丁草胺对斑马鱼的内分泌干扰效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
丁草胺属于酰胺类除草剂,它通过抑制杂草体内蛋白质合成而起到除草作用。斑马鱼具有产卵量多、前期胚胎透明、繁殖快、易于饲养等优点,成为继小鼠、果蝇、线虫之后又一新型模式生物。本论文采用鱼类活体(In vivo)实验方法,以丁草胺原药(我国应用最多的三个除草剂之一)为供试药剂,从下丘脑-垂体-甲状腺轴、下丘脑-垂体-性腺轴和氧化损伤等角度,研究丁草胺对斑马鱼内分泌干扰效应,并探讨其可能的作用机制。
     丁草胺对斑马鱼成鱼的急性毒性结果显示:丁草胺对斑马鱼成鱼96h的LC50值是0.49mg/L,根据农业部《农药安全评价准则》农药对鱼类毒性等级的划定标准,表明丁草胺对斑马鱼成鱼的毒性为高毒。采用GC—MS\MS对丁草胺原药中的杂质进行了鉴定,结果表明,96%丁草胺原药中主要杂质是二丁氧基甲烷和(2-氯-N-(2,6-二乙基苯基)乙酰胺。我们测定了斑马鱼整个生命周期中的甲状腺激素变化动态,结果表明斑马鱼的胚胎在28±1℃条件下,受精后48~72h内孵化,授精后0-3天胚胎孵化前T4和T3的含量没有显著变化;幼鱼体内T3含量在授精后第10天达到最高峰;幼鱼体内T4含量在授精后第21天达到最高峰。在斑马鱼生长后期,甲状腺激素会出现一个低平台期,本研究为将来选用斑马鱼进行污染物的内分泌干扰研究奠定了基础。
     从下丘脑-垂体-甲状腺轴(HPT)调控角度出发,研究了丁草胺对斑马鱼幼鱼和成鱼体长、体重和生长因子等形态学指标的影响;运用酶联免疫吸附分析(ELISA)检测丁草胺对斑马鱼成鱼血浆和幼鱼组织中甲状腺激素水平的影响;采用实时荧光定量PCR技术检测丁草胺对斑马鱼幼鱼甲状腺轴相关基因表达的影响。结果表明(1)丁草胺染毒30天后,25μg/L和100μg/L剂量可以导致斑马鱼幼鱼的生长因子(CF)增加,但是不同浓度丁草胺处理组中成鱼的生长因子与溶剂对照组相比,差异不显著;(2)丁草胺可以提高斑马鱼成鱼血浆中和幼鱼组织中甲状腺激素四碘甲状腺原氨酸(T4)和三碘甲状腺原氨酸(T3)水平;(3)丁草胺可以使斑马鱼幼鱼促甲状腺激素释放激素(CRH)、促甲状腺激素(TSH)、转运蛋白(TTR)、甲状腺激素受体(TRα)、脱碘酶(Deio1)和纳/碘同向转运体(Slc5a5)等基因的表达量上调,葡萄糖醛酸转移酶基因(UGT1ab)基因的表达量下调,甲状腺过氧化物酶(TPO)、甲状腺球蛋白(TG)、脱碘酶(Deio2)和甲状腺激素受体(TRβ)的表达量没有变化。结果显示丁草胺对斑马鱼成鱼和幼鱼都具有一定的甲状腺干扰作用。
     从下丘脑-垂体-性腺轴(HPG)调控角度出发,研究丁草胺对斑马鱼成鱼产卵及后代的影响;运用酶联免疫吸附分析(ELISA)检测丁草胺对斑马鱼成鱼血浆中性激素睾酮、雌二醇和卵黄蛋白原水平;采用实时荧光定量PCR技术检测丁草胺对斑马鱼幼鱼性腺轴的相关基因表达的影响,包括雌激素受体(ERα、ERβ1和ERβ2)、卵黄蛋白原(VTGI和VTG II)和芳香化酶(CYP19)等基因。结果显示丁草胺对斑马鱼的性腺轴具有一定的干扰作用,主要表现在(1)丁草胺可以降低斑马鱼雌鱼的产卵次数和产卵量;(2)丁草胺可以降低雄鱼的性腺指数(GSI),但是对成鱼的肝腺指数(LSI)没有影响;(3)丁草胺可以降低斑马鱼雌鱼血浆中的睾酮(T)和雌二醇(E2)水平,提高成鱼血浆中卵黄蛋白原(VTG)水平;(4)丁草胺可以使斑马鱼幼鱼卵黄蛋白原VTG II表达量上调,但是对幼鱼雌激素受体(ERα、ERβ1和ERβ2)和芳香化酶CYP19a的表达量没有影响。
     以雌性成鱼为受试对象,研究丁草胺对斑马鱼肝脏抗氧化防御系统的影响。肝脏是主要的生物富集器官,故被大量地用于外源物质毒理研究。结果显示丁草胺对斑马鱼具有氧化损伤作用。主要表现在丁草胺可以降低斑马鱼雌鱼肝脏中超氧化物歧化酶(SOD)和谷胱甘肽转移酶(GST)的酶活性以及谷胱甘肽(GSH)含量,对肝脏过氧化氢酶(CAT)活性没有影响。
Butachlor is a chloracetamide herbicide, which is one of the top three herbicides for controlling weeds in rice fields in China. Zebrafish (Danio rerio) is a model organism widely used for evaluating reproductive toxicity and endocrine-disrupting effects of chemicals due to its characters of small size, ease of culture, short life cycle and prolific egg production rate with high rate of fertilization and hatching. The present study evaluated the effects of butachlor on endocrine system of zebrafish were evaluated and the potential mechanisms.
     The result of acute toxicity test on adult zebrafish showed that the LC50value of96%butuchlor within96h was0.49mg/L, indicating that butachlor was highly toxic to zabrafish. The normal levels of thyroxine (T4) and3,5,3'-triiodothyronine (T3) during the development in zebrafish were also measured. The result showed that whole-body content of both T4and T3remained stable during the pre-hatch period (0-3d). After hatching, both T3and T4significantly increased, with peaking at10days post-fertilization (dpf) and21dpf, respectively, and then thyroid hormones subsequently declined in later development. This work has provided the baseline data for future studies of the thyroid system in zebrafish.
     The potential effects of butachlor on hypothalamus-pituitary-thyroid (HPT) axis of zebrafish were assessed in the present study. The parameters to be measured include body weight, length, and the contents of T4and T3. In order to assess the potential mechanisms of thyroid disruption of butachlor, the expressions of related genes in HPT axis were determined. The result demonstrated that butachlor could increase the condition factor of zebrafish in the early life stage after30d's exposure, while no difference of condition factor of zebrafish was observed between the control group and treated group in adult stage; T4and T3levels in zebrafish were increased after exposure to butachlor in both the early life stage and adult stage. After the exposure of butachlor, the mRNA levels of the genes of corticotrophin-releasing hormone (CRH), thyroid-stimulating hormone (TSH), transthyretin (TTR), deiodinase (Deiol) and thyroid hormone receptor (TRa) and Slc5a5were significantly upregulated in zebrafish of the early life stage, while the mRNA level of uridinediphosphate-glucuronosyl transferase (UGTlab) was significantly downregulated. No significant differences were observed in expressions of the genes thyroid peroxidase (TPO), globulin (TG), D2and TRβ. In summay, the hypothalamus-pituitary-thyroid (HPT) axis of zebrafish was affected by butachlor.
     The effects of butachlor on hypothalamus-pituitary-gonad (HPG) axis of zebrafish were also evaluated. The fecundity was assessed during the exposure period in a short-term assay. At the end of the exposure period, various endpoints such as gonadosomatic index (GSI), liver somatic index (LSI), and the levels of plasma sex steroids (T and E2) and vitellogenin (VTG) of zebrafish were examined. In order to assess the potential mechanisms of reproductive disruption of butachlor, the expressions of related genes in hypothalamus-pituitary-gonad (HPG) axis were determined in the early life stage of zebrafish. Our result showed that hypothalamus-pituitary-gonad (HPG) axis of zebrafish was affected by butachlor:(1) The number of eggs and number of spawning events per female were significately reduced after exposure to butachlor;(2) The gonadosomatic index (GSI) in males was decrased, while no affect on liver somatic index (LSI) was observed in both females and males;(3) The levels of T and E2in plasma were significately decreased in females, and the levels of vitellogenin (VTG) in males were significately increased.(4) There was no significant alteration in expression of vitellogenin (VTGI), estrogen receptor (ERα, ERβ1, ERβ2) and aromatase (CYP19a) in the early life stage after the exposure of butachlor, whereas the transcription of VTG II gene was significantly upregulated.
     Addtionally, the liver of zebrafish, which is the organ responsible for detoxifying exogenous substance, was used to evaluate the effect of butachlor on antioxidant system of the fish. Our results showed that either the activitie of hepatic SOD and GST, or the contents of GSH in female zebrafish were significantly decreased, while the activity of CAT was not altered.
引文
1. Adhikari S, Sarkar B, Chattopadhyay A, et al. Carbofuran induced changes in breeding of a freshwater fish, Labeo rohita (Hamilton)[J]. Toxicological & Environmental Chemistry,2008, 90(3):457-465.
    2. Alt B, Reibe S, Feitosa N M, et al. Analysis of origin and growth of the thyroid gland in zebrafish[J]. Developmental dynamics,2006,235(7):1872-1883.
    3. Andersen H R, Nielsen J B, Grandjean P. Toxicologic evidence of developmental neurotoxicity of environmental chemicals[J]. Toxicology,2000,144(3):121-127.
    4. Andersen L, Goto-Kazeto R, Trant J M, et al. Short-term exposure to low concentrations of the synthetic androgen methyltestosterone affects vitellogenin and steroid levels in adult male zebrafish (Danio rerio)[J]. Aquatic toxicology,2006,76(4):343-352.
    5. Andersen L, Holbech H, Gessbo A, et al. Effects of exposure to 17 [alpha]-ethinylestradiol during early development on sexual differentiation and induction of vitellogenin in zebrafish (Danio rerio)[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2003,134(3):365-374.
    6. Ankley G, Jensen K, Kahl M, et al. Description and evaluation of a short term reproduction test with the fathead minnow (Pimephales promelas)[J]. Environmental Toxicology and Chemistry, 2001,20(6):1276-1290.
    7. Ankley G, Johnson R. Small fish models for identifying and assessing the effects of endocrine-disrupting chemicals[J]. Ilar Journal,2004,45(4):469-483.
    8. Ankley G, Kahl M, Jensen K, et al. Evaluation of the aromatase inhibitor fadrozole in a short-term reproduction assay with the fathead minnow (Pimephales promelas)[J]. Toxicological sciences,2002,67(1):121-130.
    9. Ankley G T, Jensen K M, Durhan E J, et al. Effects of two fungicides with multiple modes of action on reproductive endocrine function in the fathead minnow(Pimephales promelas)[J]. Toxicological sciences,2005,86(2):300-308.
    10. Ashby J, Kier L, Wilson A, et al. Evaluation of the potential carcinogenicity and genetic toxicity to humans of the herbicide acetochlor[J]. Human & experimental toxicology,1996,15(9): 702-735.
    11. Ateeq B, Abul Farah M, Niamat Ali M, et al. Clastogenicity of pentachlorophenol,2,4-D and butachlor evaluated by Allium root tip test[J]. Mutation Research/Genetic Toxicology and Environmental Mutagenesis,2002,514(2):105-113.
    12. Ateeq B, Farah M, Ahmad W. Evidence of apoptotic effects of 2,4-D and butachlor on walking catfish, Clarias batrachus, by transmission electron microscopy and DNA degradation studies[J]. Life sciences,2006,78(9):977-986.
    13. Ateeq B, Farah M A, Ahmad W. Evidence of apoptotic effects of 2,4-D and butachlor on walking catfish, Clarias batrachus, by transmission electron microscopy and DNA degradation studies[J]. Life sciences,2006,78(9):977-986.
    14. Ateeq B, Niamat Ali M, Ahmad W. Induction of micronuclei and erythrocyte alterations in the catfish Clarias batrachus by 2,4-dichlorophenoxyacetic acid and butachlor[J]. Mutation Research/Genetic Toxicology and Environmental Mutagenesis,2002,518(2):135-144.
    15. Ayson F, Lam T. Thyroxine injection of female rabbitfish (Siganus guttatus) broodstock: changes in thyroid hormone levels in plasma, eggs, and yolk-sac larvae, and its effect on larval growth and survival[J]. Aquaculture,1993,109(1):83-93.
    16. Balon E K. Epigenesis of an epigeneticist:the development of some alternative concepts on the early ontogeny and evolution of fishes[J]. Guelph Ichthyology Reviews,2006,1(1):1-48.
    17. Bates J M, Spate V L, Morris J S, et al. Effects of selenium deficiency on tissue selenium content, deiodinase activity, and thyroid hormone economy in the rat during development[J]. Endocrinology,2000,141(7):2490-2500.
    18. Bjerselius R, Lundstedt-Enkel K, Olsen H, et al. Male goldfish reproductive behaviour and physiology are severely affected by exogenous exposure to 17 [beta]-estradiol[J]. Aquatic toxicology,2001,53(2):139-152.
    19. Blanton M L, Specker J L. The hypothalamic-pituitary-thyroid (HPT) axis in fish and its role in fish development and reproduction[J]. CRC Critical Reviews in Toxicology,2007,37(2): 97-115.
    20. Bleau H, Daniel C, Chevalier G, et al. Effects of acute exposure to mercury chloride and methylmercury on plasma cortisol, T3, T4, glucose and liver glycogen in rainbow trout (Oncorhynchus mykiss)[J]. Aquatic toxicology,1996,34(3):221-235.
    21. Boas M, Feldt-Rasmussen U, Skakkebaek N E, et al. Environmental chemicals and thyroid function[J]. European journal of endocrinology,2006,154(5):599-611.
    22. Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry,1976,72(1): 248-254.
    23. Bretaud S, Lee S, Guo S. Sensitivity of zebrafish to environmental toxins implicated in Parkinson's disease[J]. Neurotoxicology and teratology,2004,26(6):857-864.
    24. Brewster D, Hotz K, Ward D, et al. Evidence for a hormonally mediated non-genotoxic mechanism of action of alachlor induced rat thyroid tumors[J]. Toxicologist,1993,13:368.
    25. Brian J, Harris C, Scholze M, et al. Evidence of estrogenic mixture effects on the reproductive performance of fish[J]. Environ. Sci. Technol,2007,41(1):337-344.
    26. Brion F, Tyler C, Palazzi X, et al. Impacts of 17 [beta]-estradiol, including environmentally relevant concentrations, on reproduction after exposure during embryo-larval-, juvenile-and adult-life stages in zebrafish (Danio rerio)[J]. Aquatic Toxicology,2004,68(3):193-217.
    27. Brion F, Tyler C, Palazzi X, et al. Impacts of 17β-estradiol, including environmentally relevant concentrations, on reproduction after exposure during embryo-larval-, juvenile-and adult-life stages in zebrafish (Danio rerio)[J]. Aquatic toxicology,2004,68(3):193-217.
    28. Brown D D. The role of thyroid hormone in zebrafish and axolotl development[J]. Proceedings of the National Academy of Sciences of the United States of America,1997,94(24):13011-13016.
    29. Brown S B, Adams B A, Cyr D G, et al. Contaminant effects on the teieost fish thyroid[J]. Environmental Toxicology and Chemistry,2004,23(7):1680-1701.
    30. Brucker-Davis F. Effects of environmental synthetic chemicals on thyroid function[J]. Thyroid, 1998,8(9):827-856.
    31. Carr J A, Norris D O. The thyroid gland. In Norris DO, Carr JA, eds, Endocrine disruption: biological bases for health effects in wildlife and humans[M]. Oxford University Press, New York, 2006,87-110.
    32. Cheek A, Ide C, Bollinger J, et al. Alteration of leopard frog (Rana pipiens) metamorphosis by the herbicide acetochlor[J]. Archives of environmental contamination and toxicology,1999,37(1): 70-77.
    33. Chiamolera M I, Wondisford F E. Thyrotropin-releasing hormone and the thyroid hormone feedback mechanism[J]. Endocrinology,2009,150(3):1091-1096.
    34. Crump D, Werry K, Veldhoen N, et al. Exposure to the herbicide acetochlor alters thyroid hormone-dependent gene expression and metamorphosis in Xenopus Laevis[J]. Environmental health perspectives,2002,110(12):1199-1205.
    35. D'cotta H, Fostier A, Guiguen Y, et al. Aromatase plays a key role during normal and temperature-induced sex differentiation of tilapia Oreochromis niloticus[J]. Molecular Reproduction and Development,2001,59(3):265-276.
    36. Davey J C, Nomikos A P, Wungjiranirun M, et al. Arsenic as an endocrine disruptor:arsenic disrupts retinoic acid receptor-and thyroid hormone receptor-mediated gene regulation and thyroid hormone-mediated amphibian tail metamorphosis[J]. Environmental health perspectives, 2008,116(2):165-172.
    37. de Jesus E G T, Toledo J D, Simpas M S. Thyroid Hormones Promote Early Metamorphosis in Grouper(Epinephelus coioides) Larvae* 1[J]. General and comparative endocrinology,1998, 112(1):10-16.
    38. de Vlaming V, Biales A, Riordan D, et al. Screening California surface waters for estrogenic endocrine disrupting chemicals (EEDC) with a juvenile rainbow trout liver vitellogenin mRNA procedure[J]. Science of the Total Environment,2007,385(3):66-79.
    39. Debnath A, Das A, Mukherjee D. Persistence and effect of butachlor and basalin on the activities of phosphate solubilizing microorganisms in wetland rice soil[J]. Bulletin of environmental contamination and toxicology,2002,68(5):766-770.
    40. Devlin R H, Nagahama Y. Sex determination and sex differentiation in fish:an overview of genetic, physiological, and environmental influences[J]. Aquaculture,2002,208(4):191-364.
    41. Dumont J, Lamy F, Roger P, et al. Physiological and pathological regulation of thyroid cell proliferation and differentiation by thyrotropin and other factors[J]. Physiological reviews,1992, 72(3):667-697.
    42. Dunn J T, Dunn A D. Update on intrathyroidal iodine metabolism[J]. Thyroid,2001,11(5): 407-414.
    43. Eaton R C, Nissanov J. A review of Mauthner-initiated escape behavior and its possible role in hatching in the immature zebrafish, Brachydanio rerio[J]. Environmental Biology of Fishes,1985, 12(4):265-279.
    44. Ensenbach U, Nagel R. Toxicity of complex chemical mixtures:Acute and long-term effects on different life stages of zebrafish (Brachydanio rerio)[J]. Ecotoxicology and environmental safety,1995,30(2):151-157.
    45. Evans R M. The steroid and thyroid hormone receptor superfamily[J]. Science,1988, 240(4854):889-895.
    46. Farombi E O, Ajimoko Y R, Adelowo O A. Effect of Butachlor on antioxidant enzyme status and lipid peroxidation in fresh water African Catfish,(Clarias gariepinus)[J]. International Journal of Environmental Research and Public Health,2008,5(5):423-427.
    47. Fenske M, Maack G, Schafers C, et al. An environmentally relevant concentration of estrogen induces arrest of male gonad development in zebrafish, Danio rerio[J]. Environmental Toxicology and Chemistry,2005,24(5):1088-1098.
    48. Fenske M, Segner H. Aromatase modulation alters gonadal differentiation in developing zebrafish (Danio rerio)[J]. Aquatic toxicology,2004,67(2):105-126.
    49. Flanagan D, Moore V, Godsland I, et al. Alcohol consumption and insulin resistance in young adults[J]. European journal of clinical investigation,2000,30(4):297-301.
    50. Flanagan D, Pratt E, Murphy J, et al. Alcohol consumption alters insulin secretion and cardiac autonomic activity[J]. European journal of clinical investigation,2002,32(3):187-192.
    51. Geng B, Yao D, Xue Q. Acute toxicity of the pesticide dichlorvos and the herbicide butachlor to tadpoles of four anuran species[J]. Bulletin of environmental contamination and toxicology, 2005,75(2):343-349.
    52. Geng B R, Yao D, Xue Q Q. Genotoxicity of the pesticide dichlorvos and herbicide butachior in Rhacophoridae megacephalus tadpoles[J]. Acta Zoologica Sinica,2005,51(3):447-454.
    53. Goolish E, Okutake K. Lack of gas bladder inflation by the larvae of zebrafish in the absence of an air-water interface[J]. Journal of fish biology,1999,55(5):1054-1063.
    54. Haffter P, Granato M, Brand M, et al. The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio[J]. Development,1996,123(1):1-36.
    55. Han J, Fang Z. Estrogenic effects, reproductive impairment and developmental toxicity in ovoviparous swordtail fish (Xiphophorus helleri) exposed to perfluorooctane sulfonate (PFOS)[J]. Aquatic toxicology,2010,99(2):281-290.
    56. Han Z, Jiao S, Kong D, et al. Effects of β-endosulfan on the growth and reproduction of zebrafish (Danio rerio)[J]. Environmental Toxicology and Chemistry,2011,30(11):2525-2531.
    57. Harries J, Runnalls T, Hill E, et al. Development of a reproductive performance test for endocrine disrupting chemicals using pair-breeding fathead minnows (Pimephales promelas)[J]. Environ. Sci. Technol,2000,34(14):3003-3011.
    58. Harvey P W, Darbre P. Endocrine disrupters and human health:could oestrogenic chemicals in body care cosmetics adversely affect breast cancer incidence in women?[J]. Journal of Applied Toxicology,2004,24(3):167-176.
    59. Hayes T B, Collins A, Lee M, et al. Hermaphroditic, demasculinized frogs after exposure to the herbicide atrazine at low ecologically relevant doses[J]. Proceedings of the National Academy of Sciences,2002,99(8):5476-5480.
    60. Helbing C C, Ovaska K, Ji L. Evaluation of the effect of acetochlor on thyroid hormone receptor gene expression in the brain and behavior of Rana catesbeiana tadpoles[J]. Aquatic toxicology,2006,80(1):42-51.
    61. Hinfray N, Palluel O, Turies C, et al. Brain and gonadal aromatase as potential targets of endocrine disrupting chemicals in a model species, the zebrafish(Danio rerio)[J]. Environmental toxicology,2006,21(4):332-337.
    62. Hiramatsu N, Cheek A O, Sullivan C V, et al. Vitellogenesis and endocrine disruption[J]. Biochemistry and molecular biology of fishes,2005,6:431-471.
    63. Holbech H, Madsen T H, Norrgren L, et al. Gonad development and vitellogenin production in zebrafish(Danio rerio) exposed to ethinylestradiol and methyltestosterone[J]. Aquatic toxicology, 2003,65(4):397-411.
    64. Hood A, Klaassen C D. Differential effects of microsomal enzyme inducers on in vitro thyroxine (T4) and triiodothyronine (T3) glucuronidation[J]. Toxicological sciences,2000,55(1): 78-84.
    65. Huang H, Huang C, Wang L, et al. Toxicity, uptake kinetics and behavior assessment in zebrafish embryos following exposure to perfluorooctanesulphonicacid (PFOS)[J]. Aquatic toxicology,2010,98(2):139-147.
    66. Huet M C. OECD activity on endocrine disrupters test guidelines development[J]. Ecotoxicology,2000,9(1):77-84.
    67. Hurley P M. Mode of carcinogenic action of pesticides inducing thyroid foliicular cell tumors in rodents[J]. Environmental health perspectives,1998,106(8):437-445.
    68. Hutchinson T H, Brown R, Brugger K E, et al. Ecological risk assessment of endocrine disruptors[J]. Environmental health perspectives,2000,108(11):1007-1014.
    69. Incardona J P, Collier T K, Scholz N L. Defects in cardiac function precede morphological abnormalities in fish embryos exposed to polycyclic aromatic hydrocarbons[J]. Toxicology and Applied Pharmacology,2004,196(2):191-205.
    70. Isogai S, Horiguchi M, Weinstein B M. The vascular anatomy of the developing zebrafish:an atlas of embryonic and early larval development J]. Developmental Biology,2001,230(2): 278-301.
    71. Jin M, Zhang X, Wang L, et al. Developmental toxicity of bifenthrin in embryo-larval stages of zebrafish[J]. Aquatic toxicology,2009,95(4):347-354.
    72. Jin Y, Wang W, Xu C, et al. Induction of hepatic estrogen-responsive gene transcription by permethrin enantiomers in male adult zebrafish[J]. Aquatic toxicology,2008,88(2):146-152.
    73. Jin Y, Zhang X, Shu L, et al. Oxidative stress response and gene expression with atrazine exposure in adult female zebrafish(Danio rerio)[J]. Chemosphere,2010,78(7):846-852.
    74. Jobling S, Casey D, Rodgers-Gray T, et al. Comparative responses of molluscs and fish to environmental estrogens and an estrogenic effluent[J]. Aquatic toxicology,2003,65(2):205-220.
    75. Jugan M L, Levi Y, Blondeau J P. Endocrine disruptors and thyroid hormone physiology[J]. Biochemical Pharmacology,2010,79(7):939-947.
    76. Kang D Y, Chang Y J. Effects of maternal injection of 3,5,3'-triiodo--thyronine (T3) on growth of newborn offspring of rockfish, Sebastes schlegeli[J]. Aquaculture,2004,234(4): 641-655.
    77. Karels A E, Soimasuo M, Lappivaara J, et al. Effects of ECF-bleached kraft mill effluent on reproductive steroids and liver MFO activity in populations of perch and roach[J]. Ecotoxicology, 1998,7(3):123-132.
    78. Kavlock R J, Daston G P, DeRosa C, et al. Research needs for the risk assessment of health and environmental effects of endocrine disruptors:a report of the US EPA-sponsored workshop[J]. Environmental health perspectives,1996,104(4):715-740.
    79. Kime D. Endocrine disruption in fish[M]. Kluwer Academic Pub, Norwell, MA.1998.
    80. Kimmel C B, Ballard W W, Kimmel S R, et al. Stages of embryonic development of the zebrafish[J]. American Journal of Anatomy,1995,203(3):253-310.
    81. Kinnberg K, Holbech H, Petersen G I, et al. Effects of the fungicide prochloraz on the sexual development of zebrafish(Danio rerio)[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology,2007,145(2):165-170.
    82. Kitano T, Takamune K, Kobayashi T, et al. Suppression of P450 aromatase gene expression in sex-reversed males produced by rearing genetically female larvae at a high water temperature during a period of sex differentiation in the Japanese flounder(Paralichthys olivaceus)[J]. Journal of molecular endocrinology,1999,23(2):167-176.
    83. Kleiman S E, Yogev L, Gal-Yam E N, et al. Reduced human germ cell-less (HGCL) expression in azoospermic men with severe germinal cell impairment[J]. Journal of andrology, 2003,24(5):670-675.
    84. Klotz D, Beckman B, Hill S, et al. Identification of environmental chemicals with estrogenic activity using a combination of in vitro assays[J]. Environmental health perspectives,1996, 104(10):1084-1089.
    85. Kuiper R V, Vethaak A, Canton R I. Toxicity of analytically cleaned pentabromodiphenylether after prolonged exposure in estuarine European flounder(Platichthys flesus), and partial life-cycle exposure in fresh water zebrafish(Danio rerio)[J]. Chemosphere,2008,73(2):195-202.
    86. Kuntz S, Chesnel A, Flament S, et al. Cerebral and gonadal aromatase expressions are differently affected during sex differentiation of Pleurodeles waltl[J]. Journal of molecular endocrinology,2004,33(3):717-727.
    87. Lange R, Hutchinson T H, Croudace C P, et al. Effects of the synthetic estrogen 17a-ethinylestradiol on the life-cycle of the fathead minnow (Pimephales promelas)[J]. Environmental Toxicology and Chemistry,2001,20(6):1216-1227.
    88. Lammer E, Carr G, Wendler K, et al. Is the fish embryo toxicity test (FET) with the zebrafish (Danio rerio) a potential alternative for the fish acute toxicity test?[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology,2009,149(2):196-209.
    89. Lee W J, Hoppin J A, Blair A, et al. Cancer incidence among pesticide applicators exposed to alachlor in the Agricultural Health Study[J]. American journal of epidemiology,2004,159(4): 373-380.
    90. Legler J, Broekhof J L M, Brouwer A, et al. A novel in vivo bioassay for (xeno-) estrogens using transgenic zebrafish[J]. Environmental science & technology,2000,34(20):4439-4444.
    91. Li W, Zha J, Spear P A, et al. Changes of thyroid hormone levels and related gene expression in Chinese rare minnow(Gobiocypris rarus) during 3-amino-1,2,4-triazole exposure and recovery[J]. Aquatic toxicology,2009,92(1):50-57.
    92. Liley N, Stacey N. Hormones, pheromones, and reproductive behavior in fish. In:Hoar W S, Randall D J, Donaldson EM. Fish physiology[M]. New York:Academic Press,1983,9:1-63.
    93. Lin L L, Janz D M. Effects of binary mixtures of xenoestrogens on gonadal development and reproduction in zebrafish[J]. Aquatic toxicology,2006,80(4):382-395.
    94. Liu F, Qian C, Jiang S, et al. Observations of Pesticides in the Beijing Area (Air, Rain and Surface Water). Proceedings of the 18th Asian-Pacific Weed Science Society Conference[C], Beijing, China,2001,682-689.
    95. Liu F M, Qian C F, Jiang S R, et al. Proceedings of the 18th Asian-Pacific Weed Science Society Conference[M]. Beijing.2001.
    96. Liu Y-W, Chan W-K. Thyroid hormones are important for embryonic to larval transitory phase in zebrafish[J]. Differentiation,2002,70(1):36-45.
    97. Liu Y W, Lo L J, Chan W K. Temporal expression and T3 induction of thyroid hormone receptors [alpha] 1 and [beta] 1 during early embryonic and larval development in zebrafish, Danio rerio[J]. Molecular and Cellular Endocrinology,2000,159(2):187-195.
    98. Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-[Delta][Delta] CT method[J]. Methods,2001,25(4):402-408.
    99. Loomis A K, Thomas P. Effects of estrogens and xenoestrogens on androgen production by Atlantic croaker testes in vitro:evidence for a nongenomic action mediated by an estrogen membrane receptor[J]. Biology of reproduction,2000,62(4):995-1004.
    100. Maack G, Segner H. Morphological development of the gonads in zebrafish[J]. Journal of fish biology,2003,62(4):895-906.
    101. MacKenzie D S, Jones R A, Miller T C. Thyrotropin in teleost fish[J]. General and comparative endocrinology,2009,161(1):83-89.
    102. Makynen E, Kahl M, Jensen K, et al. Effects of the mammalian antiandrogen vinclozolin on development and reproduction of the fathead minnow (Pimephales promelas)[J]. Aquatic toxicology,2000,48(4):461-475.
    103. Manchado M, Infante C, Asensio E, et al. Thyroid hormones down-regulate thyrotropin [beta] subunit and thyroglobulin during metamorphosis in the flatfish Senegalese sole (Solea senegalensis Kaup)[J]. General and comparative endocrinology,2008,155(2):447-455.
    104. Martinez-Alvarez R M, Morales A E, Sanz A. Antioxidant defenses in fish:biotic and abiotic factors[J]. Reviews in Fish Biology and Fisheries,2005,15(1):75-88.
    105. Matthews J, Celius T, Halgren R, et al. Differential estrogen receptor binding of estrogenic substances:a species comparison[J]. The Journal of steroid biochemistry and molecular biology, 2000,74(4):223-234.
    106. Menuet A, Pellegrini E, Anglade I, et al. Molecular characterization of three estrogen receptor forms in zebrafish:binding characteristics, transactivation properties, and tissue distributions[J]. Biology of reproduction,2002,66(6):1881-1892.
    107. Mills L J, Chichester C. Review of evidence:Are endocrine-disrupting chemicals in the aquatic environment impacting fish populations?[J]. Science of the total environment,2005, 343(3):1-34.
    108. Molina F, Pau B, Granier C. The type-1 repeats of thyroglobulin regulate thyroglobulin degradation and T3, T4 release in thyrocytes[J]. FEBS Letters,1996,391(3):229-231.
    109. Moore A, Waring C. Sublethal effects of the pesticide diazinon on olfactory function in mature male Atlantic salmon parr[J]. Journal of fish biology,1996,48(4):758-775.
    110. Morgado I, Santos C, Jacinto R, et al. Regulation of transthyretin by thyroid hormones in fish[J]. General and comparative endocrinology,2007,152(3):189-197.
    111. Mortensen AS, Arukwe A. Modulation of xenobiotic biotransformation system and hormonal responses in Atlantic salmon(Salmo salar) after exposure to tributyltin (TBT)[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology,2007,145(3):431-441.
    112. Mukhi S, Patino R. Effects of prolonged exposure to perchlorate on thyroid and reproductive function in zebrafish[J]. Toxicological sciences,2007,96(2):246-254.
    113. Nagel R. DarT:The embryo test with the Zebrafish Danio rerio--a general model in ecotoxicology and toxicology[J]. Altex,2002,19(suppl 1):38-48.
    114. Nash J P, Kime D E, Van der Ven L T M, et al. Long-term exposure to environmental concentrations of the pharmaceutical ethynylestradiol causes reproductive failure in fish[J]. Environmental health perspectives,2004,112(17):1725-1733.
    115. Network P A. The list of lists:a catalogue of lists of pesticides identifying those associated with particularly harmful health or environmental impacts[J]. Pesticide Action Network,2009.
    116. Okada R, Yamamoto K, Koda A, et al. Development of radioimmunoassay for bullfrog thyroid-stimulating hormone (TSH):effects of hypothalamic releasing hormones on the release of TSH from the pituitary in vitro[J]. General and comparative endocrinology,2004,135(1):42-50.
    117. Oliveira M, Maria V, Ahmad I, et al. Contamination assessment of a coastal lagoon(Ria de Aveiro, Portugal) using defence and damage biochemical indicators in gill of Liza aurata-An integrated biomarker approach[J]. Environmental Pollution,2009,157(3):959-967.
    118. Opitz R, Braunbeck T, Bogi C, et al. Description and initial evaluation of a Xenopus metamorphosis assay for detection of thyroid system-disrupting activities of environmental compounds[J]. Environmental Toxicology and Chemistry,2005,24(3):653-664.
    119. Opitz R, Lutz I, Nguyen N H, et al. Analysis of thyroid hormone receptor [beta] A mRNA expression in Xenopus laevis tadpoles as a means to detect agonism and antagonism of thyroid hormone action[J]. Toxicology and Applied Pharmacology,2006,212(1):1-13.
    120. Orn S, Yamani S, Norrgren L. Comparison of vitellogenin induction, sex ratio, and gonad morphology between zebrafish and Japanese medaka after exposure to 17alpha-ethinylestradiol and 17beta-trenbolone[J]. Archives of environmental contamination and toxicology,2006,51(2): 237.
    121. Orozco A, Valverde-R C. Thyroid hormone deiodination in fish[J]. Thyroid,2005,15(8): 799-813.
    122. Pant N, Mathur N, Banerjee A, et al. Correlation of chlorinated pesticides concentration in semen with seminal vesicle and prostatic markers[J]. Reproductive Toxicology,2004,19(2): 209-214.
    123. Paris M, Laudet V. The history of a developmental stage:Metamorphosis in chordates[J]. genesis,2008,46(11):657-672.
    124. Parke D, Ioannides C, Lewis D. Computer modelling and in vitro tests in the safety evaluation of chemicals--Strategic applications[J]. Toxicology in vitro,1990,4(5):680-685.
    125. Pawlowski S, Van Aerle R, Tyler C, et al. Effects of 17 [alpha]-ethinylestradiol in a fathead minnow (Pimephales promelas) gonadal recrudescence assay [J]. Ecotoxicology and environmental safety,2004,57(3):330-345.
    126. Porazzi P, Calebiro D, Benato F, et al. Thyroid gland development and function in the zebrafish model[J]. Molecular and Cellular Endocrinology,2009,312(2):14-23.
    127. Power D, Llewellyn L, Faustino M, et al. Thyroid hormones in growth and development of fish 1[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology,2001, 130(4):447-459.
    128. Power D M, Llewellyn L, Faustino M, et al. Thyroid hormones in growth and development of fish[J]. Comparative Biochemistry and Physiology C-Toxicology & Pharmacology,2001,130(4): 447-459.
    129. Powers C M, Yen J, Linney E A, et al. Silver exposure in developing zebrafish (Danio rerio): Persistent effects on larval behavior and survival[J]. Neurotoxicology and teratology,2010,32(3): 391-397.
    130. Rankouhi T R, Sanderson J, Van Holsteijn 1, et al. Effects of natural and synthetic estrogens and various environmental contaminants on vitellogenesis in fish primary hepatocytes: comparison of bream (Abramis brama) and carp (Cyprinus carpio)[J]. Toxicological sciences, 2004,81(1):90-102.
    131. Reddy P, Lam T. Role of thyroid hormones in tilapia larvae (Oreochromis mossambicus):I. Effects of the hormones and an antithyroid drug on yolk absorption, growth and developmen[J]. Fish Physiology and Biochemistry,1992,9(5):473-485.
    132. Robinson C D, Brown E, Craft J A, et al. Effects of sewage effluent and ethynyl oestradiol upon molecular markers of oestrogenic exposure, maturation and reproductive success in the sand goby (Pomatoschistus minutus, Pallas)[J]. Aquatic toxicology,2003,62(2):119-134.
    133. Rocha Monteiro P R, Reis-Henriques M A, Coimbra J. Polycyclic aromatic hydrocarbons inhibit in vitro ovarian steroidogenesis in the flounder (Platichthys flesus L.)[J]. Aquatic toxicology,2000,48(4):549-559.
    134. Rohr K B, Concha M L. Expression of nk2. 1a during early development of the thyroid gland in zebrafish[J]. Mechanisms of Development,2000,95(2):267-270.
    135. Rurangwa E, Biegniewska A, Slominska E, et al. Effect of tributyltin on adenylate content and enzyme activities of teleost sperm:a biochemical approach to study the mechanisms of toxicant reduced spermatozoa motility[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology,2002,131(3):335-344.
    136. Sabo-Attwood T, Kroll K J, Denslow N D. Differential expression of largemouth bass (Micropterus salmoides) estrogen receptor isotypes alpha, beta, and gamma by estradiol[J]. Molecular and Cellular Endocrinology,2004,218(2):107-118.
    137. Saint-Amant L, Drapeau P. Time course of the development of motor behaviors in the zebrafish embryo[J]. Journal of neurobiology,1998,37(4):622-632.
    138. Sanderson J T, Boerma J, Lansbergen G W A, et al. Induction and inhibition of aromatase (CYP19) activity by various classes of pesticides in H295R human adrenocortical carcinoma cells[J]. Toxicology and Applied Pharmacology,2002,182(1):44-54.
    139. Sano K, Inohaya K, Kawaguchi M, et al. Purification and characterization of zebrafish hatching enzyme-an evolutionary aspect of the mechanism of egg envelope digestion[J]. FEBS Journal,2008,275(23):5934-5946.
    140. Santos M, Micael J, Carvalho A, et al. Estrogens counteract the masculinizing effect of tributyltin in zebrafish[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology,2006,142(2):151-155.
    141. SAS. SAS/STST User's Guide. SAS Institute Inc,1990, Cary NC.
    142. Sawyer S J, Gerstner K A, Callard G V. Real-time PCR analysis of cytochrome P450 aromatase expression in zebrafish:gene specific tissue distribution, sex differences, developmental programming, and estrogen regulation[J]. General and comparative endocrinology,2006,147(2): 108-117.
    143. Sayeed I, Parvez S, Pandey S, et al. Oxidative stress biomarkers of exposure to deltamethrin in freshwater fish, Channa punctatus Bloch[J]. Ecotoxicology and environmental safety,2003, 56(2):295-301.
    144. Scholz S, Gutzeit H.17-[alpha]-ethinylestradiol affects reproduction, sexual differentiation and aromatase gene expression of the medaka (Oryzias latipes)[J]. Aquatic toxicology,2000,50(4): 363-373.
    145. Schoots A F M, Meijer R C, Denuce J M. Dopaminergic regulation of hatching in fish embryos[J]. Developmental Biology,1983,100(1):59-63.
    146. Schriks M, Roessig J M, Murk A J, et al. Thyroid hormone receptor isoform selectivity of thyroid hormone disrupting compounds quantified with an in vitro reporter gene assay[J]. Environmental Toxicology and Pharmacology,2007,23(3):302-307.
    147. Schwaiger J, Mallow U, Ferling H, et al. How estrogenic is nonylphenol?::A transgenerational study using rainbow trout(Oncorhynchus mykiss) as a test organism[J]. Aquatic toxicology,2002,59(4):177-189.
    148. Segner H. Zebrafish(Danio rerio) as a model organism for investigating endocrine disruption[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2009,149(2):187-195.
    149. Segner H, Caroll K, Fenske M, et al. Identification of endocrine-disrupting effects in aquatic vertebrates and invertebrates:report from the European IDEA project[J]. Ecotoxicology and environmental safety,2003,54(3):302-314.
    150. Selderslaghs I W T, Hooyberghs J, De Coen W, et al. Locomotor activity in zebrafish embryos:A new method to assess developmental neurotoxicity[J]. Neurotoxicology and teratology, 2010,32(4):460-471.
    151. Selman K, Wallace R A, Sarka A, et al. Stages of oocyte development in the zebrafish, Brachydanio rerio[J]. Journal of Morphology,1993,218(2):203-224.
    152. Shi X, Liu C, Wu G, et al. Waterborne exposure to PFOS causes disruption of the hypothalamus-pituitary-thyroid axis in zebrafish larvae[J]. Chemosphere,2009,77(7):1010-1018.
    153. Siekmann A F, Covassin L, Lawson N D. Modulation of VEGF signalling output by the Notch pathway[J]. BioEssays,2008,30(4):303-313.
    154. Simon R, Tietge J, Michalke B, et al. Iodine species and the endocrine system:thyroid hormone levels in adult Danio rerio and developing Xenopus laevis[J]. Analytical and Bioanalytical Chemistry,2002,372(3):481-485.
    155. Simpson E R, Mahendroo M S, Means G D, et al. Aromatase cytochrome P450, the enzyme responsible for estrogen biosynthesis[J]. Endocrine reviews,1994,15(3):342-355.
    156. Singh P, Kime D, Epler P, et al. Impact of γ-hexachlorocyclohexane exposure on plasma gonadotropin levels and in vitro stimulation of gonadal steroid production by carp hypophyseal homogenate in Carassius auratus[J]. Journal of fish biology,1994,44(2):195-204.
    157. Singh P B, Sahu V, Singh V, et al. Sperm motility in the fishes of pesticide exposed and from polluted rivers of Gomti and Ganga of north India[J]. Food and Chemical Toxicology,2008, 46(12):3764-3769.
    158. Sinha S, Panneerselvam N, Shanmugam G Genotoxicity of the herbicide butachlor in cultured human lymphocytes[J]. Mutation Research/Genetic Toxicology,1995,344(2):63-67.
    159. Smolders R, De Boeck G, Blust R. Changes in cellular energy budget as a measure of whole effluent toxicity in zebrafish (Danio rerio)[J]. Environmental Toxicology and Chemistry,2003, 22(4):890-899.
    160. Sole M, Porte C, Barcelo D. Analysis of the estrogenic activity of sewage treatment works and receiving waters using vitellogenin induction in fish as a biomarker[J]. TRAC Trends in Analytical Chemistry,2001,20(9):518-525.
    161. Solomon S S, De-fang F, Shao-nan L. Hepatic glutathione S-transferase activity in mosquitofish(Gambusia affinis) and topmouth gudgeon (Pseudorasobora parva) exposed to fenitrothion[J]. Journal of Zhejiang University-Science A,2000,1(2):190-195.
    162. Sonnenschein C, Soto A M. An updated review of environmental estrogen and androgen mimics and antagonists[J]. The Journal of steroid biochemistry and molecular biology,1998, 65(1-6):143-150.
    163. Sun Y, Yin Y, Zhang J, et al. Bioaccumulation and ROS generation in liver of freshwater fish, goldfish Carassius auratus under HC Orange No.1 exposure[J]. Environmental toxicology,2007, 22(3):256-263.
    164. Swan S H, Kruse R L, Liu F, et al. Semen quality in relation to biomarkers of pesticide exposure[J]. Environmental health perspectives,2003,111(12):1478.
    165. Tagawa M, Tanaka M, Matsumoto S, et al. Thyroid hormones in eggs of various freshwater, marine and diadromous teleosts and their changes during egg development[J]. Fish Physiology and Biochemistry,1990,8(6):515-520.
    166. Tchoudakova A, Kishida M, Wood E, et al. Promoter characteristics of two cyp19 genes differentially expressed in the brain and ovary of teleost fish[J]. The Journal of steroid biochemistry and molecular biology,2001,78(5):427-439.
    167. Thisse C, Zon L I. Organogenesis--heart and blood formation from the zebrafish point of view[J]. Science,2002,295(5554):457-462.
    168. Toft G, Guillette L J. Decreased sperm count and sexual behavior in mosquitofish exposed to water from a pesticide-contaminated lake[J]. Ecotoxicology and environmental safety,2005,60(1): 15-20.
    170. Tomlin C. T he Pesticide Manual[J]. British Crop Protection Council, Farnham, UK,1994.
    171. Tramboo S M, Yousuf A, Akbar S. Oxidative stress-inducing potential of butachlor in a freshwater fish, Cyprinus carpio (L)[J]. Toxicological and Environ Chemistry,2011,93(2): 285-295.
    172. Trant J M, Gavasso S, Ackers J, et al. Developmental expression of cytochrome P450 aromatase genes (CYP19a and CYP19b) in zebrafish fry(Danio rerio)[J]. Journal of Experimental Zoology,2001,290(5):475-483.
    173. Valavanidis A, Vlahogianni T, Dassenakis M, et al. Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants[J]. Ecotoxicology and environmental safety,2006,64(2):178-189.
    174. Van der Geyten S, Byamungu N, Reyns G, et al. Iodothyronine deiodinases and the control of plasma and tissue thyroid hormone levels in hyperthyroid tilapia (Oreochromis niloticus)[J]. Journal of Endocrinology,2005,184(3):467-479.
    175. Van der Oost R, Beyer J, Vermeulen N P E. Fish bioaccumulation and biomarkers in environmental risk assessment:a review[J]. Environmental Toxicology and Pharmacology,2003, 13(2):57-149.
    176. van der Ven L, van den Brandhof E J, Vos J H, et al. Effects of the estrogen agonist 17β-estradiol and antagonist tamoxifen in a partial life-cycle assay with zebrafish (Danio rerio)[J]. Environmental Toxicology and Chemistry,2007,26(1):92-99.
    177. van der Ven L T M, van den Brandhof E J, Vos J H, et al. Effects of the antithyroid agent propylthiouracil in a partial life cycle assay with zebrafish[J]. Environmental science & technology,2006,40(1):74-81.
    178. Vittozzi L, De Angelis G. A critical review of comparative acute toxicity data on freshwater fish[J]. Aquatic toxicology,1991,19(3):167-204.
    179. Walpita C N, Van der Geyten S, Rurangwa E, et al. The effect of 3,5,3'-triiodothyronine supplementation on zebrafish(Danio rerio) embryonic development and expression of iodothyronine deiodinases and thyroid hormone receptors[J]. General and Comparative Endocrinology,2007,152(3):206-214.
    182. Wang H, Tan J T T, Emelyanov A, et al. Hepatic and extrahepatic expression of vitellogenin genes in the zebrafish, Danio rerio[J]. Gene,2005,356(15):91-100.
    183. Wang M, Chen J, Lin K, et al. Chronic zebrafish PFOS exposure alters sex ratio and maternal related effects in F1 offspring[J]. Environmental Toxicology and Chemistry,2011,30(9): 2073-2080.
    184. Watanabe H, Suzuki A, Goto M, et al. Tissue-specific estrogenic and non-estrogenic effects of a xenoestrogen, nonylphenol[J]. Journal of molecular endocrinology,2004,33(1):243-252.
    185. Weber L P, Hill R L, Janz D M. Developmental estrogenic exposure in zebrafish (Danio rerio):Ⅱ. Histological evaluation of gametogenesis and organ toxicity[J]. Aquatic toxicology, 2003,63(4):431-446.
    186. Wendl T, Lun K, Mione M, et al. Pax2.1 is required for the development of thyroid follicles in zebrafish[J]. Development,2002,129(15):3751-3760.
    187. WHO. Biomarkers in risk assessment:validity and validation[M]. International Programme on Chemical Safety (IPCS).2001.
    188. Wilson A G E, Thake D C, Heydens W E, et al. Mode of Action of Thyroid Tumor Formation in the Male Long-Evans Rat Administered High Doses of Alachlor[J]. Toxicological sciences, 1996,33(1):16-23.
    189. Winata C L, Korzh S, Kondrychyn I, et al. Development of zebrafish swimbladder:The requirement of Hedgehog signaling in specification and organization of the three tissue layers[J]. Developmental Biology,2009,331(2):222-236.
    190. Winter M J, Lillicrap A D, Caunter J E, et al. Defining the chronic impacts of atenolol on embryo-larval development and reproduction in the fathead minnow(Pimephales promelas)[J]. Aquatic toxicology,2008,86(3):361-369.
    191. Woo S, Yum S, Park H S, et al. Effects of heavy metals on antioxidants and stress-responsive gene expression in Javanese medaka (Oryzias javanicus)[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology,2009,149(3):289-299.
    192. Xu H, Yang J, Wang Y, et al. Exposure to 17 [alpha]-ethynylestradiol impairs reproductive functions of both male and female zebrafish (Danio rerio)[J]. Aquatic toxicology,2008,88(1): 1-8.
    193. Yamaguchi A, Ishibashi H, Kohra S, et al. Short-term effects of endocrine-disrupting chemicals on the expression of estrogen-responsive genes in male medaka (Oryzias latipes)[J]. Aquatic toxicology,2005,72(3):239-249.
    194. Yamano K. The role of thyroid hormone in fish development with reference to aquaculture[J]. Japan Agricultural Research Quarterly,2005,39(3):161-168.
    195. Yen P M. Physiological and molecular basis of thyroid hormone action[J]. Physiological reviews,2001,81(3):1097-1142.
    196. Yi X, Ding H, Lu Y, et al. Effects of long-term alachlor exposure on hepatic antioxidant defense and detoxifying enzyme activities in crucian carp (Carassius auratus)[J]. Chemosphere, 2007,68(8):1576-1581.
    197. Youson J H. Is lamprey metamorphosis regulated by thyroid hormones?[J]. American Zoologist,1997,37(6):441-460.
    199. Yu L Q, Deng J, Shi X J, et al. Exposure to DE-71 alters thyroid hormone levels and gene transcription in the hypothalamic-pituitary-thyroid axis of zebrafish larvae[J]. Aquatic Toxicology, 2010,97(3):226-233.
    200. Yu Y, Chen Y, Luo Y, et al. Rapid degradation of butachlor in wheat rhizosphere soil[J]. Chemosphere,2003,50(6):771-774.
    201. Zha J, Wang Z, Schlenk D. Effects of pentachlorophenol on the reproduction of Japanese medaka (Oryzias latipes)[J]. Chemico-Biological Interactions,2006,161(1):26-36.
    202. Zha J, Wang Z, Wang N, et al. Histological alternation and vitellogenin induction in adult rare minnow (Gobiocypris rarus) after exposure to ethynylestradiol and nonylphenol[J]. Chemosphere, 2007,66(3):488-495.
    203. Zhang Z, Hu J, Jin W A. Induction of vitellogenin mRNA in juvenile chinese sturgeon (acipenser sinensis gray) treated with 17β-estradiol and 4-nonylphenol[J]. Environmental Toxicology and Chemistry,2005,24(8):1944-1950.
    204. Zoeller R T, Tan S W, Tyl R W. General background on the hypothalamic-pituitary-thyroid (HPT) axis[J]. CRC Critical Reviews in Toxicology,2007,37(2):11-53.
    205.卜宁,王丽文,宋海东.除草剂丁草胺对蟾蜍红细胞微核及核异常的影响[J].四川动物,2005,24(3):293-296.
    206.陈家长,孟顺龙,胡庚东,等.阿特拉津对雄性鲫鱼血清雌二醇含量的影响[J].生态学杂志,2007,26(7):1068-1073.
    207.陈家长,孟顺龙,胡庚东,等.低浓度阿特拉津对鲫鱼过氧化氢酶(CAT)活性的影响[J].农业环境科学学报,2008,27(3):1151-1156.
    208.陈小军,程东美,徐汉虹,等.苄·丁可湿性粉剂中丁草胺在稻田土壤和田水中残留动态[J].生态环境,2008,17(6):2195-2200.
    209.陈小军,程东美,徐汉虹,等.丁草胺在水稻上的降解动态与残留分析[J].华中农业大学学报,2009(3):286-290.
    210.陈一安,林应椿.丁草胺在蔬菜及环境中的残留探讨[J].福建省农科院学报,1995,10(3):47-49.
    211.董武,魏强.二恶英诱发斑马鱼初期胚的循环系统障碍[J].中国实验动物学报,2002,10(2):69-72.
    212.范立民,马晓燕,胡庚东,等.除草剂丁草胺对两种鱼的急性毒性研究[J].浙江海洋学院学报:自然科学版,2006,24(4):377-379.
    213.方展强,张凤君,厥文彪,等.多氯联苯对剑尾鱼超氧化物岐化酶活性的影响[J].中国实验动物学报,2004,12(2):96-99.
    214.高珊,王薇,梁进涛,等.胰岛素样生长因子结合蛋白-2参与斑马鱼胚胎心血管系统发育的实验研究[J].复旦学报:医学版,2010,37(1):43-51.
    215.耿宝荣,姚丹,薛清清.杀虫剂敌敌畏和除草剂丁草胺对斑腿树蛙蝌蚪的遗传毒性[J].动物学报,2005,51(3):447-454.
    216.郭华,杨红.乙草胺及其它酰胺类除草剂在环境中的降解与迁移[J].农药,2006,45(2):87-91.
    217.郭善一,左爱军,刘年庆,等.不同碘营养状态对克汀大鼠脑内T4 5’-和5-脱碘酶活性的影响[J].中华预防医学杂志,2005,39(1):30-32.
    218.韩玉军,闫春秀,何付丽,等.丁草胺对水稻安全性影响的研究[J].东北农业大学学报,2007,38(5):586-589.
    219.胡庚东,陈家长,吴伟,等.除草剂丁草胺对黄鳝的遗传毒性[J].湛江海洋大学学报,2005,25(1):43-46.
    220.胡建英,谢国红.酵母双杂交系统测定抗雌激素物质[J].北京大学学报(自然科学版),2003,39(4):449-453.
    221.胡笑形.我国农药工业的现状与发展方向[J].农药,1998,37(6):7-10.
    222.李贤宾.三种酰胺类除草剂对热带爪蟾(Xenopus tropicalis)早期发育致畸效应及DNA损伤研究.浙江大学博士论文[D].2010.
    223.连迎,薛清清,苏丹丹,等.除草剂丁草胺对虎纹蛙成体红细胞的DNA损伤[J].福建师范大学学报:自然科学版,2006,22(3):90-94.
    224.林玲,姚丹,钟碧瑾,等.丁草胺对中华大蟾蜍蝌蚪的遗传毒性[J].福建师范大学学报:自然科学版,2009(6):65-70.
    225.刘少颖.三唑酮对斑马鱼的胚胎发育和内分泌-生殖毒性.浙江大学博士论文[D].2011.
    226.刘相梅,黄伟林.酸度对林丹水解的影响[J].中国环境科学,2002,22(6):485-489.
    227.刘晓丽,汪奇,贾林芝,等.壬基酚对斑马鱼精巢组织及性激素合成酶基因表达的影响[J].环境科学学报,2011,31(11):2523-2529.
    228.马永鹏.五氯酚对稀有鮈鲫内分泌毒性及遗传毒性的研究.西南大学硕士论文[D].2010.
    229.孟顺龙,陈家长,冷春梅.除草剂阿特拉津与丁草胺对麦穗鱼的联合毒性研究[J].环境污染与防治,2007,29(4):254-256.
    230.孟紫强.生态毒理学原理与方法[M].科学出版社.2006.
    231.明玺,吴玲玲,陈玲,等.林丹短期暴露下的斑马鱼(Brachydanio rerio)组织学变化[J].生态毒理学报,2006,1(3):243-248.
    232.潘道一.除草剂对泽蛙蝌蚪的毒性[J].动物学杂志,1990,25(1):32-34.
    233.任丽萍,田芹,潘灿平.丁草胺原药中主杂质的GC-MS定性分析.农药,2005,44(2):74-78
    234.申勋宇.重金属铅对鲫鱼血清抗氧化能力的影响[J].安徽农业科学,2010(2):758-759.
    235.石志猛.鱼类多样性丧失和保护的经济分析[J].淡水渔业,2005,35(2):76-78.
    236.王畅,官桂红,王勇,等.除草剂丁草胺对蟾蜍肾脏形态学和组织学的影响[J].沈阳师范大学学报:自然科学版,2008,26(4):473-475.
    237.王海黎,陶澍.生物标志物在水环境研究中的应用[J].中国环境科学,1999,19(5):421-426.
    238.王海勤.丁草胺在毛豆及其土壤环境中的残留动态研究[J].华南热带农业大学学报,2006,12(2):1-5.
    239.王菊.丙烯酰胺对斑马鱼胚胎致畸作用的研究.中国协和医科大学硕士论文[D].2007.
    240.谢文平,马广智.氯氰菊酯对草鱼鳃和肝组织超氧化物歧化酶(SOD)活性的影响[J].水产科学,2003,22(6):5-7.
    241.杨桂华,卜宁,冯甲棣,等.除草剂丁草胺对蟾蜍心肌收缩力和心肌酶谱的影响[J].中国医科大学学报,2007,36(6):644-646.
    242.姚斌,徐建民,张超兰.除草剂丁草胺的环境行为综述[J].生态环境,2003,12(1):66-70.
    243.叶常明,雷志芳.丁草胺在土壤中的吸附及环境物质的影响[J].环境化学,2003,22(1):14-18.
    244.伊雄海.农药类环境激素低剂量暴露对鲫鱼内分泌干扰效应及生物标志物研究.上海交通大学博士论文[D].2008.
    245.尹大强,金洪钧,于红霞,等.钩虾胆碱酯酶(ChE)和谷胱甘肽转硫酶(GST)的敏感性和特异性比较研究[J].应用生态学报,2001,12(4):615-618.
    246.尹晓辉.几种农药对中华蟾蜍的生态毒理效应及分子毒性研究.东华大学博士论文[D].2008.
    247.袁红霞,秦粉菊,徐世清.氰戊菊酯对鲫鱼血液抗氧化酶活力及丙二醛含量的影响[J].江苏农业科学,2009(2):206-208.
    248.张立凤,钟涛,桂永浩.外源性视黄酸对斑马鱼心血管系统发育的影响[J].中国实验动物学报,2006,14(2):84-88.
    249.赵淑莉,谭文捷,何绪文.除草剂丁草胺的分析测定及其微生物降解产物研究[J].农业环境科学学报,2006,24(5):989-993.
    250.赵于丁.5种稻田常用杀虫剂对斑马鱼的毒性及亚致死效应.福建农林大学硕士论文[D].2007.
    251.郑和辉,叶常明.乙草胺和丁草胺的水解及其动力学[J].环境化学,2001,20(2):168-171.
    252.郑捷.149化学物质对甲状腺功能的影响[J].国外医学:卫生学分册,2001,28(6):333-336.
    253.周胜利.沙蚕毒素类杀虫剂对斑马鱼的发育和生殖毒性.浙江大学博士论文[D].2010.
    254.周玉国,温海深.斑马鱼繁殖内分泌学研究进展[J].中国实验动物学报,2007,15(6):465-469.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.