm of Escherichia coli [J]. Mol Microbiol. 2001, 39(1):199-210.
    53. Rabilloud T, Chevallet M, Luche S, et al. Two-dimensional gel electrophoresis in proteomics: Past, present and future [J]. J Proteomics. 2010, 73(11):2064-2077.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.